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Kawasaki disease (KD) is an immune-response disorder with unknown etiology. KD is an acute systemic immune vasculitis caused
by infectious factors that can be complicated by coronary artery lesions. Innate immune cells are closely associated with KD onset,
but we know little regarding the expression of immunity-related genes (IRGs) and the possible immune regulatory mechanisms
involved in KD. In this study, we analyzed public single-cell RNA sequencing (scRNA-seq) and microarray data of peripheral blood
mononuclear cells from normal controls and KD patients. The results of scRNA-seq revealed myeloid cells, T cells, B cells, NK cells,
erythrocytes, platelets, plasma cells, hematopoietic stem cells, and progenitor cells in the peripheral blood of patients with KD. In
particular, myeloid cells were expanded and heterogeneous. Further analysis of the myeloid cell population revealed that mono-
cytes in KD exhibited higher expression of the inflammatory genes S100A8, S100A9, and S100A12; furthermore, CD14+CD16+
monocyte clusters were associated with inflammatory responses. Microarray data revealed that activation of the innate immune
response contributed to KD development and progression. Differential expression and weighted gene coexpression network
analysis identified 48 differentially expressed IRGs associated with response to intravenous immunoglobulin, currently the
most effective treatment of KD, although numerous patients are resistant. Protein–protein interaction analysis identified ten
hub genes (IL1R1, SOCS3, IL1R2, TLR8, IL1RN, CCR1, IL1B, IL4R, IL10RB, and IFNGR1) among the IRGs. In addition, the
expressions of IL1R1, SOCS3, CCR1, IL1B, and IL10RB were validated in Chinese KD patients using the real-time reverse
transcriptase-polymerase chain reaction. Finally, we found that the neutrophil/lymphocyte ratio could be used as a biomarker
to predict responsiveness to intravenous immunoglobulin in KD. In conclusion, our data highlight the importance of innate
immunity in KD pathogenesis and its potential in predicting treatment response.

1. Introduction

Kawasaki disease (KD), also known as cutaneous mucosal
lymph node syndrome, was first reported from Japan in 1967
by Kawasaki [1]. KD is a disorder characterized by abnormal
inflammation and an atypical immune response. Genetic
factors, particularly variations in genes associated with the
immune system, contribute to the risk of developing this
condition [2]. Immune dysregulation and the activation of
T cells and monocytes play a role in the disease [3, 4].

Inflammation and the formation of aneurysms in the coro-
nary arteries are caused by dysfunction in the endothelial
lining of blood vessels [5]. While the exact infectious agent
responsible for KD remains unknown, some theories pro-
pose that specific viruses or bacteria may trigger the immune
response [6]. However, the exact cause of KD remains
unknown.

Immunohistochemical analysis of postmortem tissue
from patients with KD has revealed the presence of mono-
cytes, macrophages, and neutrophils [3, 4], as well as activated
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CD8+ T cells [7] and IgA+ plasma cells [8, 9], in the arterial
wall. Infiltrating immune cells release proinflammatory cyto-
kines (e.g., TNF and IL-1β) that then contribute to the devel-
opment of endothelial lesions and CAL [10, 11]. In addition,
endothelin autoantibodies can cause endothelial disease in
KD [12]. Recent research using single-cell RNA sequencing
(scRNA-seq) has revealed alterations to immune cells in KD
patients at the acute stage, including increases in immuno-
modulatory T cells, NK cells [13], plasma cells, and B cells
[14]. Immunomodulatory genes are involved in the pathogen-
esis of KD [15]. Changes have also been observed inmonocyte
developmental trajectory [16], and CD14+CD16- monocytes
were found to be expanded in KD.Multisystem Inflammatory
Syndrome in Children (MIS-C), an inflammatory disorder
associatedwith immune dysfunction, has clinicalmanifestations
similar to KD which are sometimes difficult to distinguish.
Immunological studies showed a decrease in the number of
follicular B cells, an increase in the number of terminally differ-
entiated CD4+T lymphocytes (LYM), and a decrease in IL-17A
levels inMIS-C [17]. These studies suggest that innate immunity
plays an important role in KD pathogenesis. Furthermore, the
most effective treatment for KD is currently high-dose intrave-
nous gamma globulin (IVIG), which reduces CAL incidence.
However, up to 15%–20% of patients do not respond to IVIG
therapy, and CAL progression remains unaffected [17, 18]. An
improved understanding of the mechanisms underlying the
involvement of innate immunity could help to explain the
nonresponsive patients. One promising area of research is
immunity-related genes (IRGs), known to be critical during
immune infiltration [19, 20]. No research has yet examined
their regulation or expression characteristics in KD.

