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Heart failure (HF) is a complex clinical syndrome resulting from various cardiac diseases and a significant medical issue worldwide.
Although the role of inflammation in HF pathogenesis is well-known, the specific cell types and regulatory molecules involved
remain poorly understood. Here, we identified key cell types and novel biomarkers via an analysis of single-cell and bulk RNA
sequencing data obtained from patients with twomajor HF types of ischemic cardiomyopathy and dilated cardiomyopathy. Myeloid
cells were identified as the primary cell population involved in HF through cellular fraction and gene set enrichment analysis.
Additionally, differential analysis of myeloid cells revealed crosstalk between cellular communication and cytokine-regulated
immune responses in HF, with the MIF pathway emerging as a crucial immune regulatory pathway. The CD74/CXCR4 receptor
complex in myeloid cell subgroup Mφ2 was significantly upregulated, potentially acting as a crucial regulator in HF. Upon receiving
the MIF signal molecule, the CD74/CXCR4 receptor can activate NF-κB signaling to produce chemokines and thereby enhance the
inflammatory response. CD74 and CXCR4 may serve as biomarkers and treatment targets for HF.

1. Introduction

Heart failure (HF) is a complex clinical syndrome that
impairs cardiac function, leading to suboptimal blood pump-
ing capacity to satisfy the body’s metabolic needs [1]. It
represents a significant public health concern, with over 64
million individuals affected worldwide [2, 3]. The aging pop-
ulation also contributes to the annual increase in HF preva-
lence, with a projected 46% increase in incidence by 2030 [4].
HF is typically the terminal stage of multiple cardiovascular
diseases and may be triggered by various cardiac diseases,
with ischemic cardiomyopathy (ICM) and dilated cardiomy-
opathy (DCM) being the leading causes [3, 5]. Patients with
HF receive individualized and precise treatment strategies
based on the classification of the left ventricular ejection
fraction (LVEF) [6]. This requires a deeper understanding
of the pathophysiology of HF and associated transcriptomic
and genetic mechanisms.

Earlier research has suggested that imbalanced inflam-
mation plays a crucial role in the pathophysiology of HF

[7, 8], with monocytes and macrophages playing essential
roles in maintaining heart homeostasis and immune defense
[9]. Macrophages may polarize into the M1 phenotype with
proinflammatory capabilities or the M2 phenotype with anti-
inflammatory functions [10, 11]. Poor left ventricular (LV)
remodeling in patients due to pressure overload requires
cardiac macrophages stemming from CCR2+ monocytes
[12]. These reports indicate that functionally heterogeneous
macrophage subsets exist in the immune microenvironment
of the heart and contribute to HF development. However, the
specific mechanisms and macrophage subpopulations involved
are not yet clear.

Single-cell RNA sequencing (scRNA-seq) makes it possi-
ble to examine the cell populations participating in HF at
the molecular level and to investigate how the interaction
between different cell subsets is regulated by ligand–receptor
(L–R) [13]. Studies on the cardiovascular immune microen-
vironment in mice with pressure overload have shown that
immune activation involves several cell types [14]. For
instance, CD72hi macrophages release proinflammatory
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factors that lead to heart damage, suggesting that targeting
CD72hi macrophages could be a novel therapeutic strategy
for HF [15]. A high-resolution single-cell landscape was also
constructed for patients with HF to analyze immune cell
populations [16], yet with a small sample size, which limited
the scope of the analysis. Here, through a joint analysis of
both scRNA-seq and bulk RNA-seq data, we elucidated key
cell types and cell type-specific genes that play important
roles in the pathogenesis of HF.

We conducted a bioinformatics analysis of HF samples
comprising ICM and DCM (Figure 1) to explore key cell

types involved in HF and identify potential biomarkers. First,
we identified myeloid cells involved in HF through cluster
analysis in scRNA-seq data to identify cell types, comparing
cellular fractions between different groups, and conducting
gene set enrichment analysis (GSEA) using bulk RNA-seq
data. We then analyzed the differential expression of myeloid
cells across the groups and explored the function of these
genes with differential expression using Metascape. Further
analysis of cellular interaction revealed that molecules within
the MIF signaling pathway were significantly upregulated in
HF and could potentially serve as valuable biomarkers.

