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Background. As an innate immune system effector, natural killer cells (NK cells) play a significant role in tumor immunotherapy
response and clinical outcomes.Methods. In our investigation, we collected ovarian cancer samples from TCGA and GEO cohorts,
and a total of 1793 samples were included. In addition, four high-grade serous ovarian cancer scRNA-seq data were included for
screening NK cell marker genes. Weighted gene coexpression network analysis (WGCNA) identified core modules and central
genes associated with NK cells. The “TIMER,” “CIBERSORT,” “MCPcounter,” “xCell,” and “EPIC” algorithms were performed
to predict the infiltration characteristics of different immune cell types in each sample. The LASSO-COX algorithm was
employed to build risk models to predict prognosis. Finally, drug sensitivity screening was performed. Results. We first scored
the NK cell infiltration of each sample and found that the level of NK cell infiltration affected the clinical outcome of ovarian
cancer patients. Therefore, we analyzed four high-grade serous ovarian cancer scRNA-seq data, screening NK cell marker
genes at the single-cell level. The WGCNA algorithm screens NK cell marker genes based on bulk RNA transcriptome
patterns. Finally, a total of 42 NK cell marker genes were included in our investigation. Among which, 14 NK cell marker
genes were then used to develop a 14-gene prognostic model for the meta-GPL570 cohort, dividing patients into high-risk and
low-risk subgroups. The predictive performance of this model has been well-verified in different external cohorts. Tumor
immune microenvironment analysis showed that the high-risk score of the prognostic model was positively correlated with M2
macrophages, cancer-associated fibroblast, hematopoietic stem cell, stromal score, and negatively correlated with NK cell,
cytotoxicity score, B cell, and T cell CD4+Th1. In addition, we found that bleomycin, cisplatin, docetaxel, doxorubicin,
gemcitabine, and etoposide were more effective in the high-risk group, while paclitaxel had a better therapeutic effect on
patients in the low-risk group. Conclusion. By utilizing NK cell marker genes in our investigation, we developed a new feature
that is capable of predicting patients’ clinical outcomes and treatment strategies.

1. Introduction

In terms of incidence, ovarian cancer (OV) ranks second
only to cervical cancer and uterine cancer among female
reproductive system tumors [1]. OV has a very high recur-
rence rate and mortality, which seriously threatens women’s
health. Due to the lack of effective screening tools and early
diagnosis difficulties, 80% of OV patients are diagnosed at an
advanced stage, 50-70% of patients will relapse within 2
years after treatment, and a 5-year poor survival rate of
30% [2]. Despite recent improvements in treatment,

improvements in 5-year survival rates were minimal. A
new therapeutic target is needed to improve the clinical out-
comes of OV patients in light of the limitations of OV treat-
ment [3]. For this reason, the development of predictive
models and the identification of new biomarkers are crucial
for predicting clinical outcomes and the effects of therapeu-
tic interventions.

In response to tumor growth, a complex microenviron-
ment surrounds tumor cells, including stromal cells, extra-
cellular matrix molecules, and cytokines [4]. Accumulated
evidence suggested that tumor microenvironment (TME)
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components were thought to play a vital role in tumorigenesis
and progression. Moreover, abnormal changes in TME can
serve as biomarkers for immunotherapy in addition to affect-
ing patients’ prognoses [5]. Antitumor immunity has focused
mainly on adaptive T cell responses, without adequate atten-
tion being given to innate immune cells. Cancer cells are rap-
idly recognized and killed by innate immune cells, known as
NK cells [6]. As NK cells interact with target cells, their antitu-
mor effect depends entirely on the balance between their
inhibitory and activating receptors [7]. In the early stages of
tumor growth, NK cells can suppress tumor invasiveness by
directly destroying tumor cells and promoting adaptive T cell
responses to contribute to antitumor immunity [8]. Tumor
progression is controlled by both NK and T cells, which indi-
cates that these immunocytes play a vital role in shaping anti-
tumor immunity. NK cells in peripheral blood are reduced,
which increases the risk of malignant tumors [9, 10]. Further-
more, higher numbers of tumor microenvironment NK cells
component are significantly associated with better outcomes.
In view of the important role of NK cells in immune antitu-
mor, cumulative studies have explored the molecular charac-
teristics of NK cells in cancer [11], but little was known
about the comprehensive molecular mechanism of NK cells
in OV patients. With the advent of single-cell RNA sequenc-
ing (scRNA-seq) technology and related analytical methods,
the possibility of identifying the molecular profiles of different
immune cell subsets in TME has become a reality [12]. Previ-
ous investigations have demonstrated that investigating tran-
scriptome characteristics based on the molecular profile of
immunocytes extracted from scRNA-seq information may
be an effective weapon for predicting clinical outcomes and
immunotherapy response [13]. Here, we investigated the com-
prehensive molecular mechanisms of NK cells from OV
patients based on scRNA-seq data.