The objective of our study was to explore the role of
innate immunity in the pathogenesis of KD and its potential
in predicting treatment response. Here, we used scRNA-seq
and RNA microarray data to investigate the expression char-
acteristics of IRGs and their possible regulatory mechanisms.
Furthermore, we validated the hub genes in Chinese KD
patients. We demonstrated that CD14+CD16+ monocytes
are important effector cells in the acute stage of KD, and
regulate cytokine levels through promoting the expression
of inflammatory transcription factors. Moreover, CD14+CD16+

and CD14−CD16+ monocytes are closely related to the effi-
cacy of IVIG treatment. Our findings provide insight into the
role of innate immunity in KD pathogenesis and offer valu-
able biomarkers that can be useful for improving treatment
efficacy.

2. Materials and Methods

2.1. Gene Expression Datasets. Two whole-blood RNA micro-
array datasets (GSE18606 [21] and GSE63881 [22]) and two
scRNA-seq datasets (GSE168732 [14] and GSE152450 [16])
were obtained from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) (Table 1).
GSE63881 array data included acute and convalescent whole
blood transcriptional profiles of 171 KD patients before IVIG
administration (110 IVIG responders and 61 nonresponders).
GSE18606 comprised expression profiles of nine healthy age-
appropriate subjects and 20 acute KD subjects (8 nonre-
sponders and 12 responders). Whole blood peripheral blood
mononuclear cells (PBMC)were used for scRNA-seq;GSE168732
data contained six KD and three healthy subjects. Analysis of
GSE152450 data revealed monocyte heterogeneity in two
healthy and two KD infants.

2.2. Analysis of scRNA Sequencing Data. Processing of
GSE168732 scRNA sequencing data followed methods
from a previous study [14]. The quality control standards
are as follows: first, we assigned the CreateSeuratObject func-
tion various parameters, including min. Cell= 3 and min.
features= 200. For most samples, the total UMI count is
between 2,000 and 60,000, and the mitochondrial gene per-
centage was <5%. For P1 before therapy, a lower cutoff of
total UMI count (1,000) was used owing to its lower median
UMI count per cell. After quality control and filtering, 38,712
cells were selected for the analysis. Processing of the
GSE152450 dataset also followed published methods [16],
yielding 6,283 cells for further analysis after quality control
and filtering. The “Findmarkers” function of the R package
Seurat [23] was used to perform downstream analyses of
differentially expressed genes (DEGs). Criteria for DEGs
were adjusted P <0:05 and |log fold change|≥ 0.25. R
packages Monocle2 [24] and Dorothea [25] were used to
determine the pseudo-time developmental trajectory and
transcription factor activity of myeloid subpopulations,
respectively.

2.3. Score Analysis of IRGs. IRGs were downloaded from
ImmPort (https://www.immport.org/shared/home) [26]. The
R package AUCell was used to calculate IRG scores among cell
clusters, following publicly available code and tutorial (https://
www.bioconductor.org/packages/devel/bioc/vignettes/AUCe
ll/inst/doc/AUCell.html).

TABLE 1: Enrolled datasets in the current study.

Datasets Type Platform Sample size (Control/KD) Cells (Control/KD) Reference

GSE168732 scRNA sequencing
GLP18753 Illumina NextSeq 500

(Homo sapiens)
6/3 24,679/14,033 [11]

GSE152450 scRNA sequencing
GPL24676 Illumina NovaSeq6000

(Homo sapiens)
2/2 3,981/2,302 [13]

GSE18606 RNA microarray GPL8328 SMD Print-853 20/9 – [19]

GSE63881 RNA microarray
GPL10558 Illumina human HT-12 V4.0

expression beadchip
171/170 – [20]
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2.4. Microarray Data Analysis. The R package immuno-
oncology biological research [27] was used to construct the
expression matrix and to match the probes with gene sym-
bols. Downstream analysis, including normalization and
analysis of DEGs (adjusted P<0:05, and |log fold change|≥1.0),
was done with R package limma [28].

2.5. Weighted Gene Coexpression Network Analysis. Gene
coexpression networks were constructed with the R package
weighted gene coexpression network analysis (WGCNA)
[29]. After analyzing the correlation modules and different
sample periods, MEblue modules were selected for further
analysis because they had the highest positive correlation
with responders from acute samples. The code and tutorial
were obtained online (https://rstudio-pubs-static.s3.amazona
ws.com/687551_ed469310d8ea4652991a2e850b0018de.html).