Dataset collecting of heart failure
(DCM and ICM) from GEO

ScRNA-seq: GSE145154
Bulk RNA-seq: GSE57338, GSE79962, and GSE5406

Identifying myeloid cells as the key cell
type in HF (Figure 2)

Clustering: identifying cell types
Comparing: counting cell proportions
GSEA analysis

Screening DEGs of myeloid cells (Figure 3)

DESeq2: identify DEGs
Metascape: GO, KEGG

CXCR4 and CD74 mediate myeloid cell
interactions via MIF signal (Figure 4)

Cellchat: cell–cell interaction analysis

Validating and evaluating  CXCR4 and
CD74 as potential diagnostic biomarkers for

HF (Figure 5)

pROC: ROC curve and value of AUC

Clustering: myeloid cell subclusters
DoRothEA: TF activity analysis
Monocle: developmental trajectory inference

Exploring the role of CXCR4 and CD74 in
myeloid cell subclusters

CXCR4 and CD74
highly expressed in

all myeloid
subclusters (Figure 6)

MIF signaling in
Mφ2 promoted

inflammation (Figure 7)

Mφ2 may be
derived from

monocytes (Figure 8)

Mechanism:
receiving MIF signal, CXCR4, and CD74
-mediated activation of Mφ2 to exhibit a
proinflammatory phenotype (Figure 9)

FIGURE 1: The overall research framework.
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Finally, we reclustered myeloid cells at a higher resolution to
study the heterogeneity of the myeloid cell subtypes and their
potential differentiation relationships.

2. Materials and Methods

2.1. Data Collection. Four datasets included in this study were
identified by searching using the following keywords: HF, DCM,
and ICM. One single-cell RNA-seq dataset (GSE145154) from
heart and blood contained one normal, two DCM, and three
ICM samples [16]. The three bulk RNA-Seq datasets included
normal, DCM, and ICM samples: GSE79962 [17], GSE5406
[18], and GSE57338 [19]. GSE141910 [20], which includes
DCM and normal samples with recorded LVEF information,
was used for further analysis and validation. A summary of
the datasets is presented in Table 1, with all data sourced from
the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo). For bulk RNA-Seq data, the normal
groups in GSE5406, GSE57338, and GSE79962 consisted of nor-
mal LV myocardial tissue ejection fractions of 56%Æ 7%, LV-
free wall tissue obtained from unused donor hearts, and hearts
from nonfailure donors that were considered unfit for heart
transplantation. The normal group in the single-cell dataset,
GSE145154, was from the left ventricle, with an ejection fraction
of 65%. In summary, the normal group in the bulk dataset was
derived from the LV tissue of heart donors without HF. For the
single-cell dataset, the normal group was derived from healthy
individuals. The normal group was defined as individuals with
EF≥ 50% and no history of HF.

2.2. ScRNA-Seq Analysis. After standard data preprocessing
and quality control measures, the scRNA-seq data under-
went cell clustering analysis using the R package Seurat
[21]. Cells expressing less than 500 genes, more than 10%
of mitochondrial genes, or cells with UMI count of less than
800 or more than 8,000 were excluded as low-quality cells.
After filtering, 29,382 cells were retained for the subsequent
analysis. LogNormalize was used to standardize the expres-
sion data, FindVariableFeatures with the dispersion method
was employed to identify the top 2,000 features with high
variability, FindIntegration was utilized to detect anchors
with default conditions, and IntegrateData was applied to
integrate objects with the top 30 dimensions. The integrated
dataset was then normalized using Seurat’s normalized data
and scale data functions. Finally, cells were clustered at 0.5
resolution using the FindClusters function and subsequently
visualized using 2D uniform manifold approximation and
projection (UMAP).

The FindAllMarkers function was utilized to detect marker
genes for each cluster, with a minimum percentage of expres-
sion value set to 0.3 and a log-fold change threshold set to 0.6.
Subsequently, cell types within each cluster were defined by
comparing the marker genes with signature genes from pub-
lished research [16] and the public CellMarker database
(http://bio-bigdata.hrbmu.edu.cn/CellMarker). Clusters con-
tainingmarkers for both cell types were removed.Myeloid cells
were divided into subgroups after grouping and separation
using the subset commands.

2.3. Differential Gene Expression Analysis. Owing to the high
percentage of false positives in single-cell differential expres-
sion analysis, which treats each cell as a biological replication,
a pseudobulk approach was adopted to conduct intergroup
differential gene analysis [22–24]. DESeq2 [25] was used for
differential expression analyses of single-cell expression pro-
files. For myeloid cells with scRNA-seq data, the reads for
transcriptional replication were first aggregated and con-
verted from the gene-cell matrix to a gene-replication matrix
using matrix multiplication. DEGs were visualized using the
ggplot2 package. For bulk RNA-seq data, DEGs for microar-
ray expression profile data were identified using the limma
package [26]. Only genes with a |log2FC|> 1 and an adjusted
p-value of less than 0.05 were deemed to be DEGs.