WGCNA is a technique for examining the variations in
gene expression among several samples. The association
between modules and clinical profiles can also be analyzed
by clustering genes according to similar transcriptome pro-
files in modules (such as the immune score of patients)
[14]. According to the WGCNA algorithm, this study
assumed that the gene expression network obeyed the
scale-free distribution and constructed the gene coexpres-
sion network. Therefore, we calculated dissimilarity coeffi-
cients between nodes in order to construct a hierarchical
clustering tree. The modules were further visualized by
assigning corresponding genes to different modules based
on gene similarity. In our study, we investigated the expres-
sion profiles of signature genes of NK cells based on single-
cell sequencing data to identify their biomarker genes and to
identify core module genes associated with NK cells by
WGCNA public expression analysis. Next, prediction
models were developed based on these factors to predict
the clinical outcome of OV by combining bulk RNA-seq
datasets. In addition, the performance of the prediction
model was validated with four independent cohorts, and
the relationship between the prediction model and the
response to chemotherapy in OV patients was investigated.
These results will help us to better understand the molecular
mechanisms of ovarian cancer progression.

2. Materials and Methods

2.1. Data Collection. An analysis of The Cancer Genome
Atlas (TCGA) database was conducted in order to obtain
RNA sequencing (RNA-seq) fragments per kilobase million
(FPKM) and complete follow-up information on 372 sam-
ples. Somatic mutation data came from TCGA database.
Using the “tmb” algorithm in the maftools package, each
sample’s tumor mutation burden (TMB) value was calcu-
lated. We performed log2 [(TPM)+1] conversion on the
above raw data. In addition, we included three GPL plat-
forms (GPL570: GSE19829, GSE18520, GSE9891,
GSE26193, GSE30161, and GSE63885; GPL96: GSE3149,
GSE23554, GSE26712, and GSE14764; and GPL7759:
GSE13876). A total of 11 GEO cohorts and 1793 samples
were included in our investigation.

Single-cell transcriptional profiling data and clinical
information from ovarian cancer patients were obtained
from the GEO website under accession number
GSE184880, and scRNA-seq data from a total of four high-
grade serous ovarian cancer samples were included.

2.2. Identification of NK Cell Marker Genes Based on the
scRNA-seq Database. For single-cell data, we filtered cells
with unique feature counts >5000 or <200 and cells with
mitochondrial counts >5%. Then, the feature-expression
measurements for each cell were normalized by the total
expression using the default parameters of the Seurat “Nor-
malizeData” function. Finally, all cell data were fed into a
combined Seurat object via the Harmony package. Then,
variable genes were scaled and the principal component
(PC) was analyzed. Via “RunUMAP” function min.
(Dist = 0:2 and neighbors = 20) and the “FindClusters” func-
tion (resolution = 0:5) using significant pc (top 15) for
UMAP analysis and clustering. For identifying cell types,
we employed automated annotation; SingleR is an auto-
mated annotation method for single-cell RNA sequencing
(scRNA-seq) data [15]. Given a sample reference dataset
(single cell or batch size) with known labels, it marks new
units in the test dataset based on similarity to the reference.
Thus, for reference datasets, the burden of manually inter-
preting clusters and defining marker genes only needs to
be done once, while this biological knowledge can spread
to new datasets in an automated manner. Differentially
expressed genes (DEGs) were calculated for each cell sub-
group using Wilcoxon-Mann–Whitney test in FindAllMar-
kers function. NK cells were calculated using three
methods: EPIC algorithm, xCell algorithm, and MCPcoun-
ter algorithm, which were performed based on the “IOBR”
package [16]. Adjusted p values < 0.01 and jlog 2 ðfold
changeÞj > 1 were identified as NK cell marker genes.