2.6. Functional Analysis. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses
were performed for DEGs using clusterProfiler [30]. Differ-
ences were considered significant at adjusted P<0:05. The R
package GSVA (gene set variation analysis) was applied on
hallmark gene sets among cell clusters [31].

2.7. Protein–Protein Interaction Analysis and Validation of
Hub Genes. Network analysis of protein–protein interactions
(PPIs) was performed using STRING (https://string-db.org/)
[32]. Hub genes were identified in Cytoscape version 3.8.2.
Real-time reverse transcriptase-polymerase chain reaction
(RT-qPCR) assays were performed to verify the reliability
of bioinformatics-based results. A total of 28 study participants
were recruited from the First Affiliated Hospital of Sun Yat-sen
University, including 18 KD patients (10 IVIG-responsive, 8
IVIG-nonresponsive), and 10 healthy controls. The protocol
was approved by the Ethics Committee of the First Affiliated
Hospital of Sun Yat-sen University ((2022)514). Peripheral
venous blood was collected from each participant; then,
total RNA was extracted from each sample using TRIzol
(Invitrogen, United States) according to the manufacturer’s
instructions. The cDNAwas synthesized using the SuperScript
III Reverse Transcriptase Kit (Invitrogen, USA). RT-qPCR
was performed with Power SYBR Green PCR Master Mix
(TransGen Biotech, China) on an ABI 7500 fast real-time
PCR system. The amplification reaction procedure was as

follows: 95°C for 10min, followed by 95°C for 15 s and
60°C for 1min for 40 cycles. GAPDH was selected as the
internal control for mRNA, and the relative expression level
of mRNA was calculated by the relative quantification
(2−ΔΔCt) method. The primer sequences are listed in Table 2.

2.8. Laboratory Indicators of KD. Clinical data and common
laboratory inflammation indices were collected from patients
diagnosed with KD between January 2014 and January 2021
in the Department of Pediatric Cardiology at the First Affili-
ated Hospital of Sun Yat-sen University. The nature and
purpose of the study was carefully explained to parents
before written consent was obtained from the parents. The
protocol was approved by the Ethics Committee of the First
Affiliated Hospital of Sun Yat-sen University ((2022)514).
All patients had acute KD. Individuals were excluded if
they had other systemic diseases (e.g., kidney disease), or
did not receive IVIG. The diagnostic criteria for KD were
based on literature [33]. Patients were divided into IVIG-
responsive and IVIG-resistant groups [33]. Inflammatory
markers, including C-reactive protein (CRP), procalcitonin
(PCT), white blood cells, neutrophils (NEUT), LYM, mono-
cytes (MONO), and platelets (PLT) were collected; the neu-
trophil/lymphocyte ratio (NLR) was then calculated. These
indicators were measured before IVIG administration.

2.9. Statistical Analysis. Wilcoxon tests or Kruskal–Wallis
tests were used for between-group comparisons. All statistics
and visualizations used R and the ggplot2 package [34].
Results from descriptive analyses are reported as percentages
and medians (interquartile spacing), as appropriate. Signifi-
cance was set at P<0:05.

3. Results

3.1. Profiling of scRNAs from KD PBMCs. Analysis of
GSE168732 involved 36,849 cells (22,775 KD patients and
14,074 normal controls (NC)). After filtration, we retained
24,679 cells (14,033 patients with KD and 10,646 NC). The
expression characteristics of each sample are shown in
Figure S1.

Cells were assigned to known clusters based on marker
genes [11]. Using t-SNE analysis, we visualized nine clusters:
myeloid cells, T cells, B cells, NK cells, erythrocytes, platelets,

TABLE 2: Primers used for RT-qPCR with their sequence.