2.4. Gene Set Enrichment Analysis. To uncover the molecular
basis of HF, DEGs obtained from DCM/ICM samples were
used to identify markedly changed cell types. For this pur-
pose, GSEA [27] was performed using clusterProfiler pack-
age [28] using cell-specific marker genes, which allowed us to
determine the degree of cellular enrichment. In addition,
GSEA was also conducted to reveal the enrichment features
of the cell clusters, using a reference gene set selected from
the MSigDB database, focusing on gene sets for biological
processes (BPs).

2.5. Function Enrichment Analysis. DEGs identified using the
pseudobulk method were uploaded to Metascape (https://meta
scape.org/) for BP enrichment analysis. Differentially expressed
genes (p<0:01) in each myeloid subcluster were identified
using the FindMarkers function of the Seurat package, employ-
ing the MAST method. After transforming gene symbols to
Entrez gene IDs, gene ontology (GO) was conducted using
the ClusterProfiler package and org.Hs.eg.db package. Proin-
flammatory and anti-inflammatory scores were obtained
using the AddModuleScore function in Seurat. Specifically,
10 proinflammatory-related genes (IL1B, TNF, CCL2, CCL3,
CCL5, CCL7, CCL8, CCL13, CCL17, and CCL22) were used to

TABLE 1: A summary of the dataset.

Accession RNA library Sample size Source

GSE145154 Single-cell RNA sequencing Normal:1, DCM:2, ICM:3 Heart and blood
GSE5406 Bulk RNA sequencing Normal:16, DCM:86, ICM:108 Left ventricle
GSE57338 Bulk RNA sequencing Normal:136, DCM:82, ICM:95 Left ventricle
GSE79962 Bulk RNA sequencing Normal:11, DCM:9, ICM:11 Left ventricle
GSE141910 Bulk RNA sequencing Normal:94, DCM:161 Left ventricle
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calculate proinflammatory scores, whereas nine anti-inflam-
matory-related genes (IL1RN, IL10, IL4, IL11, IL1R2, TGFB1,
TNFRSF1A, TNFRSF1B, and IL18BP) were used to derive anti-
inflammatory scores.

2.6. Cell–Cell Communication Analysis. To shed light on the
cellular communication network among various cell clusters,
CellChat [29] was employed to deduce and characterize pos-
sible cell–cell interactions. Briefly, the normalized scRNA-
seq data were first split into DCM, ICM, and normal groups,
and then CellChat objects for each group were generated
separately to calculate cell communication networks. Finally,
the three groups of CellChat objects were combined. To
identify the upregulated ligand–receptor pairs, myeloid cells
were defined as receivers or senders to compare the interac-
tions between the normal control and DCM/ICM groups.

2.7. Transcription Factor Activity Analysis. DoRothEA [30]
was used to assess transcription factor (TF) activity for mye-
loid subsets from the scRNA-seq data. Transcription factor
regulatory networks that exhibited higher confidence levels
(from A to C) supported by evidence were extracted for
subsequent analyses. The scale method was used to measure
the viper scores. Fifteen TFs with the greatest variations were
identified and are displayed.

2.8. Developmental Trajectory Inference. Monocle3 [31] and
Monocle2 [32] were employed to order the cells based on pseu-
dotime analysis. First, the normalized gene expression matrix
within Seurat as import for Monocle3. Then, a CellDataSet
object was created using the new_cell_data_set function of
Monocle3 and handled by the preprocess_cds function using
the default settings. Data dimensionality was reduced using the
reduced-dimension function with preprocess_method set to
principal component analysis and reduction_method set to
UMAP. The trajectory and order of the cells were learned.
Ordered cells were visualized using the cell plot function.

A similar approach was used by Monocle2. The cell clus-
ters with potential relationships were extracted using the
Seurat subset command. The CellDataSet objects were
created using, as described in. CellDataSet function in
monocle2. The genes were filtered out if their average expres-
sion level was below 0.1 and less than 10 cells. Following the
calculated scale factors and estimated dispersions, the vari-
ably expressed genes between clusters along the trajectory
were defined using a differential gene test function. After
cell ordering, visualization was performed using the
plot_cell_trajectory and plot_genes_in_pseudotime functions.

