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Liver hepatocellular carcinoma (LIHC) is a highly lethal malignant tumor originating from the digestive system, which is a serious
threat to human health. In recent years, immunotherapy has shown significant therapeutic effects in the treatment of LIHC, but
only for a minority of patients. The basement membrane (BM) plays an important role in the occurrence and development of
tumors, including LIHC. Therefore, this study is aimed at establishing a risk score model based on basement membrane-
related genes (BMRGs) to predict patient prognosis and response to immunotherapy. First, we defined three patterns of BMRG
modification (C1, C2, and C3) by consensus clustering of BMRG sets and LIHC transcriptome data obtained from public
databases. Survival analysis showed that patients in the C2 group had a better prognosis, and Gene Set Variation Analysis
(GSVA) revealed that the statistically significant pathways were mainly enriched in the C2 group. Moreover, we performed
Weighted Correlation Network Analysis (WGCNA) on the above three subgroups and obtained 179 intersecting genes. We
further applied function enrichment analyses, and the results demonstrated that they were mainly enriched in metabolism-
related pathways. Furthermore, we conducted the LASSO regression analysis and obtained 4 BMRGs (MPV17, GNB1, DHX34,
and MAFG) that were significantly related to the prognosis of LIHC patients. We further constructed a prognostic risk score
model based on the above genes, which was verified to have good predictive performance for LIHC prognosis. In addition, we
analyzed the correlation between the risk score and the tumor immune microenvironment (TIM), and the results showed that
the high-risk scoring group tended to be in an immunosuppressed status. Finally, we investigated the relationship between the
risk score and LIHC immune function. The results demonstrated that the risk score was closely related to the expression levels
of multiple immune checkpoints. Patients in the low-risk group had significantly higher IPS scores, and patients in the high-
risk group had lower immune escape and TIDE score. In conclusion, we established a novel risk model based on BMRGs,
which may serve as a biomarker for prognosis and immunotherapy in LIHC.

1. Introduction

Liver cancer is a highly lethal malignant tumor that seriously
threatens human physical and mental health. Liver hepato-
cellular carcinoma (LIHC) is the most common pathological
type of liver cancer, accounting for more than 90% of all

cases [1]. Currently, the most common treatment options
for LIHC are surgery, ablation, microwave ablation, cryo-
therapy ablation, percutaneous ethanol injection, and
noncatheter-based therapies, but the 5-year survival rate is
less than 20% [2–4]. It is now widely recognized that the
poor prognosis of LIHC is due to the lack of appropriate
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prognostic biomarkers [5]. Therefore, it is crucial to develop
a model to identify high-risk patients and enable personal-
ized medicine for LIHC patients.

In recent years, with the deepening understanding of the
pathogenesis of the tumor, a variety of immune checkpoint
inhibitors (ICIs) based on immune checkpoints have gradu-
ally become the focus of LIHC treatment. At present, the
PD1/PD-L1 antibody is widely used in the immunotherapy
of LIHC and has achieved significant treatment effects [6].
It has been confirmed that the tumor immune environment
(TIM) is key to the immunotherapeutic effect of ICIs [7].
Therefore, it is particularly critical to clarify the specific reg-
ulation mechanism of regulating the TIM of LIHC.

The structure of the basement membrane (BM) plays a
key role in the occurrence and development of malignant
tumors [8–10]. Under normal physiological conditions, the
BM is a sheet-like structure under the epithelial cells, of
which laminin and type IV collagen are its main structural
components [11]. The BM not only resists mechanical stress
and maintains tissue shape but also regulates the adhesion
and migration of various cells, including immune cells [12].
However, under tumor conditions, the structure of the BM
is destroyed, resulting in the loss of its original shape and
function, which in turn causes abnormal migration of tumor
cells and various immune cells [8, 10, 13]. Epithelial-
mesenchymal transition (EMT) of the basement membrane
promotes the transfer of tumor cells through the lymphatic
vasculature in an intravasation and extravasation manner
[14]. The products of tumor metabolism can induce changes
in the structural components of the BM, thereby enhancing
the metastatic ability of tumors [15]. Other studies have con-
firmed that the migration ability of T cells in the dense colla-
gen matrix area around the tumor nest is significantly
reduced, and the reduction of the collagen matrix density in
the BM will enhance the infiltration of T cells in the tumor
[16]. Although this change has little effect on tumor growth,
it does improve response to anti-PD1 therapy [17, 18]. In
2022, Jayadev et al. applied bioinformatics and in vivo exper-
iments to define more than 200 genes related to BM, such as
LAMA5, MPZL2, and MATN2 [19]. Therefore, a better
understanding of the role of the basement membrane may
lead to new and promising treatments for LIHC.

