
Research Article
Upregulation of Biomarker Limd1 Was Correlated with Immune
Infiltration in Doxorubicin-Related Cardiotoxicity

Rui Zhang , Chunshu Hao , Zhenjun Ji , Yangyang Qu , Wenjie Zuo ,
Mingming Yang , Pengfei Zuo , Abdlay Carvalho , Genshan Ma , and Yongjun Li

Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan Road, Nanjing,
Jiangsu 210000, China

Correspondence should be addressed to Genshan Ma; magenshan@hotmail.com and Yongjun Li; liyongjunnj@hotmail.com

Received 26 April 2022; Revised 13 October 2022; Accepted 10 January 2023; Published 23 March 2023

Academic Editor: Daniela Caccamo

Copyright © 2023 Rui Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Doxorubicin is one of the most common antitumor drugs. However, cardiotoxicity’s side effect limits its clinical applicability. In
the present study, Gene Expression Omnibus (GEO) datasets were applied to reanalyze differentially expressed genes (DEGs) and
construct weighted correlation network analysis (WGCNA) modules of doxorubicin-induced cardiotoxicity in wild-type mice.
Several other bioinformatics analyses were performed to pick out the hub gene, and then the correlation between the hub gene
and immune infiltration was evaluated. In total, 120 DEGs were discovered in a mouse model of doxorubicin-induced
cardiotoxicity, and PF-04217903, propranolol, azithromycin, etc. were found to be potential drugs against this pathological
condition. Among all the DEGs, 14 were further screened out by WGCNA modules, of which Limd1 was upregulated and
finally regarded as the hub gene after being validated in other GEO datasets. Limd1 was upregulated in the peripheral blood
mononuclear cell (PBMC) of the rat model, and the area under curve (AUC) of the receiver operating characteristic curve
(ROC) in diagnosing cardiotoxicity was 0.847. The GSEA and PPI networks revealed a potential immunocyte regulatory role of
Limd1 in cardiotoxicity. The proportion of “dendritic cells activated” in the heart was significantly elevated, while “macrophage
M1” and “monocytes” declined after in vivo doxorubicin application. Finally, Limd1 expression was significantly positively
correlated with “dendritic cells activation’ and negatively correlated with “monocytes” and “macrophages M1’. In summary,
our results suggested that limd1 is a valuable biomarker and a potential inflammation regulator in doxorubicin-induced
cardiotoxicity.

1. Introduction

Thanks to the advancements in science and technology,
numerous treatment schemes have been developed, which
have gradually extended the survival times of tumor
patients. Chemotherapy drugs including doxorubicin played
a vital role in achieving this trend. Doxorubicin, also known
as adriamycin, is a member of the anthracycline antibiotics
with decades of history [1]. In the antitumor field, doxorubi-
cin is widely applied in clinical settings for the treatment of
various types of tumors, from soft tissue and bone sarcomas,
cancers of the breast, ovary, bladder, thyroid and lung, acute
lymphoblastic leukemia, acute myeloblastic leukemia, Hodg-
kin lymphoma, etc. [2].

In addition to its unique therapeutic function, this classic
agent can lead to a series of side effects in the course of treat-
ment including cognitive impairment [3], hepatotoxicity [4],
bone marrow toxicity [5], nephrotoxicity [6], and especially
cardiotoxicity [7]. The undesirable effect of cardiotoxicity is
especially prominent during the whole treatment period and
is usually characterized by irreversible degenerative dilated
cardiomyopathy (DCM) and consequently resulting in con-
gestive heart failure (CHF), thus greatly worsening the long-
term outcomes of patients [8]. Several mechanisms have
been proposed to account for this phenomenon, including
the generation of reactive oxygen species (ROS), activation
of apoptosis, calcium dysfunction, as well as induction of
endothelin-1 (ET-1) and topoisomerase-II [9]. However,
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understanding this pathological process is still in its infancy,
and the specific mechanism remains to be elucidated.

The development of bioinformatics technology has
brought great opportunities for fully understanding
doxorubicin-induced cardiotoxicity. In the present study,
we reanalyzed two datasets GSE23598 and GSE59672 from
the GEO database to clarify the differentially expressed genes
(DEGs) and the coexpression modules in the doxorubicin-
mouse model. Several genes screened out from DEGs and
modules were validated in other in vivo model or in vitro
model datasets to screen a key gene and evaluate its diagnos-
tic value. According to the analysis results, the hub gene was
regarded as inflammation-related, and finally, its correlation
with immune infiltration in diseased hearts was calculated.