2.9. Statistical Analysis. Student’s t-test was conducted to
determine the significance of gene expression differences
between groups (DCM vs. normal, ICM vs. normal). Multi-
ple testing was performed by adjusting p values to q values
using the Benjamini–Hochberg method. In addition, receiver
operating characteristic (ROC) curve analysis was performed
using pROC [33], which allowed us to assess the sensitivity
and specificity of each gene according to its expression level.
The area under the ROC curve (AUC) was calculated as a
measure of performance. Spearman’s correlation was used to

analyze the correlation between gene expression and LVEF.
Statistical significance was defined as a p-value or q-value less
than 0.05.

3. Results and Discussion

3.1. ScRNA-Seq Profiles Revealed the Heterogeneity of Immune
Cells in HF Patients. We first used the scRNA-seq dataset
GSE145154 to compare the differences between healthy indi-
viduals and HF patients [16]. After a rigorous quality control
screening, we retained 126,667 cells, which were classified into
25 clusters using UMAP and cluster analysis. By assessing the
presence and abundance of canonical cell signature genes
within each cluster, we identified 10 cell clusters (Figure 2(a))
and three sample types (Figure 2(b)). We then used a dot plot
to depict the expression levels of signature markers for each of
the 10 clusters. The clusters were identified to be T cells (CD3D,
CD3E, and CD3G), natural killer (NK) cells (FCGR3A and
KLRB1), B cells (CD79A, CD79B, and BANK1), myeloid cells
(LYZ, C1QC, and C1QB), endothelial cells (ECs) (VWF,
TAGLN, and CLDN5), endocardial cells (LUM and DCN),
fibroblast cells (FBs) ((LUM and DCN), pericytes (VWF,
TAGLN, and CLDN5), smooth muscle cells (SMCs) (MYH11),
cardiomyocyte cells (MYH7 and MYL2) (Figure 2(d)). The 10
cell clusters were then colorized with three colors (green, blue,
and red) based on their respective sample source (normal, DCM,
and ICM) (Figure 2(b)). As shown in Figure 2(b), the cell
distribution in DCM was similar to that in ICM, and the
general cellular population proportions did not exhibit
meaningful variance. However, the cell composition in the
healthy population differed from that in patients with HF,
including DCM and ICM. We also calculated the percentage
of 10 cell clusters for each sample group and found that HF
samples had a significantly lower percentage of ECs, fibroblasts,
andmyeloid cells and a significantly higher percentage of T cells
and NK cells (Figure 2(c)).

Next, we performed a systematic analysis of scRNA-seq
(GSE145154) and bulk RNA-seq data (GSE79962, GSE5406,
and GSE57338) to further identify the cell types associated
with HF. Owing to a significant reduction in the cardiac pop-
ulation of myeloid cells in HF patients, we performed GSEA
to explore the enrichment of myeloid cell markers in the bulk
datasets. Notably, downregulated genes in DCM (Supplemen-
tary 1) and ICM (Supplementary 1) displayed a prominent
enrichment of marker genes from myeloid cells.

3.2. Analysis of Differential Gene Expression in the Single-Cell
Expression Profile of Myeloid Cells. We investigated the dysre-
gulation mechanism underlying HF by conducting differential
gene expression analysis to identify and compare dysregulated
genes in myeloid cells between DCM/ICM and normal controls.
Significantly differentially expressed 275 up- and 185 downre-
gulated genes were identified in DCM (Figure 3(a)). In ICM, 163
and 105 genes were significantly differentially up- and down-
regulated, respectively (Figure 3(a)). Furthermore, a total of 136
intersection genes were identified as upregulated, with 92 as
downregulated among the differentially expressed genes in
both DCM and ICM (Figure 3(b)). These genes were associated
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with common changes in HF due to DCM and ICM (Supple-
mentary 2).

To reveal the molecular mechanism involved in HF, we
used Metascape to conduct a functional enrichment analysis
of common DEGs in myeloid cells. Our analysis revealed
that 136 upregulated genes were significantly enriched in
inflammatory response-related pathways such as leukocyte
activation, regulation of lymphocyte activation, positive reg-
ulation of immune response, regulation of immune effector
response, immune effect process, positive regulation of cyto-
kine production, immunoregulatory interactions between
lymphoid and nonlymphoid cells, and cytokine-mediated
signaling pathways (Figure 3(c)). In contrast, 92 downregu-
lated genes displayed a marked enrichment in damage
repair-related pathways such as receptor-mediated endocy-
tosis, response to wounding, DNA damage/telomere stress-
induced senescence, and blood vessel morphogenesis
(Figure 3(d)).