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

IL1R1 CGTCCCTGTCCTCTTAACCCAAATG TGTGTTGATGAATCCTGGAGGCTTG
SOCS3 GACTGCGTGCTCAAGCTGGTG CTCGGAGGAGGGTTCAGTAGGTG
IL1R2 GACGGTGCTCTGTGGCTTCTG GGGTATGAGATGAACGGCAGGAAAG
TLR8 GGAGCCAGTGTTACAGCATTCTCAG GCCTTCTGCCTTCGGGTTGTC
IL1RN GTGCCTGTCCTGTGTCAAGTCTG GCCACTGTCTGAGCGGATGAAG
CCR1 CAACTCCGTGCCAGAAGGTGAAC AAGGACCAGGACCACCAGGATG
IL1B GGACAGGATATGGAGCAACAAGTGG TCATCTTTCAACACGCAGGACAGG
IL4R AGGAGGAGGAGGAGGTAGAGGAAG TCCGAGCAGGTCCAGGAACAG
IL10RB GAGCAAACAACCCATGACGAAACG CACCACAGCAAGGCGAAGCAG
IFNGR1 AGATTCAGTGCCAGTTAGCGATTCC CCCACACATGTAAGACTCCTTCTGC
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plasma cells, hematopoietic stem cells, and progenitor cells,
and mixed clusters (Figure 1(a) and Table S1, for all marker
gene expression, see Figure S2). The KD group exhibited an
increase in the number of myeloid and B cells (Figure 1(a)).
We then identified DEGs (between KD and NC groups) in
each cell cluster (the top five DEGs per cluster are shown in
Figure 1(b)).

Compared with the NC group, T cells in the KD group
decreased significantly, while myeloid cells increased, but not
significantly (Figures 1(c) and 1(d) and Table 3).

3.2. Expression of IRG in PBMC Clusters from KD Patients.
We selected IRGs according to the import database, and then
obtained them from DEGs of each cluster in the PBMCs,
resulting in 381 IRGs for analysis (Table S2).

The uniform manifold approximation and projection
analysis revealed that myeloid cells had the highest number
of DEGs among the nine cell subgroups (Figure 2(a)). We

confirmed this outcome with area under the curve (AUC)
analyses of IRG activity, where cells expressing more genes
had higher AUC values (Figures 2(b) and 2(c)). Next, GO
and KEGG analyses of 381 IRGs revealed that they were
mainly enriched in immune response-activating cell surface
receptor signaling pathway and cytokine–cytokine receptor
interaction (Figures 2(d) and 2(e)). These data suggest that
myeloid cell clusters are heterogeneous and that the innate
immune system plays an essential role in the development of
KD. Therefore, we mainly focused on myeloid cells in subse-
quent analyses.

3.3. Characteristics of Monocyte Expression in KD. Further
reclustering analysis of myeloid cells based on cell-type
marker genes showed that the main components were
CD14+CD16+ monocytes, leukocyte immunoglobulin-like
receptor A4+ plasmacytoid dendritic cells (LILRA4+ pDC),
CD14+CD16− monocytes, and CD14−CD16+ monocytes
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FIGURE 1: Cluster distribution analysis. (a) Cell types identified in peripheral blood mononuclear cells (PBMC) using uniform manifold
approximation and projection (UMAP). (b) Cluster heat map of top five differentially expressed genes (DEGs) per cluster. (c) Cluster
distribution in each sample. (d) Cluster distribution in Kawasaki disease (KD) and normal control (NC) groups. ∗P<0:05.
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TABLE 3: Cell numbers of each cluster.

Cluster Myeloid cells B cells T cells NK cells Erythrocytes Platelet Plasma cells Mixed Hematopoietic stem and progenitor cells

KD1 303 965 2,203 443 57 0 76 3 24
KD2 381 1,530 2,783 214 41 7 70 17 4
KD3 303 1,347 3,294 129 20 124 25 6 6
KD4 746 1,658 1,940 220 36 23 179 14 14
KD5 1,272 3,049 2,851 514 5 119 52 42 4
KD6 1,066 397 1,628 121 43 7 52 1 4
NC1 467 1,113 3,081 519 1 3 46 27 4
NC2 220 966 2,907 231 0 10 17 28 2
NC3 263 649 3,389 657 3 2 47 17 1
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(Figure 3(a) and Figure S3). A previous study reported that
peripheral blood monocytes play a central role in acute KD
[35]. We thus compared monocyte expression between the
KD and NC groups, revealing that monocytes in the KD
group expressed the calgranulin genes S100A8, S100A9, and
S100A12 at significantly higher levels (Figure 3(b)). Dot plots
showed that these inflammatory genes were mainly concen-
trated in CD14+CD16+ monocytes (Figure 3(c)). Pseudo-