2. Materials and Methods

2.1. Bioinformatic Datasets. By searching the Gene Expres-
sion Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
database, five in vivo experiment datasets GSE23598,
GSE59672, GSE81448, GSE97642, and GSE37260 were
obtained. In GSE23598, 4 male wild-type (WT) mice aged
6-8 weeks were randomly assigned to the doxorubicin group
(n = 2) and control group (n = 2) following injection with a
single dose of doxorubicin (15mg/kg, i.p.) or an equal vol-
ume of normal saline, respectively. Animals were sacrificed
on the 4th day after injection, and hearts were collected for
further detection of gene expression profiling by microarray
with platform GPL1261. In GSE59672, six male WT mice
aged 10-12 weeks were randomly assigned to 2 groups
(n = 3 in each group) and received similar treatment as the
mice from the GSE23598 database, and were sacrificed on
the 5th day. The gene expression profiling was performed
with the same microarray platform GPL1261. In both

GSE81448 and GSE97642, male mice aged 8-10 weeks were
injected intraperitoneally with 15mg/kg doxorubicin (n = 5
in each dataset) or an equal amount of PBS (n = 5 in each
dataset). Mice were euthanized 20 hours after injection,
and the expression profiles of the diseased heart were
detected both by microarray with platform GPL6887. In
GSE37260, rats were treated with doxorubicin (n = 9) or
saline (n = 8) for 48 hours, and the peripheral blood mono-
nuclear cell (PBMC) was used for detecting transcriptome
expression with the bead chip platform GPL6101.

Furthermore, three in vitro experiment datasets
GSE42177, GSE154101, and GSE154118 were enrolled. In
GSE42177, cardiac myocytes (CMs) were treated with doxo-
rubicin for 0 hr (control group, n = 3) and 8hrs (doxorubicin
group, n = 3). The gene expression profiling was detected by
microarray on platform GPL6247. In GSE154101, fibroblasts
(FBs) of human pulmonary arterial adventitial were isolated
to treat with vehicle (control group, n = 2) and doxorubicin
(doxorubicin, n = 2). In GSE154118, smooth muscle cells
(SMCs) of the human pulmonary artery were treated with
vehicle (control group, n = 2) and doxorubicin (doxorubicin,
n = 2). These two datasets detected the expression profile by
high-throughput sequencing with GPL18573.

2.2. Identification of Differentially Expressed Genes. Expres-
sion profiles of GSE23598, GSE59672, GSE81448,
GSE97642, GSE37260, and GSE42177 were downloaded
from the GEO database through the “GEOquery” package
of R software. The probes corresponding to multiple tar-
gets were removed. When multiple probes corresponded
to the same molecule, only the probe with the largest sig-
nal value was retained. After filtering the data, the combat
function of the “SVA” package was used to remove the
interbatch difference among GSE23598 and GSE59672
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Figure 1: The workflow of this study. DEGs: differentially expressed genes; WGCNA: Weighted Gene Coexpression Network Analysis;
miRNAs: microRNAs; PPI: protein-protein interaction; GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genome; PBMC:
peripheral blood mononuclear cell; CMs: cardiomyocytes; FBs: fibroblasts; SMCs: smooth muscle cells; ROC: receiver operating
characteristic.
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Figure 2: Continued.
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datasets, as well as GSE81448 and GSE97642. Then the stan-
dardization situation was viewed through the box chart, and
the clustering of samples was checked with the PCA diagram
and UMAP diagram. The gene expression profile of
GSE37260 was performed with normalized quantiles. Finally,
the “limma” package was used to analyze the differentially
expressed genes (DEGs) between control and doxorubicin
groups in datasets performed with microarray. Besides,
DEGs of datasets GSE154101 and GSE154118 were analyzed
in the well-known web tool NetworkAnalyst (https://www
.networkanalyst.ca/) [10] with the DESeq2 method according
to the instruction.

The screening criteria for DEGs are as follows: log2 fold
change (FC)>1 or < -1, and adjusted p value (adj. p. val)<
0.05. If log2 FC>1, the expression of DEGs was deemed as
upregulated, while < -1 was downregulated.

2.3. Weighted Gene Coexpression Network Analysis.
Weighted gene coexpression network analysis (WGCNA)
is a systematic biological method for counting the correla-
tion patterns among genes across microarray profiles [11].
The online tool EHBIO platform (http://www.ehbio.com/
Cloud_Platform/front/#/) was used to perform WGCNA

on the combined dataset (GSE23598 and GSE59672). Mod-
ules most related to traits of the WGCNA were enrolled for
the following study after the screening.

2.4. Search of Upstream miRNAs. The expression of genes is
usually regulated by miRNAs at the posttranscriptional level
[12]. Therefore, the upstream miRNAs of the DEGs in
GSE23598 and GSE59672 were searched from the miRNET
website (https://www.mirnet.ca/) [13]. The miRNA-mRNA
networks were subsequently constructed from this web tool.

2.5. Protein-Protein Interaction Network Construction. The
“Search Tool for Retrieval of Interacting Genes/Proteins”
database (STRING, https://string-db.org/) provides abun-
dant information on protein-protein interaction (PPI) [14],
and those DEGs encoded proteins were incorporated into
the PPI network with STRING. Then, network visualization
was performed using Cytoscape software (https://cytoscape
.org/), an open-source software platform [15].

2.6. Potential Therapeutic Drugs Prediction. The Connectiv-
ity Map (cMap) database can provide information about
the effects of small molecules, genes, or diseases on gene
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Figure 2: Remove batch between GSE23598 and GSE59672. (a–c) PCA diagram, UMAP diagram, and boxplot diagram of the data
distribution before removing the batch. (d–f) PCA diagram, UMAP diagram, and boxplot diagram of the data distribution after
removing the batch. Group 1 represents control group, while group 2 represents the doxorubicin-treated group.

Table 1: Summary of Preliminary Results.