3.3. Characterization of the Role of Signaling Pathways and
Key Factors in Myeloid Cell Interactions. To predict cell–cell
interactions among myeloid cells and other cells, we linked
these cell populations based on expression levels and inter-
actions of ligands with their respective receptors. We used
the Cellchat R package to deduce cell-specific signal trans-
mission and created Cellchat objects for three groups (nor-
mal, DCM, and ICM) to identify significant signals in each
group. Signal integration analysis yielded 58 pathways with
significant interactions (Figure 4(a)).

Using myeloid cells as signal senders, we found that three
CXCL-based interactions, CXCL8-ACKR1, CXCL3-ACKR1,
and CXCL2-ACKR1, were enhanced in ICM with respect to
the communication between myeloid and ECs (Figure 4(b)).
Signals that were significantly enhanced in DCM and ICM
with myeloid cells as receivers, including MIF, IL16, MHC-II,
CXCL, and CD99 (Figure 4(c)). Surprisingly, we found that
the MIF signal was identified as either a receiver or sender of
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FIGURE 2: Overview of cell populations was profiled for healthy donors and those with failing hearts: (a) the UMAP plot of scRNA-seq data
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the signal. In addition, we observed significant differences
between immune andmyeloid cells in terms of the interaction
between MHC-II (HLA-DR, HLA-DP, HLA-DO, HLA-DQ,
and HLA-DM) and CD4. Furthermore, myeloid cells were
found to interact with stromal cells (ECs, SMCs, and fibro-
blasts) via CXCR4 and CXCL12. In addition, the interaction of
the LGALS9-CD45/CD44 pair was strengthened in ICM and
DCM but not in controls. We intersected the coupregulated
genes in the myeloid cells of patients with DCM and ICM with
the recipient ligands identified by CellChat. Five molecules,
CXCR4, CD74, HLA-F, IFNGR1, and KLRB1, were found to
be significantly upregulated (Figure 4(d)). Among these mole-
cules, CD74 and CXCR4 synergistically work to form a MIF
receptor complex. The interaction network of the above signal-
ing pathway (MIF) is depicted in Figure 4(e), which shows that
all other cells, especially T cells, can interact with myeloid cells
via MIF-CXCR4+CD74 molecules.

3.4. Evaluation of the Diagnostic Performance of CXCR4 and
CD74. To investigate the modulatory impact of MIF signaling
on HF progression, we uploaded the genes of the CXCR4+
CD74 pair andMIF to theMetascape platform to analyze BPs
using GO. The outcomes indicated that MIF signaling mole-
cules were primarily engaged in the regulation of chemotaxis
and regulated by NF-κB1 and RELA (Supplementary 3). The
scRNA-seq data indicated that myeloid cells derived from
DCM and ICM exhibited significantly elevated expression
levels of CXCR4 and CD74 (Figure 5(a)). In addition, we
validated this result in the bulk dataset containing DCM,
ICM, and normal samples. Compared with the normal group,
we observed consistent upregulation of CXCR4 and CD74 in
both DCM and ICM, whereas no significant differences were
detected between ICM and DCM (Figure 5(b)–5(d)).

To evaluate the values of CD74 and CXCR4 as predictive
biomarkers for HF, we constructed ROC curves and com-
puted AUC values (Figure 5(e)–5(g)). The AUC for CD74
and CXCR4 were 0.739 and 0.702 in GSE5406 (Figure 5(e)),
0.743 and 0.715 in GSE57338 (Figure 5(f )), and 0.864 and
0.786 in GSE79962 (Figure 5(g)), respectively. In addition,
we compared the common biomarkers for HF diagnosis,
including NPPB, LGALS3, ST2, and GDF15 [34–37]. We
found that CD74 and CXCR4 had higher AUC values com-
pared to these common biomarkers, suggested that CD74
and CXCR4 had potential diagnostic value for HF disease.

To further validate the significance of CD74/CXCR4, we
conducted a verification experiment using the GSE141910
dataset, which contained 161 DCM-induced HF and 94 nor-
mal samples. Consistent with previous results, CXCR4 and
CD74 levels were substantially higher in DCM samples than
in normal samples (Supplementary 1). In addition, CD74 and
CXCR4 demonstrated good predictive performances, with
AUC values of 0.838 and 0.701, respectively (Supplementary
1). LVEF is a key indicator of cardiac systolic function and
reflects HF progression. Spearman’s correlation analysis
revealed that both CXCR4 and CD74 were negatively corre-
lated with LVEF (Supplementary 1), indicating that their
high expression in the HF group was associated with a
decrease in LVEF. These results further support the hypoth-
esis that CXCR4 and CD74 are strongly associated with HF.