time analysis of monocyte subsets indicated that the develop-
mental trajectory started from CD14−CD16+ monocytes and
ended with CD14+CD16+ monocytes; additionally, inflam-
matory gene expression increased during development
(Figure 3(d)). Next, GSVA of significant hallmarks in myeloid
cells indicated that immunomodulatory genes associated with
the inflammatory response were significantly upregulated in
CD14+CD16+monocytes from the KD group (Figure 4(a)). A
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FIGURE 2: Immunity-related gene (IRG) scores of PBMC clusters in KD. (a) DEGs in cell clusters from KD samples. Myeloid cells had the most
DEGs. (b) Scores of 381 screened IRGs. The threshold was 0.11. (c) t-SNE plots of IRG scores in all clusters. Myeloid cells express more genes
and exhibit higher AUC values. (d) Gene Ontology (GO) analysis of DEGs in myeloid cells, revealing enrichment in immune response-
activated cell surface receptor signaling pathway and immune response-activated signal transduction. (e) KEGG analysis of DEGs in myeloid
cells, revealing enrichment in pathways associated with Th17 cell differentiation, cytokine–cytokine receptor interaction, and natural killer
cell-mediated cytotoxicity.
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heat map showing functional enrichment indicated that
transcription factors related to inflammatory NFKB1 were
highly expressed in CD14+CD16+ monocytes, suggesting
their likely involvement in the inflammatory response of KD
(Figure 4(b)).

3.4. Differentially Expressed Genes in RNA Microarray Data
of KD. We analyzed the RNA microarray dataset GSE18606
containing 12 IVIG-responsive KD patients and nine controls
to explore DEGs in KD and screen for common IRGs in mye-
loid cells. We identified 5,339 up- and 5,542 downregulated
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DEGs in KD (Table S3), including the inflammatory genes
S100A8 and S100A12 (Figure 5(a)). Among these DEGs, we
found 289 IRGs in the KD group (Figure 5(b)). According to
GO analysis, these IRGs were enriched in pathways related to
innate immunity, including neutrophil chemotaxis and mye-
loid leukocyte migration. (Figure 5(c)). Moreover, t-SNE plots
of IRG scores in all clusters indicated that the 289 IRGs
were mainly expressed in members of the innate immunity
myeloid cell cluster (Figures 5(d) and 5(e)). These results
further indicate that innate immunity is associated with KD
pathogenesis.

3.5. Confirmation of Monocyte Function in KD. We used the
scRNA sequencing dataset GSE152450 to confirm monocyte
infiltration into KD. We grouped 2,302 myeloid cells into
five subsets, including CD14+16+ monocytes, CD14+CD16−

monocytes, CD14−CD16+monocytes, CD1C+ classical dendritic

cells, and LILR4+ pDC cells; monocytes were dominant
(Figures 6(a) and 6(b)). Analysis of DEGs in monocytes
between KD and NC groups showed that S1008A, S1009A,
and other inflammatory regulatory genes were highly expressed
in KD (Figure 6(c)). Again, GSVA of hallmarks indicated that
monocytes were primarily involved in inflammatory pro-
cesses (Figure 6(d)). In summary, GSE152450 analysis con-
firmed that monocytes are closely related to the inflammatory
response in KD.

3.6. Identification of Hub Genes Related to IVIG-Responsive
Acute KD. To investigate biomarkers of IVIG-responsive acute
KD, we analyzed whole blood RNA microarray data from
patients with IVIG-resistant and IVIG-responsive KD. The
results of WGCNA analysis (GSE63881) showed that IVIG-
responsive KD had a highly synergistic gene set that correlated
with disease phenotype (Figures 7(a) and 7(b)). These hub
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FIGURE 7: Continued.
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genes were mainly enriched in innate immune pathways,
such as neutrophil activation, neutrophil degranulation, and
neutrophil-mediated immunity (Figure 7(c)).

In addition, analysis of GSE18606 revealed 3,598 DEGs
(1,570 upregulated and 2,028 downregulated) between acute
IVIG-responsive and acute IVIG-resistant KD (Figure 8(a),
Table S4). These DEGs were mainly enriched in neutrophil
activation, degranulation, and neutrophil-mediated immunity
(Figure 8(b)). Intersection analysis yielded 48 IRGs from the
DEGs (Figure 8(c)) that were mostly involved in regulation of
the innate immune response (Figure 8(d)). In addition, they
were expressed inmyeloid cells and CD14+CD16+monocytes
(Figures 9(a) and 9(b)). The PPI network analysis indicated
that inflammation-related genes IL1R1, SOCS3, IL1R2, TLR8,
IL1RN, CCR1, IL1B, IL4R, IL10RB, and IFNGR1 were hub
genes (Figure 9(c)).