Criteria Number Upregulated Downregulated

Total number of genes 20813

|log2 (FC)|>1 & p:adj < 0:05 120 54 66

|log2 (FC)|>1.5 & p:adj < 0:05 28 13 15

|log2 (FC)|>2 & p:adj < 0:05 9 4 5
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(c)

(d)

Figure 3: Construct miRNA-mRNA network and PPI network based on DEGs of the combined dataset. (a) The volcano plots indicated the
DEGs. (b) The heatmap of the top 20 upregulated and downregulated DEGs. Group 1 represents the control group, while group 2 represents
the doxorubicin-treated group. (c) The miRNA-mRNA network. (d) The PPI network.
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expression signatures [16], and it was applied to search for
potential drugs against doxorubicin-induced cardiotoxicity.
The online application CLUE (https://clue.io) [17] provides
a convenient entrance for the use of the cMAP database.
The candidate DEGs were divided into upregulated group
and downregulated group and imported into CLUE to calcu-
late the score of all factors including small molecules. When
the score is negative, it is considered that small molecules
have antagonistic effects. Conversely, when the score is pos-
itive, small molecules will be considered to have the effect of
exacerbating cardiotoxicity.

2.7. Functional Enrichment Analysis. Gene ontology (GO)
analysis mainly includes three aspects: molecular function
(MF), biological process (BP), and cellular component
(CC) [18]. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) database provides biological signaling pathway
information enriched by a group of genes [19]. The DAVID
database (https://david.ncifcrf.gov/) [20], a comprehensive
set of functional annotation tools for understanding the bio-
logical meaning of genes, was freely accessed and applied to
explore the GO and KEGG results.

2.8. Identifying Biomarker and Hub Gene in Disease
Progression. DEGs of the mouse model and the selected
WGCNA modules were intersected. The overlapping genes
were validated in the merged datasets (GSE81448 and
GSE97642), and the three in vitro datasets (GSE42177,
GSE154101, and GSE154118) and the rat PBMC dataset
(GSE37260) in turn to pick out the hub gene. Gene Set
Enrichment Analysis (GSEA) is a knowledge-based
approach for analyzing groups of genes that share common
biological functions, chromosomal locations, or regulations
[21]. The GSEA was analyzed according to groups divided
by hub gene with the Sangerbox tools (http://sangerbox
.com/Tool), a free online platform. Online database Gene-
MANIA (http://genemania.org/), a user-friendly web tool
for generating hypotheses about gene function, analyzing
gene lists, and prioritizing genes for functional assays [22],
was used to evaluate the biological function of the hub gene
by searching its related genes. GraphPad Prism 8.0 was used
to display the expression distribution and perform receiver

operating characteristic (ROC) statistical analysis of the
hub gene to evaluate its diagnostic efficacy.

2.9. Immune Infiltration Analysis. CIBERSORTx (https://
cibersortx.stanford.edu/) [23] is an analytical tool that pro-
vides an estimation of the abundances of member cell types
in a mixed cell population using a gene expression matrix.
The combination of GSE23598 and GSE59672 was applied
for analysis in the CIBERSORTx web tool to evaluate the
percentages of 22 kinds of infiltrating immunocytes. Statisti-
cal analysis was done using Pearson and Wilcoxon test
methods. p < 0:05 was considered statistically significant.
Finally, the correlation between hub gene expression level
and scores of immune infiltration was calculated using the
Pearson correlation coefficient in GraphPad Prism 8.0.

3. Results

3.1. Identification of DEGs between Control and Doxorubicin
Mouse Model. The whole research process is summarized in
Figure 1. In accordance with the study design, the batch dif-
ferences between expression profiles in datasets GSE23598
and GSE59672 regarding wild-type mice were first removed,
and the data quality before (Figures 2(a)–2(c)) and after
(Figures 2(d)–2(f)) batch removal was assessed and dis-
played in form of PCA, UMAP, and boxplot. Totally, there
were 20813 genes enrolled in the final expression matrix
(Table 1). However, only 120 genes were considered to be
differentially expressed between 5 control samples and 5
doxorubicin samples according to the criterion: jlog 2ðFCÞj
> 1 and an adjusted p value <0.05 (Figure 3(a)). The expres-
sion level of the top 20 upregulated and downregulated
genes is shown in the heatmap (Figure 3(b)). Among these
120 DEGs, 54 were upregulated and 66 were downregulated.
The number of DEGs under different criteria is represented
in Table 1, and detailed information on the 120 DEGs is
listed in Supplementary Table 1.

3.2. Network Analysis of DEGs. MiRNAs are vital regulators
of mRNA expression and will form a tight regulatory system
with these upregulated or downregulated DEGs. Therefore,
the upstream miRNAs were searched with an online tool,
and 334 miRNAs were finally revealed to target 109 of the

Table 2: Potential therapeutic drugs.