3.5. ScRNA-Seq Analysis of Myeloid Cells Subpopulations.
The major group of immune cells observed in patients with
HF are myeloid cells, particularly macrophages. Previous stud-
ies have shown that macrophages have diverse subgroups per-
forming specialized functions in response to changes in the
immune environment [38, 39]. In order to gain deeper insight
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FIGURE 5: The differential expression of CXCR4 and CD74: (a) violin diagrams display changes in CXCR4 and CD74 expression levels in
myeloid cells between DCM/ICM and normal samples; (b–d) box plots of differential expression levels of CXCR4 and CD74 between
DCM/ICM and normal samples using bulk RNA-seq dataset of GSE5406, GSE79962, and GSE57338 (∗p<0:05, ∗∗p<0:01, ∗∗∗p<0:001; ns,
not significant); (e–g) ROC curves and AUC values of the five gene markers were delineated and calculated using the datasets GSE5406 (e),
GSE57338 (f ), and GSE79962 (g).
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into the heterogeneity of the diverse macrophage subgroups in
healthy individuals and patients with HF, we investigated the
transcriptional changes and heterogeneity of myeloid cells.
Using UMAP analysis, we divided myeloid cells into 12 sub-
groups (Figure 6(a)) and found that myeloid cells of DCM/ICM
were distinct from normal samples (Figure 6(b)). We also evalu-
ated the CXCR4 and CD74 expression among different cellular
subsets and found that CD74 was highly expressed in all cell
subtypes, whereas CXCR4 was highly expressed in all myeloid
subsets except Mφ3, cycling Mφ, and CD14+ mono1 cells
(Figure 6(c)). To determine the association between changes in
gene expression and intracellular signaling, we evaluated TF
activity in myeloid cell subclusters using Dorothea. Results
showed that cycling Mφ had the highest TF activity, followed
by Mφ2 and Mφ1(Figure 6(d)). In particular, the TFs NFKB1
and RELA were activated in Mφ2 and Mφ1 (Figure 6(e)–6(f)).

To illustrate the variation in cell subtypes, we calculated
the relative proportions of cell subtypes in each group. The
constructed histograms showed remarkable changes in the
proportion of cell subtypes. The main subtypes of myeloid
cells in the normal samples were Mφ1 andMφ3 (Figure 6(g)).
On the other hand, there was a noticeable rise in the percent-
age of Mφ2 andMφ4, dendritic cells, and monocytes (CD14+

mono2, CD16+ mono2) increased significantly in DCM and
ICM, while the proportion of Mφ3 decreased (Figure 6(g)). In
terms of sampling tissue sources, there was a noteworthy
increase in the proportion of CD16+ monocytes in the blood
of individuals with DCM and ICM, while the proportion of

Mφ2 was significantly raised in the left ventricle of DCM and
in the area of infarction for ICM (Figure 6(h)).

3.6. Functional Analysis of Myeloid Cell Subclusters. To inves-
tigate the function of each myeloid cell subcluster, we per-
formed differential gene expression analysis for each
subcluster (Figure 7(a)). A volcano plot showed that Mφ2
showed high level of expression for inflammatory chemo-
kines (CXCL2, CXCL3, and CXCL8) and related genes
(CCL3, CCL4, CCL3L3, and CCL4L2) (Figure 7(a)). Proin-
flammatory scores also revealed that Mφ2 was the primary
proinflammatory cluster (Figure 7(b)). Anti-inflammatory
scores also revealed that Mφ3 was the relatively anti-
inflammatory cluster (Figure 7(c)). GO analysis of the upre-
gulated genes in Mφ2 showed enrichment for granulocyte
chemotaxis and migration and antigen processing and pre-
sentation (Supplementary 1). KEGG enrichment analysis
revealed that inflammatory pathways enriched in Mφ2 sub-
sets, such as the NF-kappa B, IL-17, and TNF signaling path-
ways (Supplementary Figure S3B). GSEA further revealed the
enrichment of several biological pathways related to the reg-
ulation of inflammation and cellular chemotaxis in Mφ2
(Figure 7(d)). On the other hand, Mφ3 showed a high level
of expression for LYVE1, which is considered a marker of
tissue-resident macrophages (Figure 7(a)). GO and KEGG
enrichment analysis revealed that Mφ3 was correlated
with endocytosis (Supplementary 1). GSEA also revealed
the enrichment in Mφ3 for several biological pathways