2.3. WGCNA Network Construction and Module
Identification. Subsequently, we made R “WGCNA” package
for coexpression network analysis of NK cell marker genes.
WGCNA can be used to find clusters (modules) of highly
correlated genes, summarize such clusters using module sig-
nature genes or hub genes within nodules, associate modules
with each other and external sample traits (using signature
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gene network methods), and calculate module member-
ship metrics [14]. Associated networks facilitate network-
based gene screening methods that can be used to identify
candidate biomarkers or therapeutic targets [14]. Our first
step was to cluster the samples in order to determine if
there were any outliers. Secondly, the coexpression net-
work was constructed by using the automatic network
construction function. The soft threshold power was cal-
culated with the R function “pickSoftThreshold” and the
coexpression similarity for adjacency calculations was
increased. Third, clustering and dynamic tree-cutting
functions were used to detect modules using hierarchical
clustering. As a fourth step, the significance of genes
and the membership of modules were calculated in order
to correlate them with immune features. To further ana-
lyze the module gene information, the corresponding
module gene information was extracted. Finally, we visual-
ize the feature gene network.

2.4. Construction and Verification of Prognostic Model Based
on NK Cell Marker Genes. Subsequently, we developed a
prognostic model based on the NK cell standard genes
selected by WGCNA. To minimize overfitting, prognostic
genes were evaluated by LASSO Cox proportional hazards
regression using the “glmnet” package [17]. LASSO is a pop-
ular high-dimensional predictive regression method widely
used for survival analysis of Cox proportional hazards
regression models [18]. In order to select the best model,

10-fold cross-validation was performed using the function
“cv.” Finally, we used multivariate Cox regression analysis
to calculate the prognostic value of specific genetic charac-
teristics based on genes provided by LASSO Cox regression
analysis. Risk models were constructed based on gene
mRNA expression and risk coefficients. Risk scores were cal-
culated using the following formula:

riskScore = Coef1 × gene expression1 + Coef2
× gene expression2+⋯Coefn
× gene expressionn:

ð1Þ

Coef represents the prognostic value of each gene in
multivariate Cox regression analysis. Gene expression values
represent the expression values of the corresponding model
genes. Patients were divided into low-risk and high-risk
groups according to the median cut-off of their risk score.
R “survival” software package is a tool for statistical analysis
and visualization of survival data and is widely used in scien-
tific research work [19]. The performance of the prognostic
model was validated using survival analysis on four datasets
using the R package “survminer.”

2.5. Pathway and Functional Enrichment Analysis. Accord-
ing to the whole genome annotation package (org.Hs.eg.db),
GO and KEGG enrichment analyses were employed to
explore the obtained NK cell marker genes. Through the

Single cell analysis
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Figure 1: Flowchart.
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Figure 2: The single-cell RNA sequencing analysis identifies NK cell marker genes. (a–f) K-M survival curves suggest a prognostic role for
NK cell-related scores assessed based on MCPcount, xCell, and EPIC algorithms. (g) The T-SNE algorithm demonstrated the distribution of
cell subsets in four high-grade serous ovarian cancers. (h) The cell types identified by marker genes. (i) T-SNE plot colored by various cell
clusters. (j) Histogram of GO analysis based on NK cell marker genes.
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Figure 3: Continued.
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latest online KEGG database, “ClusterProfiler” function
obtained pathway data and performs functional analysis
[20]. p < 0:05 was considered significant.