Score Name Description

-96.74 PF-04217903 c-met inhibitor

-96.2 Propranolol Adrenergic receptor antagonist

-94.47 Azithromycin Bacterial 50S ribosomal subunit inhibitor

-94.17 9-methyl-5H-6-thia-4,5-diaza-chrysene-6,6-dioxide NFkB-pathway inhibitor

-93.9 Mafenide Carbonic anhydrase inhibitor

-93.48 Prunetin Breast cancer resistance protein inhibitor

-92.4 TAK-715 p38 MAPK inhibitor

-92.24 Dibenzepin Norepinephrine reuptake inhibitor

-92 Benzylpenicillin Penicillin-binding protein inhibitor

-91.69 FTI-276 Farnesyltransferase inhibitor
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120 DEGs to form a complex miRNA-mRNA network with
1773 edges (Figure 3(c)). As shown, miR-155-5p, mir-122-
5p, and miR-1a-3p have the most downstream target DEGs.
Besides, the mRNA-encoded proteins could potentially
interact with each other. The PPI network provides informa-
tion of multiple levels of information regarding the interac-
tion; therefore, the STRING database was used to construct
the PPI network, and Cytoscape software was used to visual-
ize the 65 nodes and 205 edges contained in the PPI network
(Figure 3(d)).

3.3. Predicting Potential Therapeutic Drugs. The cMAP
database provides information about the action of a series
of small molecules on the gene expression profiles of sev-
eral cell lines. By matching the 54 upregulated and 66

downregulated genes to the database, several small mole-
cules including PF-04217903, propranolol, and azithromy-
cin (Table 2) were highlighted as most likely to fight
against doxorubicin-induced cardiotoxicity.

3.4. Construction of Weighted Gene Coexpression Network
and Identify Key Modules. WGCNA was performed to iden-
tify the gene set and construct its connection with pheno-
type. Hierarchical clustering analysis was performed, and
there existed no outlier (Figure 4(a)). Network topology
analysis was used to determine candidate power values for
relative, balanced scale independence, and mean connectiv-
ity in the WGCNA, and finally, the soft-thresholding power
was selected as 18 after comprehensive consideration
(Figure 4(b)). Totally, there were 8 coexpression modules
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Figure 4: WGCNA indicated the coexpression modules. (a) Sample clustering to detect outliers. (b) Analysis of network topology for a set of
soft-thresholding powers. (c) Clustering dendrograms of genes with dissimilarity based on the topological overlap and the assigned module
colors. (d) The eigengene dendrogram and heatmap identify groups of correlated eigengenes.
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screened out. The modules containing the most genes were
the turquoise and blue modules (Figure 4(c)). The eigengene
network indicated that there is good discrimination between
different modules (Figure 4(d)).

A heatmap of module-trait correlations analysis showed
that multiple modules were related to doxorubicin-induced
cardiotoxicity, while MEturquoise had a maximum positive
correlation coefficient and MEblue had a maximum negative
correlation coefficient (Figure 5(a)). Finally, genes in the two
modules were evaluated for their correlation with the trait
(gene significance) and module (module membership),
respectively, and displayed in a scatterplot (Figure 5(b)). There
was a significant correlation between gene significance scores
and module membership scores between the two modules.

3.5. Functional Enrichment Analysis of the Modules. To fur-
ther understand the biological effects and signaling pathway

enrichment of MEturquoise and MEblue, GO and KEGG
analyses were performed. Genes in MEturquoise were
enriched in “cytoplasm,” “nucleotide binding,” “cellular
response to insulin stimulus,” etc. of the GO project
(Figure 6(a)). “HIF-1 signaling pathway,” “FoxO signaling
pathway,” etc. were key biological pathways involved by
the MEturquoise (Figure 6(b)). In MEblue, genes were
enriched in the “extracellular region,” “heparin-binding,”
and “cell adhesion” (Figure 6(c)). Besides, KEGG analysis
indicated that the biological pathway enriched in MEblue
is different from that in MEturquoise, which included “focal
adhesion,” “ECM-receptor interaction,” and “PI3K-Akt sig-
naling pathway,” (Figure 6(d)).

3.6. Screen out Key Genes to Validate and Evaluate their
Expression Distribution. The genes located in the upper right
region of the MEturquoise scatterplot and the lower right of
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11Mediators of Inflammation



Te
rm

Cytoplasm

Nucleus

Nucleolus

Nucleotide binding

Cytosol

Protein binding

Poly(A) RNA binding

Ligase activity

Cytoskeleton

Nucleoplasm

Cellular response to insulin stimulus

Centrosome

Myofbril

Intracellular membrane-bounded organelle

0 200 300
Count

–log10 (FDR)

5

15

10

100 

(a)

Te
rm

Mmu04066:HIF-1 signaling pathway

Mmu04068:FoxO signaling pathway

–log10 ()

1.47

1.46

1.45

1.44

1.43

1.42

Mmu00980:Metabolism of xenobiotics by cytochrome P450

Mmu04152:AMPK signaling pathway

Count
10
11

12

13
14

15

0.0 0.5 1.0 1.5 2.0
Gene Ratio

(b)