3.7. RT-qPCR Validation of Hub Genes in Chinese KD
Patients. To further validate the expression of the ten hub
genes in KD patients, we detected their expression in 18
samples of peripheral venous blood from KD patients (10
IVIG responsive, 8 IVIG nonresponsive) and 10 samples
from healthy controls. The results showed that the expres-
sion of IL1R1 (P<0:01), SOCS3 (P<0:01), TLR8 (P<0:01),
CCR1 (P<0:01), IL1B (P<0:01), and IL10RB (P<0:001) was
significantly up-regulated in the IVIG nonresponsive KD
group compared with the control group and the IVIG
responsive KD group. The expression of IL1R2 (P<0:01),
IL1RN (P<0:01), IL4R (P<0:01), and IFNGR1 (P<0:01)
was significantly up-regulated in the IVIG nonresponsive
KD group compared to the control group, but there was
no significant difference compared to the IVIG responsive
group (Figure 10).

Regulation of endopeptidase activity

Regulation of response to biotic stimulus

T-cell activation

Lymphocyte differentiation

Mononuclear cell differentiation

Positive regulation of proteolysis

Phagocytosis

Regulation of inflammatory response

Positive regulation of cytokine production

Regulation of innate immune response

Regulation of leukocyte mediated immunity

Lymphocyte activation involved in immune response

Cellular response to interferon−gamma

Response to interferon−gamma

Regulation of phagocytosis

Neutrophil mediated immunity

Neutrophil activation

Neutrophil degranulation

Neutrophil activation involved in immune response

Regulation of leukocyte degranulation

0.10 0.15 0.20 0.25 0.30
Rich factor

1.5e−08

1.0e−08

5.0e−09

P-value

Count

25

50

75

100

125

Top 20 GO enrichment

ðcÞ
FIGURE 7: Analysis of DEGs across KD phenotypes (GSE63881): acute IVIG-responsive KD, acute IVIG-resistant KD, convalescent IVIG-
responsive KD, and convalescent IVIG-resistant KD. (a) Cluster analysis of differentially expressed IRGs. Each color represents a module in
the gene coexpression network constructed using weighted gene coexpression network analysis (WGCNA). (b) Membership in the blue
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FIGURE 9: Continued.
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FIGURE 9: Distribution of DEGs in immune cells. (a) The DEGs are mainly found in myeloid cells, specifically (b) CD14+CD16+ monocytes
and CD14−CD16+ monocytes. (c) The PPI network analysis of common hub genes.
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FIGURE 10: Continued.
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3.8. Inflammatory Markers in KD Patients. We investigated
151 KD patients, including 133 IVIG-responsive individuals
and 18 IVIG-resistant individuals (Table 4). The two patient
groups did not differ in age or sex. The IVIG-resistant group

had higher CRP, PCT, andNLR levels than the IVIG-responsive
group. Additionally, the IVIG-resistant group had signifi-
cantly lower lymphocyte levels than the IVIG-responsive
group.
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FIGURE 10: RT-qPCR validation of hub genes in KD patients. (a) Expression level of IL1R1 gene, (b) expression level of SOCS3 gene, (c)
expression level of IL1R2 gene, (d) expression level of TLR8 gene, (e) expression level of IL1RN gene, (f ) expression level of CCR1 gene, (g)
expression level of IL1B gene, (h) expression level of IL4R gene, (i) expression level of IL10RB gene, (j) expression level of IFNGR1 gene, and
(k) expression level of GAPDH gene. ReKD= IVIG responsive KD (n= 10), Non-ReKD= IVIG nonresponsive KD (n= 8). ∗P<0:05,
∗∗P<0:01.

TABLE 4: Comparison of the IVIG-responsive and -resistant patients with KD in terms of demographic and clinical variables.

Variable IVIG-responsive (n= 133) IVIG-resistant (n= 18) P-value

Age (months) 21.9 (13.2, 40.5) 27.95 (16.2, 35.5) 0.918
Male (n, percentage) 86 (64.7%) 13 (72.2%) 0.528
CRP (mg/L) 80 (45.9, 111.0) 121.5 (82.9, 148.2) 0.026
PCT (ng/mL) 0.5 (0.2, 1.2) 1.2 (0.3, 3.1) 0.09
WBC (×109/L) 14.3 (11.5, 19.0) 15.2 (11.8, 26.1) 0.789
NEUT (×109/L) 8.9 (6.5, 11.9) 10.7 (8.3, 16.2) 0.325
LYM (×109/L) 3.7 (2.6, 6.0) 2.9 (0.9, 6.5) 0.03
MONO (×109/L) 0.9 (0.6, 1.3) 1.0 (0.5, 1.5) 0.945
PLT (×109/L) 383 (310.5, 493.5) 372.5 (229.7, 459.7) 0.308
NLR 2.5 (1.5, 3.5) 3.7 (1.5, 13.1) 0.012