0.00

0.25

0.50

0.75

1.00

DCM Normal
Group

ICM

CD14+ mono1
CD14+ mono2
CD16+ mono1
CD16+ mono2
Cycling Mφ
DC

Mφ1
Mφ2
Mφ3
Mφ4
pDC
TREM2+ Mφ

ðgÞ

Blood LV
ICM

RV Blood MI
DCM

NMI Blood LV
Normal

RV

0.00

0.25

0.50

0.75

1.00

CD14+ mono1
CD14+ mono2
CD16+ mono1
CD16+ mono2
Cycling Mφ
DC

Mφ1
Mφ2
Mφ3
Mφ4
pDC
TREM2+ Mφ

ðhÞ
FIGURE 6: Classification and molecular characterization of myeloid cell subsets: (a) UMAP plots of 12 subclusters of myeloid cells; (b) UMAP
plots of myeloid subsets, colored by DCM, ICM, and normal groups; (c) comparison for gene expression of CXCR4 and CD74 in 12 myeloid
cell subsets; (d) heatmap of the most variable TFs activity among different myeloid subsets; (e, f ) comparison for the distribution of
transcription factor activities of NF-κB and RELA in 12 myeloid cell subsets; (g, h) comparison for proportions of different myeloid cell
subclusters in three groups (DCM, ICM, and normal) and three sampling regions (blood, LV, and RV), LV: left ventricle. RV: right ventricle,
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related to the regulation of inflammation and endocytosis
(Figure 7(e)).

3.7. The Differentiation Trajectory of Myeloid Cell Subsets.
Finally, we conducted pseudotime analyses to deduce differ-
entiation trajectories of myeloid cell subsets to gain a better
understanding of their transitions. Using Monocle3, we con-
structed a developmental trajectory and superimposed it

onto the trajectory cluster defined by Seurat (Figure 8(a)).
Cell populations were redistributed in Monocle3, and cell
populations in the normal group were clearly separated
from those in the HF group using faceted plots (Supplemen-
tary 1). The Mφ3 was observed to be clearly separated from
monocytes. Moreover, some parts were found in the
same branch as Mφ1 (Figure S4B). Considering the high
expression of tissue-resident marker (LYVE1), the Mφ3
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FIGURE 7: Functional analysis of myeloid cell subsets: (a) differential gene expression analysis of 12 myeloid cell subclusters. The adjusted
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may be a resident-like subset not derived from monocytes.
Although Mφ1 was divided into two trajectories, except for a
portion of the trajectory that overlapped with that of Mφ3,
the rest of its trajectory was closely associated with Mφ4 and
TREM2+ macrophages (Figure 8(a) and Supplementary 1).
Mφ2, which is related to proinflammatory responses, showed
the shortest branching distance to monocytes and may thus
originate from monocyte differentiation (Figure 8(a) and
Supplementary 1).

To investigate the relationship between monocytes and
macrophages in terms of their differentiation behavior, four
macrophage subsets and CD14+ monocytes in the DCM and
ICM groups were analyzed using Monocle2. In the DCM
group, the pseudotime trajectory showed that CD14+ mono-
cytes were the starting point, followed by Mφ2 and Mφ1, and
then Mφ4 or TREM2+ Mφ (Figure 8(c)). Similar macrophage
transformation trajectories were observed in the ICM group

(Figure 8(e)). The expression of inflammatory factors displayed
a clearly increasing trend, followed by downregulation during
macrophage differentiation (Figure 8(f)).

4. Discussion

HF, which represents the terminal phase of various cardiac
diseases, is frequently linked to poor outcomes and high
mortality rates [3, 4]. Earlier studies propose that inflamma-
tion is a pivotal factor in the advancement of HF [7, 11].
Advances in single-cell sequencing technologies have facilitated
the study of cell-type variety in HF, crosstalk mechanisms
between cell types, and particular molecular characteristics of
cell differentiating phases. Here, our objective is to analyze the
crucial cell types and regulatory mechanisms that underlie HF,
with the aim of identifying new diagnostic and therapeutic
targets.
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We evaluated cell abundance of myeloid cells using
scRNA-seq, and then we performed pseudo-bulk differential
gene analysis and interaction regulation to gain further insights.
Our results showed that the molecules involved in the MIF
pathway were significantly upregulated inHF and could poten-
tially serve as biomarkers. Furthermore, our analysis ofmyeloid
cell subtypes at a higher resolution revealed an increased num-
ber of proinflammatory macrophages and a decreased number
of anti-inflammatorymacrophages. This is consistent with pre-
vious studies using mouse models of chronic HF [40, 41].
Macrophages are the predominant immune cells in the heart
and have an important function in maintaining cardiac
homeostasis [9, 12, 42]. Here, we divided myeloid cells into
12 subsets, including 6 subsets of macrophages. Our findings
suggest that the drop of anti-inflammatoryMφ3, which exerts a
cardioprotective effect, and the substantial upregulation of
proinflammatory Mφ2 are associated with HF. Our analysis
of TF activity also revealed that NF-κB-related TFs were active
in Mφ2, which may be derived from monocytes as evidenced
by differentiation trajectory analysis results [43, 44].