Figure 6: Continued.
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the MEblue scatterplot were regarded as potential vital fac-
tors. Therefore, genes with gene significance and module
membership both scored more than 0.95 and were selected

to evaluate their differential expression. As shown in
Figure 7(a), 35 genes were selected out from MEturquoise,
of which 5 were significantly upregulated, and 9 of 42 genes
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Figure 6: Biological characteristics of the genes in MEturquoise and MEblue. (a) Gene Ontology analysis of MEturquoise. (b) KEGG
pathway enrichment of MEturquoise. (c) Gene Ontology analysis of MEblue. (d) KEGG pathway enrichment of MEblue.
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Figure 7: Validate the expression of key genes screened out by DEGs and EGCNA. (a) The overlapped genes between upregulated genes and
selected genes in the MEturquoise, as well as downregulated genes and selected genes in the MEblue. (b) Expression of the 14 overlapping
genes in the merged dataset of GSE41884 and GSE97642.
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selected out from MEblue were significantly downregulated
in doxorubicin-induced cardiotoxicity (GSE23598 and
GSE59672). To assess the role of these 14 hub genes that were
key in the progression of cardiotoxicity, we first assessed their
expression in the merged dataset of GSE81448 and GSE97642.
The PCA, UMAP, and boxplot analyses of these two datasets
before and after the combination was displayed in Supplemen-
tary Figure 1. Finally, several genes including Limd1 were
significantly dysregulated (p < 0:05), but the log2 FC was all
less than 1 (Figure 7(b)).

The cardiac tissue mainly consisted of CMs, FBs, SMCs,
and immune cells. In order to explore the main effector cell
population leading to changes in these 14 key genes, we reana-
lyzed the datasets (GSE42177, GSE154101, and GSE154118)
that evaluate the expression matrix of doxorubicin-treated
CMs, FBs, and SMCs, respectively. The analysis results of
DEGs were displayed in Supplementary Figure 2 in the form
of a volcano plot, and detailed results of the 14 genes
including log2 FC and adj.p value were summarized in
Table 3. According to Table 3, several genes were upregulated
or downregulated, most likely contributed by immune cells.
For example, Limd1 was significantly downregulated in
CMs induced by doxorubicin but not significantly changed
in CFs and SMCs. However, its expression was significantly
upregulated in the organizational whole composed of the
above elements, which indicates that inflammatory cells
may have led to this change trend.

3.7. Limd1 Was a Potential Valuable Circulating Biomarker
in the Cardiotoxicity. Due to that the above key genes may
be dysregulated in the immune cells, we further evaluated
their expression patterns of them in the circulating PBMC of
the doxorubicin-related cardiotoxicity model (GSE37260).
Among them, the expression of 12 genes was detected, while
Evi2a and Mgl2 were nonexistent (Figure 8(a)). Further,

Limd1, Spock2, Pcolce, Slamf9, Col15a1, and Nrep were
consistent with those in the heart of the mouse model in
terms of differential expression trend, while only the dysreg-
ulation of Limd1 was significant (adj:p:val < 0:05). Limd1
was upregulated in the PBMC of the rat treated with doxo-
rubicin (Figure 8(b)), and the area under the ROC curve
for Limd1 in diagnosing the cardiotoxicity was 0.8472
(Figure 8(c)), suggesting that Limd1 is a valuable circulating
biomarker to judge this diseased state.

3.8. GSEA of Limd1-Associated Gene Set. In order to explicit
the biological characteristic involved by Limd1, we ranked
genes from the 10 normal and diseased heart samples in
the merged dataset by their relative Limd1 expression in
the top 50% vs. the bottom 50% for GSEA analysis based
on the KEGG database. There were dozens of categories
enriched (p < 0:05 but FDR > 0:25), and several are func-
tionally closely related to inflammatory cells including the
chemokine signaling pathway, cell adhesion molecules path-
way, and leukocyte transendothelial migration signaling
(Figure 9(a)). These pointed out that the key gene Limd1
was a possible regulator in controlling immunocyte infiltrat-
ing tissue.

To further explore the potential biological function of
Limd1, its interaction protein network was constructed,
and the result showed that Limd1 may participate in inflam-
matory regulation through the NF-kappaB signaling path-
way (Figure 9(b)).

3.9. Assessment of Immune Infiltration and the Correlation
with Limd1 Expression. The primitive unlog transform
microarray matrix regarding two mouse models was merged
and removed batch for the subsequent immune infiltration
assessment (Figure 10(a)). After being calculated in CIBER-
SORTx, the composition of immunocytes in the heart tis-
sues of the doxorubicin-induced mouse model was
indicated intuitively (Figure 10(b)). The heatmap displayed
the correlation between one immunocyte with another
(Figure 10(c)), and the results indicated that there exists a
positive correlation between “activated dendritic cells” with
“regulatory T cells (Tregs)” and “macrophages M2”, and a
negative correlation between “activated dendritic cells” with
“macrophages M1.”

The percentage data of each immunocyte type between
the control and the doxorubicin groups were compared
with the Wilcoxon test. As shown in the violin plot, the
proportion of “dendritic cells activated” was elevated
(p = 0:0075), while “macrophage M1’ declined (p = 0:0075)
in the doxorubicin group compared with the control group;
the others showed no significance (Figure 11(a)). The cor-
relation between Limd1 expression and the fraction of
immunocytes was evaluated. Totally, 3 kinds of immuno-
cytes were found to correlate with the Limd1 level. Among
them, “activated dendritic cells” and “macrophage M1”
were positively and negatively correlated with Limd1 level,
respectively (Figure 11(b)). In addition, although “mono-
cytes” did not change significantly (p = 0:056) under doxo-
rubicin, it was negatively correlated with Limd1 level
(Figures 11(b) and 11(c)).