In this study, we first obtained the transcriptome data
of LIHC from the TCGA database and then further ana-
lyzed and screened 4 basement membrane-related genes
(BMRGs) that were significantly associated with the prog-
nosis of LIHC. Furthermore, we constructed a prognostic
risk model by screening the BMRGs and confirmed that
the model has good predictive capacity for the prognosis
of LIHC patients. Finally, we further evaluated the differ-
ences in the risk score of this model for immune cell infil-
tration and immunotherapy response. Our study provides
a novel research direction for the monitoring of prognos-
isand evaluation of immunotherapy in LIHC.

2. Materials and Methods

2.1. Identification of BMRGs and Collection of LIHC
Transcriptome Data. First, we obtained 222 basement

membrane-related gene sets from previous studies. Next,
we used the public database TCGA to download the LIHC
transcriptome information. The survival information of the
LIHC samples was merged with the transcriptome data,
and finally, 342 LIHC samples with survival information
were obtained.

2.2. Construction of Risk Scoring Model. We obtained the
basement membrane-related gene sets associated with patient
prognosis by the LASSO Cox regression analysis. The risk
score for each LIHC patient was calculated according to an
established formula. Risk score = ðβi

∗ ExpiÞ, where Expi rep-
resents the expression level of each gene and βi represents
the coefficient of each gene [20]. ROC curves were used to
evaluate the accuracy of the predictive power of each dataset.

2.3. Consensus Clustering of 222 Basement Membrane-
Related Genes by NMF Algorithm. We applied the NMF
algorithm for consensus clustering to identify different clas-
sification patterns based on the expression of 222 BMRGs.
Then, the optimal number of clusters is selected according
to the cooccurrence coefficient, dispersion coefficient, and
silhouette coefficient [21].

2.4. Analysis of Immune Cell Infiltration in LUAD. We
applied CIBERSORT to assess the correlation between the
high- and low-risk scores and the proportion of immune cell
infiltration. CIBERSORT relies on a gene expression matrix
file (named LM22), which can specifically identify specific
genes in immune cells. The expression of this specific gene
can analyze immune cells in tissues and identify human
hematopoietic cell phenotypes [22].

2.5. IPS, ESTIMATE, and TIDE. The immunophenoscore
(IPS) is a predictor of response to anti-CTLA-4 and anti-
PD1 therapy by quantifying tumor immunogenicity, immu-
nomodulators, effector cells, and suppressor cells. This
method obtains the final IPS score by the weighted quantifica-
tion of the above components [23]. ESTIMATE (estimation of
stromal and immune cells in malignant tumor organizations
using expression data) is a novel algorithmic algorithm that
infers tumor cell structure and distinct infiltrating normal cells
from uniquely characterized genes in the transcriptional pro-
file of cancer tissues [24]. In this study, by using the ESTI-
MATE algorithm, we calculated the immune and stromal
scores to predict the correlation of risk scores with immune
and stromal levels. The tumor immune dysfunction and exclu-
sion (TIDE) is an algorithm used to predict response to
immune checkpoint inhibitors. Low TIDE scores represent
weaker immune evasion, and these patients may show a stron-
ger response to immunotherapy, while high TIDE scores rep-
resent strong immune evasion, and these patients are less
responsive to immunotherapy [25].

2.6. Statistics. In this study, gene expression data from TCGA
database were analyzed using Student’s t-test. Correlation
analysis of Spearman and Pearson was used to assess in the
TISdb database. The expression of ADAR1 was correlated
with the abundance scores of immune cells assessed using
Spearman’s correlation analysis. All analyses were performed
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Figure 1: Continued.
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with the R software (version 4.1.1, http://www.r-project.org)
loaded with the R packages (“ggplot2,” “ggpubr,” “limma,”
“survival,” “survminer,” “clusterProfiler,” “ESTIMATE,”
“enrichplot,” and “forestplot”), and the results were visualised.
p value < 0.05 was considered statistically significant.