Note. CRP, C-reactive protein; PCT, procalcitonin; WBC, white blood cells; NEUT, neutrophil; LYM, lymphocyte; MONO, monocytes; PLT, platelet; NLR,
neutrophil/lymphocyte ratio. The data are presented as Median (interquartile spacing) or number (%).
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4. Discussion

Increasing evidence suggests that the innate immune response
may be involved in KD pathogenesis [13, 14, 36]. Of partic-
ular note is the involvement of monocytes, innate immune
cells from the bone marrow that have multiple functions,
including tissue development and homeostasis, inflamma-
tion initiation and resolution, and tissue repair [37–39].
Monocytes are involved in the pathogenesis of other car-
diovascular diseases [40–42], and changes in monocyte sub-
sets have been observed in KD patients [16]. Other evidence
to suggest that innate immunity plays a major role in KD
pathogenesis includes research using mouse models of the
disease. One such study identified a nucleotide-binding
oligomerization domain-containing protein (NOD) 1 ligand
as an important inducer of coronary arteritis [43]. Another
study using a mouse model found that inhibition of inter-
leukin-1β attenuates vasculitis [44].

Here, we followed up on those previous reports in an
effort to better understand the potential mechanisms of
innate immunity in KD pathogenesis. Through an analysis
of scRNA sequencing data and marker gene expression, we
first found that T cells in patients with KD were significantly
reduced (Figure 1(d)), and also confirmed that myeloid cells
—the main source of monocytes—were the most heteroge-
neous cell group (Figure 2(a)). Our results corroborated ear-
lier research showing changes to T cells in KD patients
[13, 14], but myeloid cells have rarely been studied in KD,
although their involvement has been confirmed in various
other inflammatory diseases [42, 45]. Here, functional anal-
yses revealed that DEGs in myeloid cells were closely related
to inflammatory response and cytokine regulation (Figures 2(d)
and 2(e)), implicating them in the development of KD. Our
subgroup analysis then revealed that myeloid cells in KD
patients were mainly composed of monocytes and LILR4+pDC.
Monocytes can be broken down into three subtypes:
CD14+CD16+, CD14+CD16−, and CD14−CD16+ [46], or
intermediate, classical, and nonclassical in humans. Our
observed monocyte composition was consistent with pre-
vious studies [16]. We also noted that the DEGs S100A12,
S100A9, S100A8, and ITGAM were primarily expressed in
CD14+CD16+ monocytes (Figure 3(c)). Previous studies
have found that patients with acute KD had higher circulating
concentrations of S100A8/9 heterodimer and S100A12 than
patients with fever caused by other diseases; IVIG treatment
decreased these concentrations [47, 48]. Even after the acute
stage, KD patients with large coronary aneurysms maintained
higher S100A8/9 heterodimer levels [47]. In addition, elevated
S100A8, S100A9, and S100A12 levels have been found in
inflammatory diseases associated with immune disorders,
such as juvenile idiopathic arthritis [49]. Hence, the increased
levels of S100A8, S100A9, and S100A12 proteins cannot be
exclusively attributed to KD. In addition, integrin ITGAM
was upregulated in KD vasculopathy [50]. Furthermore, we
observed elevated expression of inflammatory regulation
genes associated with CD14+CD16+ cells (Figure 3(c)), and
GSVA indicated that this monocyte subtype is important to
the inflammatory response in KD (Figure 4(b)). Similarly,

recent reports have shown that, in addition to having high
antigen presentation capacity, CD14+CD16+ cells highly
express proinflammatory cytokines [51, 52]. Data from
peripheral blood of KD patients also revealed a link between
these cells and inflammation [53]. Taken together, our study
and previous research all indicate that CD14+CD16+ mono-
cytes are heavily involved in the inflammatory response of
acute KD.

Changes in the trajectory of monocyte development are
closely related to disease occurrence [54, 55]. Here, pseudo-
time analysis of monocyte subsets revealed a trajectory
from CD14−CD16+ monocytes to CD14+CD16+ monocytes
(Figure 3(d)), contradicting earlier research showing that
CD14+CD16− monocytes are significantly elevated in
acute KD [16]. Moreover, during monocyte development,
inflammation-related gene expression increased, but their
expression in CD14+CD16+ monocytes actually decreased
at the end of the developmental trajectory. By contrast, the
expression of inflammatory transcription factors was signifi-
cantly higher in CD14+CD16+ monocytes (Figure 4(b)).
Therefore, we speculate that CD14+CD16+ monocytes are
the final effector cells in acute KD and that they regulate
cytokine levels by promoting the expression of inflammatory
transcription factors.