Table 3: Analysis of the 14 hub genes in doxorubicin-induced
CMs, fibroblasts, and SMCs.

Gene
Cardiomyocytes Fibroblasts

Smooth muscle
cells

Log FC Adj. p Log FC Adj. p Log FC Adj. p

Limd1 -0.69 0.0024 -0.17 0.872 0.27 0.372

Aox1 0.18 0.265 0.13 0.869 2.48 4.76E-06

Spock2 0.49 0.297 — — — —

Sult1a1 0.3 0.182 0.18 0.922 -1.34 0.063

Ephx1 0.26 0.134 0.7 0.606 1.57 6.04E-10

Pcolce 0.14 0.217 0.05 0.962 0.23 0.362

Evi2a 0.41 0.186 1.45 0.214 -0.09 0.93

Klhdc8a -0.09 0.591 0.65 0.687 0.45 0.639

Slamf9 0.24 0.536 0.65 0.702 — —

Col15a1 — — 0.41 0.805 -0.35 0.527

Cd68 0.047 0.86 — — -0.05 0.871

Col6a2 — — -0.02 0.979 0.31 0.475

Nrep 0.074 0.755 -1.12 0.308 -2.77 1.10E-06

Mgl2 — — — — — —

-represents no result.
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Figure 9: Continued.
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Figure 8: Validate the expression and evaluate the biomarker role of Limd1. (a) The change characteristics of gene expression of the
overlapping genes in PBMC of doxorubicin-cardiotoxicity model. (b) The relative level of Limd1 in PBMC. (c) ROC analysis of Limd1.
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4. Discussion

As a widely clinically used drug, doxorubicin has a very
powerful antitumor function. However, a growing number
of studies support the conception that doxorubicin plays a
double-edged sword role during its application. Indeed,
the action of doxorubicin on nontargeted tissues may
result in cardiotoxicity and eventually worsen to conges-
tive heart failure and death, which will disrupt cancer
treatment by needing to control medical dosages of doxo-
rubicin, thus deteriorating the quality of life of patients
[24]. Therefore, exploring new strategies against the cardi-
otoxic effect of doxorubicin would benefit cancer patients
to a certain extent.

In this study, we selected two datasets GSE23598 and
GSE59672 from the GEO database as the subjects. These
two datasets were based on a doxorubicin-induced acute
heart injury mouse model performed through intraperito-
neal administration of doxorubicin in a dose of 15mg/kg
for 4 or 5 days [25, 26]. After combining and reanalyzing
the datasets, we screened out a total of 120 DEGs between
the normal myocardial tissue and the toxic myocardial tis-
sue, of which parts were confirmed by previous reports in
terms of the expression trend, such as Ctgf [27], Aox1
[28], Alas2 [29], and Ly86 [30]. However, Btg2 was upregu-
lated after doxorubicin treatment in our study, while a previ-
ous study found it to be downregulated [31]. On the whole,
the differentially expressed genes obtained based on omics
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Physical interactions
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Other
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(b)

Figure 9: Explore the biological function of Limd1. (a) GSEA was used to analyze the signaling pathways enrichment in different groups
according to Limd1. (b) Network of protein interaction with Limd1.
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Figure 10: Continued.
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were relatively reliable. Furthermore, Cxcl9 was discovered
to be downregulated in the heart tissue of the mouse model.
Its protein level in plasma was evaluated in breast cancer
patients who received doxorubicin, and it was significantly
lower in the abnormal decline of the left ventricular ejection
fraction (LVEF) group compared with the normal LVEF
group [32], indicating that these DEGs are potential circulat-
ing biomarkers for clinical application of doxorubicin-
related cardiotoxicity in the future. Besides, based on these
DEGs, the potential therapeutic drugs against the cardiotoxi-
city were predicted, and a series of molecules including pro-
pranolol were selected. Interestingly, propranolol was
reported to have a significant beneficial effect on cardiac
injury induced by doxorubicin [33]. Therefore, it is worth
expecting whether the other drugs, especially PF-04217903,
could relieve this toxicity in the myocardium.

As is well known, miRNAs usually negatively participate
in regulating the protein expression of genes through degra-
dation or translational inhibition. We therefore further pre-
dicted the upstream miRNAs that target all the 120 DEGs
and finally constructed the network containing 334 miRNAs
and 109 DEGs targeted by them. In this whole network,
miR-155-5p, miR-122-5p, miR-1a-3p, etc. were most closely
related to these DEGs. As revealed in the clinical research,
circulating miR-122-5p was increased after doxorubicin
application in breast cancer patients [34]. In the mouse
model, the circulating level of miR-122-5p was higher in car-
diotoxicity than in the nontoxicity group after doxorubicin
was applied. However, the circulating miR-122-5p was lower
in the noncardiotoxicity model compared with the saline-

treated model [35]. Besides, the level of circulating miR-
122-5p before treatment in patients with myocardial injury
after treatment was significantly higher than that in patients
without myocardial injury after treatment and could predict
adverse cardiac reactions to doxorubicin [34]. Therefore,
whether the other miRNAs especially miR-155-5p and
miR-1a-3p have clinical application potential is worth
exploring.