3. Results

3.1. Consensus Clustering Analysis of BMRGs in LIHC by
NMF Algorithm. The structure of the BM regulates the

migration of tumor and immune cells in a variety of malig-
nancies [26, 27]. First, we applied the consensus clustering
analysis of the NMF algorithm to stratify 222 basement
membrane-related genes into 9 subtypes (Supplementary
Figure 1). As seen in the cophenetic, the curve decline was
most pronounced when all samples were separated into type
3, so we identified three distinct clusters of modification
modes. The three different patterns of cluster distribution
were cluster 1 (146 cases, named C1), cluster 2 (271 cases,
named C2), and cluster 3 (25 cases, named C3) (Figures 1(a)
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Figure 1: BMRG consensus cluster and relevant biological pathway. (a) Nonnegative matrix factorization (NMF) clustering was conducted,
and three subgroups were identified as the optimal value for consensus clustering. (b) Factorization rank for k = 2‐10. (c) The Kaplan-Meier
curves of overall survival (OS) for 342 LIHC patients in TCGA cohort with different BMRG clusters. The numbers of C1, C2, and C3
patients are 46, 271, and 25, respectively (log-rank test). (d) GSVA analysis heatmap for different clusters.
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and 1(b)). Next, we performed survival analysis, which
showed that C2 had a better survival prognosis, whereas C3
had the worst prognosis (Figure 1(c)). In addition, we

further conducted the GSVA on C2 and C3, and the results
showed that a variety of pathways were abnormally enriched
in the samples of C3 (Figure 1(d)).
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Figure 2: The WGCNA of the NMF phenotypes of BM. (a, b) Detailed results of the weighted gene coexpression network analysis. (c) The
relationship of module features with the consensus subgroups was assessed by ten gene modules obtained from WGCNA. (d) The results of
module-feature relationship analysis between the yellow module and the consensus subgroup C3. (e) The results of module-feature
relationship analysis between the green module and the consensus subgroup C1.
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3.2. WGCNA and Difference Analysis Based on Different
Typing of BMRGs in LIHC. Given the obtained 3 different
subtypes of LIHC based on BMRGs, we applied the weighted
gene coexpression network analysis (WGCNA) to analyze
the above subtypes. In this study, we chose 6 as the optimal
threshold (Figure 2(a)). Based on the WGCNA results, we
obtained 10 coexpressed gene modules (Figure 2(b)). The
yellow module was significantly correlated with the worst
prognosis C3, and the green module was closely correlated
with the worst prognosis C1 (Figure 2(c)). As shown in
Figures 2(d) and 2(e), there was a significant correlation
between the gene sets within these two modules and the sig-
natures in each type. In addition, we performed the differen-
tially expressed genes (DEGs) analysis on each of the three

subgroups C1, C2, and C3 and obtained a total of 745 genes
with statistical significance (Figure 3(a)). Furthermore, based
on the 3770 coexpressed genes obtained by the green and
yellow modules, we took the intersection with the above-
mentioned differential genes and finally obtained a total of
179 intersecting genes (Figure 3(b)). Finally, we applied
GO and KEGG enrichment analyses on these 179 genes,
and the results showed that they were mainly enriched in
related metabolic pathways, such as tyrosine metabolism,
fatty acid metabolism glycolysis, and adipokine signaling
pathway (Figures 3(c) and 3(d)).