Although IVIG is an effective treatment for KD, drug
resistance rates are high [56, 57]. Because IVIG-resistance
is associated with an increased incidence of coronary artery
aneurysms, IVIG-resistant patients should be identified
before initiating treatment because they may benefit from
additional anti-inflammatory therapy. In this study, we
therefore analyzed multiple GEO scRNA datasets to identify
potential genetic markers that could distinguish between
IVIG-resistant and -responsive patients. Our results revealed
that IVIG-responsive patients had highly synergistic differ-
ential genes (Figures 7(a) and 7(b)) that are involved in
neutrophil activation and degranulation (Figures 7(c) and
8). Neutrophils are a critical part of innate immunity but
can have harmful effects if excessively activated [58], causing
immune diseases such as rheumatoid arthritis [59, 60] and
vasculitis [61, 62]. Elevated peripheral neutrophils in patients
with KD are associated with coronary artery dilation and
IVIG resistance [63, 64]. The NLR is a comprehensive indi-
cator of neutrophil activation and immune disorders that
also plays an important role in KD [64, 65]. Here, our clinical
data revealed that IVIG-resistant patients had higher NLR
than IVIG-responsive patients, validating the results of scRNA
sequencing.

Further analysis showed that DEGs associated with neu-
trophils were mainly expressed in CD14+CD16+ and
CD14−CD16+ monocytes (Figures 9(a) and 9(b)). In addi-
tion, the effect of IVIG on acute KD is closely related to the
expression of immunomodulatory genes that activate neu-
trophils in these two monocyte subsets. The PPI network
analysis then revealed that all hub genes in KD (Figure 9(c))
are inflammation-related genes that regulate the innate
immune system. Broadly, these results corroborate a prior
genome-wide transcriptome analysis demonstrating that
increased CD177 transcript levels activate neutrophils and
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are closely related to KD [66]. Autopsy results of patients
who died during the acute phase of KD suggest neutrophilic
involvement in damage to the coronary arteries [67]. Con-
sistent with our results, it has been found that the hub gene
CCR1 is an important gene in the pathogenesis of KD [15].
The hub genes TLR8 and IL1B are also closely related to
neutrophil degranulation in patients with KD [68]. All avail-
able data thus provide evidence of neutrophil activation
being crucial to KD pathogenesis. Furthermore, it has been
observed that IL1B, SOCS3, and IL1RN exhibit high expres-
sion levels in other autoimmune diseases that are closely
linked to impaired innate immune function [69].

Although there are many clinical predictors of IVIG non-
response in KD, the clinical application value is limited. In
our study, we screened for hub genes by analyzing the
expression of differential genes in monocytes of KD patients
with IVIG response and IVIG nonresponse, and these results
were further verified using RT-qPCR. The validated results
indicated that the expression of IL1R1 (P<0:01), SOCS3
(P<0:01), TLR8 (P<0:01), CCR1 (P<0:01), IL1B (P<0:01),
and IL10RB (P<0:001) was significantly up-regulated in the
IVIG nonresponsive group compared with that in the control
group and the IVIG responsive group, while IL1R2 (P<0:01),
IL1RN (P<0:01), IL4R (P<0:01), and IFNGR1 (P<0:01) were
significantly up-regulated in the IVIG nonresponsive group
compared to that in the normal group, but there was no sig-
nificant difference compared to the IVIG responsive group
(Figure 10). The results suggested that IL1R1, SOCS3, TLR8,
CCR1, IL1B, and IL10RB could be used as hub genes for
screening IVIG responsive and IVIG nonresponsive patients
of KD.

To our knowledge, this is the first study to elaborate on
the role of innate immunity in the pathogenesis of KD and
the mechanism of IVIG resistance. Combining both scRNA-
seq and microarray data analysis, our data strongly illustrates
the involvement of innate immunity in the pathogenesis of
KD and provides insights into the mechanism of IVIG resis-
tance. Specifically, abnormal expression of immunomodula-
tory genes in CD14+CD16+ and CD14−CD16+ monocytes
seems to trigger neutrophil activation, causing the worst
symptoms of the disease and influencing the response to
IVIG. The limitations of this study are as follows: first, as
the study mainly relied on published RNA microarray data-
sets and RNA sequencing datasets for analysis, key clinical
data could not be obtained. Second, the mechanism of action
of these identified hub genes needs to be further studied.
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