Genes are usually synergistically involved in disease phe-
notypes. Accordingly, we extracted the coexpression mod-
ules from the whole gene matrix using the WGCNA
method and finally determined 8 modules. Among them,
the turquoise module (MEturquoise) was most positively
correlated with the cardiotoxicity abnormal phenotype, con-
taining 857 genes, while the blue module (MEblue) was most
negatively correlated, containing 778 genes. Besides, we per-
formed GO and KEGG analyses, respectively, to fully evalu-
ate the biological roles of the two modules. The biological
annotation of GO item demonstrated that those genes in
MEturquoise were related to “cytoplasm,” “nucleotide bind-
ing,” “cellular response to insulin stimulus,” etc., and genes
in MEblue were related to “extracellular region,” “heparin-
binding,” and “cell adhesion.” KEGG analysis indicated sev-
eral biological signaling pathways were significantly
enriched in MEturquoise, such as the “FoxO signaling path-
way,” which has been validated by a previous study [36].
However, in MEblue, other types of signaling, such as “focal
adhesion,” “ECM receptor interaction,” and “PI3K-Akt sig-
naling pathway,” were significantly enriched, and several of
them have also been identified involvement in cardiotoxicity

B cells naive 1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00

B cells memory
Plasma cells
T cells CD8

T cells CD4 naive
T cells CD4 memory resting

T cells CD4 memory activated
T cells follicular helper

T cells regulatory (Tregs)
T cells gamma delta

NK cells resting
NK cells activated

Monocytes
Macrophages M0
Macrophages M1
Macrophages M2

Dendritic cells resting
Dendritic cells activated

Mast cells resting
Mast cells activated

Eosinophils
Neutrophils

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
na

iv
e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng
T 

ce
lls

 C
D

4 
m

em
or

y 
ac

tiv
at

ed
T 

ce
lls

 fo
lli

cu
la

r h
elp

er
T 

ce
lls

 re
gu

lat
or

y 
(T

re
gs

)
T 

ce
lls

 g
am

m
a d

elt
a

N
K 

ce
lls

 re
sti

ng
N

K 
ce

lls
 ac

tiv
at

ed
M

on
oc

yt
es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed
M

as
t c

el
ls 

re
sti

ng
M

as
t c

el
ls 

ac
tiv

at
ed

Eo
sin

op
hi

ls
N

eu
tro

ph
ils

(c)

Figure 10: Estimate the immune infiltration of the heart. (a) Remove batch between original unlogged expression profile. (b) Barplot
showed the composition of immune cells. (c) Heatmap showed the correlation among immune cells each other.
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[37, 38]. Therefore, these pathways especially those not pre-
viously reported, greatly enrich the knowledge regarding the
disease and provide potential intervention targets.

The better the correlation between modules and disease
traits, the more important function genes have. On these
grounds, 35 genes from MEturquoise and 42 genes from
MEblue were screened out. The significantly upregulated
DEGs in 35 genes from MEturquoise and the significantly
downregulated DEGs in 42 genes from MEblue were consid-
ered the key ones, and finally, 14 genes were enrolled. To
validate the role of these 14 key genes, we first merged and

reanalyzed two datasets GSE81448 and GSE97642, which
were modeled with the same dose of doxorubicin, but the
detection time was advanced to 20 hours after the operation.
Limd1, Spock2, Sult1a1, etc. were also discovered to be dys-
regulated, the same as the previous results. To identify the
specific cell populations that lead to changes in the expres-
sion of these genes, we reanalyzed another three datasets
that detected the CMs, FBs, and SMCs under the interven-
tion of doxorubicin. As the results revealed, dysregulation
of several genes including Limd1 and Sult1a1 was not from
the above three kinds of cells, and potentially resulted from
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Figure 11: Evaluate the infiltration of immune cells and their correlation with Limd by Wilcoxon and Pearson correlation analysis. (a) The
difference of immune infiltration between control and toxicity hearts. (b) The correlation between Limd1 expression with immune
infiltration of monocytes, M1 macrophages, and activated dendritic cells. (c) Count the immunocytes with differential expression and
correlate with Limd1, and intersect them.
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the inflammatory cells infiltrating into tissue. Therefore, we
further evaluate their expression in the PBMC of the rat car-
diotoxicity model. In the end, only Limd1 was significantly
upregulated, the same as in the heart of the mouse model.
Besides, ROC analysis indicated that Limd1 in PBMC had
the ability to diagnose this cardiotoxic disease. As is well
known, Limd1 (LIM domain-containing protein 1) is a
member of the Zyxin proteins and is widely expressed in
human tissues. Several previous studies have suggested the
suppressor role of Limd1 in tumor diseases [39]. In cardio-
vascular disease, Limd1 has been reported to be functionally
closely related to cardiac fibroblasts [40]. Based on the
results, Limd1 was deemed as the hub gene and a valuable
biomarker.