3.3. Construction and Validation of BMRG Risk Scoring
Model. We first performed the LASSO regression analysis
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Figure 3: Identification and functional analysis of BMRGs. (a) Differential genes for the three molecular clusters of NMF. (b) Venn diagram
of WGCNA module genes with differential genes. (c) GO functional analysis of intersecting genes. (d) KEGG functional analysis of
intersecting genes.
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on the obtained 179 genes and screened 4 basement
membrane-related genes (Supplementary Figure 2). Next,
we randomly divided the LIHC samples in TCGA into two
cohorts, namely, the training cohort and the validation
cohort, at a ratio of 7 : 3, while using the ICGC-LIHC
cohort as the external validation cohort. Furthermore, we
constructed a LIHC risk prognostic model with basement
membrane characteristics using the four genes obtained
above. In the training, validation, and external validation

cohorts, high-risk patients had significantly worse
outcomes than low-risk patients (Figures 4(a)–4(c) and
Supplementary Figure 3). In addition, we used ROC curves
to evaluate the predictive power of the BMRG risk model,
and the results showed that the AUCs of each cohort at 1,
3, and 5 years were 0.759, 0.658, and 0.645 (training
cohort); 0.709, 0.686, and 0.504 (validation cohort); and
0.680, 0.680, 0.652, and 0.648 (external validation cohort)
(Figures 4(d)–4(f)), and these results show that the model
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Figure 4: Construction and verification of the BMRG risk model by LASSO Cox regression analysis. (a–c) The Kaplan-Meier curves for
patients with the high- and low-BMRG subgroups: (a) train cohort, (b) test cohort, and (c) ICGC cohort. (d–f) ROC curves showing the
predictive efficiency of the BMRG risk scores for 1-year, 3-year, and 5-year survival: (d) train set, (e) test set, and (f) ICGC validation
set. (g) Univariate analysis of risk scores of BMRGs and clinicopathological characteristics of LIHC. (h) Multivariate analysis of risk
scores of BMRGs and clinicopathological characteristics of LIHC.
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13Mediators of Inflammation



has good predictive performance. Finally, we applied the
univariate and multivariate Cox regression analyses on the
risk score combined with each clinical feature, and the
results revealed that the risk prognostic model based on
BMRG could be used as an independent prognostic factor
(Figures 4(g) and 4(h)).

3.4. Correlation Analysis between BMRG Risk Score and
LIHC Immune Microenvironment. The TIM is closely
related to tumor immune escape. To clarify their complex
relationship, we evaluated the TIM of LIHC by the ESTI-
MATE algorithm and observed that the low-risk cohort

had significantly higher stromal scores than the high-risk
cohort (Figure 5(a)). Next, we assessed the correlation
between the infiltration abundance of immune cells and
the risk score by the CIBERSORT algorithm and presented
them in the form of heatmaps and boxplots. The results
showed that the infiltrating abundance of CD8+ T cells and
plasma cells was higher in the low-risk cohort than in the
high-risk group (Figures 5(b) and 5(c)). As shown in
Figures 5(d)–5(g), we further analyzed the correlation
between the risk score and the degree of immune cell infil-
tration, and the results showed that memory B cells, M0
macrophages, and dendritic cells were positively associated
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Figure 5: The relationship between the BMRG risk score and the TIM in LIHC. (a) Correlation between the BMRG risk score and the TME score.
(b) The proportion of tumor-infiltrating immune cells in the BMRGhigh- and low-risk cohort via the CIBERSORT algorithm. (c) Comparison of
different immune cell infiltrations under high and low risk scores. (d–g) Linear relationship between BMRG risk score and immune cells.
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with the risk score, while CD8+ was negatively associated
with the risk score. The above results strongly suggested that
the risk score of this model is closely related to the TIM of
LIHC patients.

3.5. The Role of the BMRG Risk Score in Predicting Response
to Immunotherapy. Immune checkpoints are important
receptors that regulate immune cell function and are impor-
tant predictors for evaluating immunotherapy response [28]
Therefore, we evaluated the association of 11 immune
checkpoints with risk scores of BMRGs, and the results
showed that risk scores were positively correlated with mul-
tiple immune checkpoints (Figure 6(a)). Next, we analyzed
the relationship between the 4 BMRGs in the model and
immune checkpoints, and the results demonstrated that
IAPP was negatively correlated with these genes, while other
immune checkpoints were positively correlated with 4 genes
(Figure 6(b)). Given the strong correlation between BMRG
scores and immune checkpoints, we further investigated
whether the risk scores of BMRGs could predict the
response of LIHC patients to ICIs. The IPS scoring system
is widely applied to assess response to immunotherapy at
present. In this study, we found that the IPS scores of
PD1-positive and CTLA4-positive patients were signifi-
cantly elevated in the low-risk group, and the IPS scores of
PD1-negative and CTLA4-positive patients were also signif-
icantly elevated in the low-risk group (Figures 6(c) and
6(d)). Finally, we demonstrated that high-risk patients had
stronger immune evasion and worse TIDE scores
(Figures 6(e) and 6(f)). These findings indirectly indicated
that risk scoring models based on BMRGs can be used to
assess response to immunotherapy.