Macrophagemigration inhibitory factor (MIF) is an immu-
nomodulatorymolecule expressed by various cell types, includ-
ing eosinophils [45], macrophages [46], epithelial cells [47],
ECs [48], and lymphocytes [49].MIF expression is significantly
correlated with HF development [50]. As an MIF receptor,

CD74 plays a critical role in the synthesis and trafficking of
MHC class II molecules [51]. MIF initiates the inflammatory
cascade by forming a ligand–receptor complex with CD74′s
extracellular domain, and macrophage MIF initializes the
inflammatory cascade [52]. In addition to CD74, CXCR4 is
also involved inMIF-induced signal transduction [52, 53]. Pre-
vious studies have reported that the CXCR4 and CD74 com-
plex colocalizes at the cell membrane andmediateMIF-specific
signal transduction [54]. Several studies indicated that exposing
cardiac myofibroblasts to sCD74 and MIF leads to the apopto-
sis of fibroblasts during scar maturation [55]. Moreover, MIF
deficiency inhibited NF-κB-mediated inflammatory responses,
resulting in the protection of the heart from serious damage in a
mouse model of myocardial ischemia-reperfusion [56]. In
summary, the CD74/CXCR4 receptor complex combined
with MIF activates NF-κB signaling to produce inflammatory
chemokines, which form a proinflammatory macrophage phe-
notype (Figure 9).

B-type natriuretic peptide levels have recently been used as
benchmarks for HF diagnosis [37]. Although new biomarkers
such as galectin-3, growth differentiation factor 15 (GDF-15),
and soluble suppression of tumorigenicity-2 have been pro-
posed, their reliability remains controversial [34–36]. Sequenc-
ing technology is becoming faster and cheaper, facilitating
large-scale analysis of multiple histological data to better
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FIGURE 9: Schematic diagram. MIF-(CD74+CXCR4) signal transduction cascade mediates the production of inflammatory chemokines in
macrophages.
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understand and treat patients with HF. New biomarkers are
being explored at different levels, including the epigenetic, prote-
omic [57], and metabolomic [58] levels, to elucidate the patho-
genesis and treatment of HF [6]. In addition, the integration of
clinical indicators with genomic studies can guide patient classi-
fication and precise treatment better [59]. In our study, we iden-
tified upregulated MIF signaling pathways and CD74/CXCR4
receptors in cardiac patients with advanced HF. Through the
evaluation of ROC curves and AUC values via external dataset
validation (GSE5406, GSE57338, GSE79962, and GSE141910),
CD74 andCXCR4 demonstrated robust diagnostic performance
in identifying high-risk individuals for HF, showing AUC values
surpassing 0.7. Moreover, correlation analysis revealed that the
expression of CXCR4 and CD74 was negatively correlated with
cardiac contractile function.

In summary, this study confirmed the involvement of
myeloid cells in the progression of HF based on an analysis
of scRNA-seq and bulk RNA-seq data and identified CXCR4
and CD74 as potential biomarkers of HF based on cellular
interactions. Although the effectiveness of these molecules
has been validated with single-cell and bulk transcriptome
datasets, there is still considerable work required before
effective drug development for HF can be achieved. The
effectiveness of drugs targeting CXCR4 and CD74 in treating
HF needs to be verified through further experimental explo-
ration in follow-up studies.

5. Conclusions

In conclusion, our research combined scRNA-seq and bulk
RNA-seq techniques to explore HF in depth and revealed key
genes. Specifically, we found heterogeneity in functional
enrichment, cell differentiation trajectories, and intercellular
communication in myeloid cells in HF. In addition, key genes
identified by cellular interaction and differential analysis were
shown to be of potential diagnostic value. With the present
study, we not only expand the understanding of HF-
associated macrophages but also provide a new mechanism
that may be involved in the regulation of HF progression. We
hope that this combined analysis using scRNA-seq and bulk
RNA-seq will advance the further development of diagnosis
and treatment for HF. Of course, further experiments and
clinical practice are needed to confirm the results of this study.
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