2.6. Enrichment Analysis of Immune Cell Infiltration. The
“TIMER,” “CIBERSORT,” “MCPcounter,” “xCell,” and
“EPIC” algorithms are all favorable tools for machine learn-
ing and are used to assess cell abundance and cell-type-
specific gene expression patterns from a large number of tis-
sue transcriptome profiles, quantify the tumor immune
background through the type and density of tumor-
infiltrating immune cells, and are widely used in scientific
research work [21–24]. In addition, the “ESTIMATE” algo-
rithm was used to calculate the proportion of stromal com-
ponents and immune components in each sample
microenvironment. The levels of immunomodulators in
each risk group were presented by box plot.

2.7. Statistical Analysis. In order to compare categorical var-
iables between different risk groups, Wilcoxon t-test was
used. The significance threshold was set at 0.05. For data
analysis and graphic generation, R tool (version 3.6.2) was
conducted.

3. Results

The flowchart for this article is shown in Figure 1.

3.1. Screening of NK Cell Marker Genes Profile. First, we used
MCPcounter, xCell, and EPIC algorithms to calculate the
NK cell index (NK score) of each sample. Based on the
median score, patients were classified into high-score and
low-score groups. In the meta-GPL570 cohort, NK cell infil-
tration contributed to the longer survival times of the high-
score group than the low-score group (Figures 2(a)–2(c)). In
the TCGA-OV queue, the trend is consistent with the meta-
GPL570 queue (Figures 2(d)–2(f)). Based on the GSE184880
scRNA-seq data, we included four high-grade serous ovarian

cancer scRNA-seq data for further investigation
(Figure 2(g)). We used the first 1,500 variable genes for
PCA to reduce dimensionality and then identified 17 cell
clusters (Figure 2(i)). Annotating each cluster using the
human primary cell map reference data set, cluster 0 was
identified as NK cells using the reference data set
(Figure 2(h)). There was also a difference in gene expression
profiles within the cluster, and the differentially expressed
genes (DEGs) for each cell subset were calculated using the
Wilcoxon-Mann–Whitney test in the FindAllMarkers func-
tion. Functional enrichment showed that NK cell marker
genes were mainly related to T cell immune characteristics,
such as T cell activation, T cell-mediated immunity, and T
cell receptor binding (Figure 2(j)).

3.2. Construction of Gene Coexpression Module. The
WGCNA network was built by first calculating the soft
threshold power and then improving the coexpression simi-
larity for the adjacency calculations. A topology analysis of
the network is undertaken using the pickSoftThreshold
function in the R package “WGCNA”. Based on the scale
independence reaching 0.9 and the average connectivity
being relatively high in both TCGA-OV and meta-GPL570
cohorts, the soft threshold power was set at 3 (Figures 3(a)
and 3(b)).

In the TCGA-OV and meta-GPL570 cohorts, we associ-
ate the modules with the immune infiltration algorithm and
search for the most important associations. The results of
this analysis showed that the module turquoise was signifi-
cantly associated with NK cell infiltration (Figures 3(c) and
3(d)). In addition, the NK cell EPIC score we constructed
was positively correlated with the turquoise module, which
was 0.93, 0.97 in TCGA-OV, and meta-GPL570 cohorts,
respectively (Figures 3(e) and 3(f)). Subsequently, we inter-
sected the NK cell marker genes obtained based on the
single-cell transcriptome data analysis with the NK cell
marker genes obtained based on the WGCNA algorithm to

688

WGCNA-TCGA

scRNA-OV

WGCNA-GPL570

439

42

45

19 7

1124

(g)

Figure 3: The WGNCA algorism identified NK cell marker genes (a, b) Scale-free exponent analysis and average connectivity analysis of soft
threshold powers. (c, d) The heat map displayed the correlation between module characteristic genes and NK cell marker genes. (e, f) The
correlation between module characteristic genes and NK cell EPIC. (g) The venn diagram showed overlapping genes for three screening
datasets. A total of 42 genes were identified as NK cell-related marker genes.
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Figure 4: Continued.
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obtain a total of 42 NK cell-related marker genes
(Figure 3(g)). We performed pathway enrichment analysis
on the 42 NK cell-related marker genes. GO analysis
revealed NK cell-associated genes associated with T cell acti-
vation, leukocyte-mediated immunity, and immunological
immunology (Figure 4(a)). KEGG analysis revealed these
genes’ enrichment in primary immunodeficiency, Th1 and
Th2 cell differentiations, and natural killer cell-mediated
cytotoxicity signal pathway (Figure 4(b)).