3.6. GSEA of BMRG Risk Model. Our previous data sug-
gested that the BMRG risk score is closely related to the
TIM of LIHC. To further elucidate the underlying mecha-
nism, we performed GSEA by differentially expressed
genes between the high- and low-risk cohorts. The results
of the KEGG enrichment analysis showed that the high-
risk cohorts were mainly enriched in cytokine receptor
interaction, extracellular matrix receptor interaction, and
neuroligand-receptor interaction pathways (Figure 7(a)).
Meanwhile, the enrichment results of the immune gene
set showed that the high-risk cohort was mainly enriched
in B cells, CD8+ T cells, NK cells, and monocytes
(Figure 7(b)).

4. Discussion

Recurrence and metastasis are the main causes of treatment
failure in LICH. Different from traditional treatments,
immunotherapy is a promising treatment for LIHC. BM
structure plays an important role in immune cell migration
and is closely related to prognosis [29, 30]. In this study,
we first performed consensus clustering of BMRGs using
the NMF algorithm to classify all samples into three pat-
terns. In addition, through WGCNA and differential gene
analysis, the intersection between the two was further taken
to obtain a differential gene set. Moreover, LASSO regression
analysis was performed on the obtained differential gene set,
and a prognostic risk score model based on BMRGs was
constructed. Its predictive ability was further verified.
Finally, we found that a risk score model based on BMRGs
could have good predictive power for the immune microen-
vironment and immunotherapy.
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Figure 6: The BMRG risk score predicts immunotherapeutic benefits. (a) Association of BMRG risk scores with immune checkpoints. (b)
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In recent years, a variety of prognostic risk models based
on cell-related functional genes have been developed, which
provide favorable help for the prognosis assessment of vari-
ous malignant tumors. Luo et al. analyzed the expression of
ferroptosis-related genes in LIHC from public databases and
constructed a corresponding prognostic model. The AUC
areas for the model at 1, 3, and 5 years were 0.6838, 0.694,
and 0.559, respectively [31]. Yu et al. constructed a prognos-
tic model with good predictive ability by extracting the pyr-
optotic genes in LIHC. The AUC areas for 1, 3, and 5 years

were 0.748, 0.732, and 0.603, respectively [32]. In this study,
the AUC of our prognostic model was 0.759, 0.658, and
0.654 at 1, 3, and 5 years, respectively. Compared with pre-
vious related functional gene set models, the model estab-
lished in this study has higher predictive performance.

The BM plays an important role in both physiological
and pathological states, so the set of genes involved in
regulating the structure of the basement membrane is partic-
ularly important. In this study, we found that the risk model
based on BMRGs was closely related to the immune cell
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infiltration of LIHC. Meanwhile, we also found that the
high-risk score of this model suggested low responsiveness
to tumor immunotherapy. These evidences strongly indi-
cated that the BMRGs not only regulate the infiltration of
leukocytes but may also be related to the checkpoint func-
tion of multiple immune cells. For these surprising findings,
we intend to further develop in vitro and in vivo use in
follow-up studies to support the above inferences.

In this study, we revealed the important role of BMRGs in
LIHC, which also provides new directions for the treatment
of LIHC, but there are still many shortcomings. First, all
LIHC data in this study was derived from public databases
and lacked validation in vivo and in vitro. In addition, the
biological molecular mechanism of various genes in BMRGS
has not been explored, which greatly limits its accuracy.

In conclusion, our study revealed that BM is closely
related to LIHC progression. We provided a novel BMRG
risk model to predict LIHC patients’ survival. In addition,
our established model can provide guidance on the immune
microenvironmental status of LIHC and the efficacy of
immunotherapy. We firmly believe that the model based
on BMRGs has excellent application prospects after further
verification.
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