Due to that Limd1 was closely related to inflammatory
cells in our study, we subsequently determined the biological
function of Limd1 by the GSEA tool and protein interactive
network. GSEA results of the mouse model suggested that
Limd1 may be functionally involved in immunocyte chemo-
taxis, adhesion, and migration. In the network built by the
GeneMANIA database, the Limd1 was depicted to be con-
nected with the NF-kappaB signaling pathway through
interacting with Limd1, EGFR, and TRAF6 proteins. As
one of the best-understood immune-related pathways, the
NF-kappaB signaling pathway is activated by numerous dis-
crete stimuli and participates in regulating activities of the
majority of immunocytes including macrophage, dendritic
cells, and neutrophils [41], thus exerting a comprehensive
role in inflammation.

In fact, the cardiotoxicity induced by doxorubicin is in
general characterized by an abnormal inflammatory
response, and the NF-kappaB signaling pathway was indeed
the mediator [42]. Due to that Limd1 was a highly likely reg-
ulator of immune cell infiltrates in the toxic heart according
to the above analysis, we therefore finally assessed the
immune infiltration in the hearts of mouse model on the
4th day after doxorubicin injection using the CIBERSORTx
method. Compared with the hearts in the control group,
the doxorubicin-intervened hearts have a significantly
higher proportion of “dendritic cells activated” and a lower
proportion of “macrophage M1”. Besides, the proportion
of monocytes seems to be decreased in the cardiotoxicity
model heart, despite not being statistically significant. As a
widely studied inflammatory cell type, the proinflammatory
M1 macrophage has been found to be increased in
doxorubicin-induced cardiomyopathy [43]. The contradic-
tion was due to that the datasets we reanalyzed used a one-
time high-dose modeling method, and the literature used
intermittent multiple-dosing ways. The one-time modeling
indicates that the damage reaches the peak shortly after the
beginning, and injury stimulation cannot be maintained at
the following. This damage mode was similar to that in other
heart diseases, such as acute myocardial infarction (AMI).
During the progression of AMI, the response of the mono-
cyte/macrophage system is characterized by the accumula-
tion of proinflammatory monocytes and macrophages over
48 to 72h, followed by a reparative phase at 4 to 7 days
driven by anti-inflammatory macrophages [44]. Despite the
M1 macrophage (pro-) was rapidly accumulated and peak-

ing on the fifth day at the damaged site, the ratio of M1 type
to the total macrophages (M1 and M2) had decreased signif-
icantly earlier than the fifth day [45]. Therefore, our results
that the proportion of monocyte/macrophage M1 decreased
could be clued from the pattern of myocardial infarction.

Dendritic cells are a kind of bone marrow-derived
cells arising from lympho-myeloid hematopoiesis that are
responsible for initiating and controlling immune responses,
specializing in antigen presentation to drive T-cell priming
and differentiation [46]. In research decades ago, the number
of interstitial dendritic cells/mm2 of a left ventricle section
was found to be remarkably increased in animals receiving
doxorubicin, compared with saline-treated control [47],
which was similar to our analysis. As a matter of fact, den-
dritic cells are widely involved in the progression of heart dis-
eases. In the mouse model of transverse aortic constriction
(TAC)-induced pressure overload, the relative abundance
of dendritic cells was found to be increased in the hypertro-
phic myocardium both at 1 and at 4 weeks post-TAC [48].
Besides, dendritic cells worked as a pathogen to induce auto-
immune heart failure under certain conditions [49]. In an
acute myocardial infarction mouse model, subcutaneously
administration of tolerogenic dendritic cells (tDCs) could
reduce infarct size, improve heart function and mouse sur-
vival, by timely promoting Treg cell, and activating its medi-
ated macrophage conversion to the reparative M2 to replace
the inflammation M1 type [45]. Interestingly, the fraction of
activated dendritic cells was positively correlated with that of
Tregs and M2 macrophage and negatively correlated with
M1 macrophage, as revealed in our results. These suggest a
potential pattern that the increasing of dendritic cells may
exert its influence on the cardiotoxicity through the subse-
quent Treg cell and macrophage. Given the biological role
of the NF-kappaB signaling pathway in monocyte, macro-
phage, and dendritic cells, we, therefore, wonder whether
Limd1, a potential immunocyte regulator, is associated with
the infiltration of these inflammatory cells. Finally, we
found that Limd1 expression was negatively correlated with
the fraction of monocyte and macrophage and positively
correlated with the dendritic cells fraction. Thus, we specu-
late that Limd1 acts as the regulator of the inflammation
system through the NF-kappaB pathway, playing a role in
doxorubicin-induced cardiotoxicity.

There are still some limitations to this study. Firstly, the
differential expression analyses compared the treatment
(n = 2) and control (n = 2) groups in the GSE154101 and
GSE154118 datasets could lead to some inaccuracy due to
the limitations of the sample size. Secondly, the number of
sample used for the WGCNA (n = 10) could also lead to
some bias due to the small sample size (because n ≥ 15 sam-
ples is suggested for the WGCNA). Thirdly, the above results
were not further validated in our own disease model.

5. Conclusions

In conclusion, Limd1 was upregulated in PBMC and the
heart of the doxorubicin-induced cardiotoxicity model and
is a valuable circulating biomarker. In particular, we found
that Limd1 was functionally correlated with the immune
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system and significantly correlated with the infiltration of
immunocytes including monocytes, M1 macrophage, and
dendritic cell. It is worth further exploring to clarify its role
in this cardiotoxicity.
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