3.3. Establishment of Prognostic Model Based on 14 NK Cell
Marker Genes. In order to predict the survival for each
patient, we constructed a prognostic analysis based on 42
NK cell marker genes. We first used the meta-GPL570
cohort as a training set for LASSO regression analysis and
screened 16 genes for further analysis (Figure 4(c)). Finally,
we conducted the multivariate Cox regression analysis to
optimize prognostic features, including only 14 of the most
predictive genes (Figure 4(d)).

Risk score = 0:44 × ARHGDIB + 0:27 × CD8A + 0:14
× CLEC2B + 0:16 × CORO1A − 0:20
× CYTIP − 0:20 × GZMA − 0:14 × GZMB
+ 0:36 × GZMK − 0:25 × IL2RG + 0:16
× IL7R − 0:18 × KLRB1 − 0:16 × LCP1 − 0:29
× RAC2 + 0:15 × XCL1:

ð2Þ

By ranking risk scores from high to low, patients were
divided into low-risk and high-risk groups
(low risk : score < median, high risk : score > median).
Patients with a high-risk score had significantly shorter
OS than patients with a low-risk score, according to
Kaplan-Meier analysis (Figure 4(e)). Subsequently,
TCGA-OV, meta-GP96, and GPL7759 external cohorts
were used to verify the feasibility of the constructed pre-
dictive model (Figures 4(f)–4(h)).

3.4. Correlation between Risk Score and Tumor
Microenvironment. Since NK cells play an important role
in antitumor immunity, we explored the relationship
between the different risk based on the prognostic model
and immune cell infiltration in OV patients. We employed
TIMER, CIBERSORT, MCPcounter, xCell, and EPIC
immune infiltration assessment algorithms to predict the
proportion of immune cell infiltration in patients with high-
and low-risk groups. M2 macrophages, cancer-associated
fibroblast, hematopoietic stem cell, and stromal score were
highly infiltrated in the high-risk group. NK cell, cytotoxicity
score, B cell, and T cell CD4+Th1 were highly infiltrated in
low-risk patients (Figure 5(a)). By using the ESTIMATE
algorithm, we found that the risk score was positively corre-
lated with StromalScore and negatively correlated with
ImmuneScore (Figure 5(b)). Subsequently, we examined
the expression of immunoregulators in patients with high-
and low-risk groups. We found that immunoregulators and
HLA families were generally highly expressed in the low-
risk score group, while NRP1, TNFSF4, and CD276 were
the opposite (Figures 5(c) and 5(d)). Therefore, we speculate
that there were differences in immune cell infiltration and
tumor mutation load between the two groups. For this rea-
son, we divided patients into H-TMB and L-TMB according
to tumor mutation burden (TMB). Medium TMB was
1.736842. Result turned out that patients with H-TMB had
better survival outcomes than patients with L-TMB
(Figure 5(e)). Figures 4(f) and 4(g) show that the frequency
of mutation in patients with high-risk score (94.51%) was
higher than that in patients with low-risk score (88.76%).

3.5. Predictive Model for Drug Sensitivity in OV Patients. We
detected the mutation frequency of BRCA1 and BRCA2
between the high- and low-risk subgroups and found no dif-
ference between the two groups (Figures 6(a) and 6(b)). Sub-
sequently, we performed drug prediction for patients in the
high- and low-risk groups. We found that bleomycin, cis-
platin, docetaxel, doxorubicin, gemcitabine, and etoposide
were more effective in the high-risk group. Paclitaxel had a

(g) (h)

Figure 4: Construction of prognostic model based on the NK cell maker genes. (a, b) The GO and KEGG analyses of 42 NK cell marker
genes. (c) The LASSO regression was used to reduce gene dimension, and 16 genes were screened for further analysis. (d) The
multivariate COX regression analysis was used to obtain the coefficient of 14 genes in prognostic model. (e–h) K-M survival analysis of
the prognostic model in different cohorts.
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better therapeutic effect on patients in the low-risk group
(Figures 6(c)–6(i)). Overall, these findings promoted a prog-
nostic model as a biomarker for predicting individual drug
sensitivity.

4. Discussion

As scRNA-seq technology developed rapidly, researchers
began to focus more on the molecular characteristics of
immune cells that infiltrate tumors. Despite that, most of
the current research focuses on adaptive immune cells,
ignoring the role of innate immune cells, which may have
significant effects on clinical outcomes and immunotherapy
response. Tumor-infiltrating NK cells were closely related
to prognosis in patients with different solid tumors [25]. In
the recent study by Shimasaki et al., NK cell marker genes
were used to evaluate the infiltration of NK cells into TME,
and the increased NK score significantly stratified the prog-
nosis of patients with metastatic cutaneous melanoma [26].
Under the guidance of the above research, we employed
three algorithms to observe the role of the NK cell score
for predicting clinical outcomes of patients with ovarian
cancer in two data sets and found that the prediction perfor-
mance according to NK cell score was great. However, due
to the algorithm being based on bulK RNA sequencing data,
there was a certain deviation. Therefore, we obtained NK cell
marker genes by combining scRNA-seq data and bulk RNA-

seq data. Subsequently, we constructed a promising prog-
nostic model based on NK cell marker genes for predicting
clinical prognosis and immunotherapy efficacy and verified
it in four independent cohorts. The high-risk score of the
prognostic model was positively correlated with M2 macro-
phages, cancer-associated fibroblast, hematopoietic stem
cell, and stromal score and negatively correlated with NK
cell, cytotoxicity score, B cell, and T cell CD4+Th1. In addi-
tion, we found that bleomycin, cisplatin, docetaxel, doxoru-
bicin, gemcitabine, and etoposide were more effective in the
high-risk group, while paclitaxel had a better therapeutic
effect on patients in the low-risk group.

In our investigation, the predictive prognostic model
consisted of 14 NK cell marker genes (ARHGDIB, CD8A,
CLEC2B, CORO1A, CYTIP, GZMA, GZMB, GZMK,
IL2RG, IL7R, KLRB1, LCP1, RAC2, and XCL1), most of
which were associated with prognosis or NK cell activity in
OV patients. For example, Lado et al. identified two candi-
date genes belonging to the innate immune system: FCAR
and CLEC2B. The CLEC2B gene was associated with NK cell
and stimulated natural killer cells to play an immune defense
mechanism [27]. Mace and Orange demonstrated for the
first time that CORO1A promoted NK cells to exert cyto-
toxic functions and immune secretion by regulating F-actin
breakdown, thus exerting the function of lytic immune effec-
tors [28]. In addition, NK cells can kill gasdermin B-
(GSDMB-) -enriched positive cells in tumor tissues by
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Figure 5: Tumor microenvironment assessment in different risk groups based on prognostic model. (a) Heat map showing/depicting
immune cell infiltration landscape in high- and low-risk groups based on 5 algorithms. (b) Scatterplots showed the association of risk
scores with StromalScore and ImmuneScore. (c, d) The boxplots showed the expression levels of immune regulators in the high- and
low-risk groups. (e) K-M survival curves showed a survival difference between patients with high TMB and patients with low TMB. (f, g)
The mutation landscape of high- and low-risk groups.

11Mediators of Inflammation



100

BRCA1

Mutation

Wild

75

50

Pe
rc

en
t

25

0

High risk Low risk

4%

96% 96%

4%

(a)

100

BRCA2

Mutation

Wild

75

50

Pe
rc

en
t

25

0

High risk Low risk

2%

98% 97%

3%

(b)

Bl
eo

m
yc

in
 se

ns
iti

vi
ty

 (I
C

50
) 2.0

1.6

1.2

Low
Riskscore

High

Risk

0.04

Low
High

(c)

C
isp

la
tin

 se
ns

iti
vi

ty
 (I

C
50

)

4.5

4.0

3.5

3.0

2.5

2.0
Low

Riskscore
High

0.036

Risk

Low
High

(d)

D
oc

et
ax

el
 se

ns
iti

vi
ty

 (I
C

50
)

–4

–5

–6

Low
Riskscore

High

Risk

0.033

Low
High

(e)

Low
Riskscore

High

Risk

Low
High

D
ox

or
ub

ic
in

 se
ns

iti
vi

ty
 (I

C
50

)

–1.0

–1.5

–2.0

–2.5

–3.0

0.035

(f)

Figure 6: Continued.

12 Mediators of Inflammation



apoptosis mediated by granzyme A (GZMA), which is tran-
scribed by the GZMA gene [29].To elucidate the molecular
mechanisms of OV patients, laboratory experimental
designs should focus on genes identified in the prognostic
model.

This prognostic model has proven to be powerful predic-
tive tools in training and validation cohorts. The excellent
performance of the prognostic model has inspired us to
investigate potential mechanisms. We first performed GO
and KEGG analyses to explore the enrichment pathway of
NK cell marker genes. GO analysis revealed NK cell-
associated genes associated with T cell activation,
leukocyte-mediated immunity. KEGG analysis revealed
these gene enrichment in primary immunodeficiency, Th1
and Th2 cell differentiation, and natural killer cell-
mediated cytotoxicity signal pathway. Poor prognosis in
high-risk patients may be partly due to abnormal regulation
of antitumor immunity, which was closely related to tumor
proliferation and progression. Furthermore, tumor-
infiltrating immune cells in TME play a crucial role in tumor
development and have a significant impact on patient out-
come [30]. We then compared ESTIMATE and CIBER-
SORT algorithms to determine the abundance of immune
cell infiltration in high-risk and low-risk groups. The results
showed that the level of immune cell infiltration in high-risk
tumors was low, especially T cells and NK cells, suggesting
that high-risk samples were called “cold tumors” and their
antitumor activity was reduced [31]. The infiltration of
immune cells in low-risk tumors can promote tumor cells
to evade immune surveillance and promote tumor progres-
sion, which may partially explain the significantly reduced
survival rate of patients with a high-risk score.

Our study still has some limitations. First, the expression
and prognostic role of genes selected for prognostic models
at the protein level warrants further investigation. A second
limitation of our study is that the candidate genes we
observed are all NK cell markers, and there is a high degree
of spatial heterogeneity in the tumor immune microenviron-
ment. Thus, the prognostic ability of the signature is restric-
tive. Finally, all mechanistic analyses in our study are
descriptive. Future studies must explore potential mecha-
nisms between prognostic model-associated gene expression
and clinical outcome in OV patients. However, in the cur-
rent prognostic model, our model still has great advantages,
and NK cell signature genes also have their immune value.
In addition, we used a large number of validation sets, which
indicated the reliability and stability of our model.

5. Conclusion

In summary, we identified 14 genetic signatures based on
NK cell marker genes and validated their strong predictive
power for clinical outcome and response to chemotherapy
in patients with OV. It can be used as a prognostic bio-
marker for clinical decision-making on individualized pre-
diction and help to select suitable patients who can benefit
from clinical treatment.

Data Availability

All datasets generated for this study are included in the arti-
cle material, including TCGA database (https://portal.gdc
.cancer.gov/) and the GEO dataset (https://www.ncbi.nlm
.nih.gov/gds/).
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Figure 6: Drug sensitivity analysis. (a, b) The mutation patterns of BRCA1 and BRCA2 in high- and low-risk groups. (c–i) The IC50 of
chemotherapeutic drugs in patients with the high- and low-risk groups.
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