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Background. Gefitinib resistance remains a major problem in the treatment of lung cancer. However, the underlying mechanisms
involved in gefitinib resistance are largely unclear. Methods. Open-accessed data of lung cancer patients were downloaded from
The Cancer Genome Atlas Program and Gene Expression Omnibus databases. CCK8, colony formation, and 5-ethynyl-2′-
deoxyuridine assays were utilized to evaluate the cell proliferation ability. Transwell and wound-healing assays were utilized to
evaluate the cell invasion and migration ability. Quantitative real-time PCR was utilized to detect the RNA level of specific
genes. Results. Here, we obtained the expression profile data of wild and gefitinib-resistant cells. Combined with the data from
the TCGA and GDSC databases, we identified six genes, RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1, that were
involved in gefitinib resistance in both cell and tissue levels. We found that most of these genes were expressed in the
fibroblast of the NSCLC microenvironment. Hence, we also comprehensively investigated the role of fibroblast in the NSCLC
microenvironment, including its biological effect and cell interaction. Ultimately, CDH2 was selected for further analysis for its
prognosis correlation. In vitro experiments presented the cancer-promoting role of CDH2 in NSCLC. Moreover, cell viability
detection showed that the inhibition of CDH2 could significantly decrease the IC50 of gefitinib in NSCLC cells. GSEA showed
that CDH2 could significantly affect the pathway activity of PI3K/AKT/mTOR signaling. Conclusions. This study is aimed at
investigating the underlying mechanism involved in gefitinib resistance to lung cancer. Our research has improved researchers’
understanding of gefitinib resistance. Meanwhile, we found that CDH2 could lead to gefitinib resistance through PI3K/AKT/
mTOR signaling.

1. Introduction

Lung cancer remains the most prevalent and dangerous
malignant tumor worldwide, resulting in over one million
related death cases per year [1]. Lung cancer is a multifacto-
rial disease, and its specific mechanism is still unclear, but
current research has found that the incidence of lung cancer
is often related to environmental factors, lifestyle, genomic
differences, and so on [2]. For now, patients at the early stage
of the disease can often obtain long-term treatment benefits
and a satisfactory prognosis from radical surgery [3]. Unfor-
tunately, many lung cancer patients have already reached the
late stages of the disease when they are diagnosed [4]. Lung

cancers that have advanced are mostly treated with chemo-
therapy. Nonetheless, the effectiveness of chemotherapy is
often limited, coupled with cytotoxicity and side effects,
which exacerbate the patients’ medical burden and quality
of life [5].

Gefitinib is suitable for the treatment of locally advanced
or metastatic non-small cell lung cancer (NSCLC) that has
received chemotherapy or is not appropriate for chemother-
apy [6]. Gefitinib can effectively improve the prognosis of
patients with advanced NSCLC, and it has also been
reported that when combined with chemotherapy, gefitinib
can improve the therapy effect on lung cancer patients [7].
In clinical application, gefitinib may have acquired drug
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resistance, thus reducing its therapeutic effect [8]. Research
has begun to focus on the biological mechanisms involved
in gefitinib resistance. Chen et al. noticed that the lncRNA
CASC9 could affect gefitinib resistance by epigenetically
suppressing DUSP1 [9]. Liu et al. found that METTL3, an
m6A methyltransferase, could regulate the gefitinib resis-
tance by inducing autophagy and affecting β-elemene [10].
Cheng and Tong revealed that in NSCLC, the interaction
between FLNA and ANXA2 could lead to the resistance of
gefitinib through activating Wnt signaling [11]. Hence,
exploring the factors influencing gefitinib resistance from
the internal biological mechanism of tumors can provide a
prospective reference for clinical application.

Here, we obtained the expression profile data of wild and
gefitinib-resistant cells. Combined with the data from the
TCGA and GDSC databases, we identified six genes,
RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1, that
were involved in gefitinib resistance in both cell and tissue
levels. We found that most of these genes were expressed
in the fibroblast of the NSCLC microenvironment. Hence,
we also comprehensively investigated the role of fibroblast
in the NSCLC microenvironment, including its biological
effect and cell interaction. Ultimately, CDH2 was selected
for further analysis for its prognosis correlation. In vitro
experiments presented the cancer-promoting role of CDH2
in NSCLC. Moreover, cell viability detection showed that the
inhibition of CDH2 could significantly decrease the IC50 of
gefitinib in NSCLC cells. We noticed that CDH2 could lead
to gefitinib resistance through PI3K/AKT/mTOR signaling.

2. Methods

2.1. Download and Collection of Public Data from The
Cancer Genome Atlas Program (TCGA). The TCGA data-
base provides the gene expression data and clinical informa-
tion of NSCLC patients, which was downloaded for the
analysis (524 samples from TCGA-LUAD and 503 samples
from TCGA-LUSC). The initial gene expression data of a
single sample was in STAR counts format and was summa-
rized in R language and converted to TPM. Clinical data are
organized by a Perl script written by the author. Before data
analysis, data preprocessing is used to improve data quality.
Its brief process includes annotation of the ENSG id, data
standardization, and log2 conversion. The IC50 data of gefi-
tinib was obtained from the Genomics of Drug Sensitivity in
Cancer (GDSC) database [12].

2.2. Public Data from Gene Expression Omnibus (GEO)
Database. The GSE123066 project was selected, and its data
was obtained from the GEO database. GSE123066 provides
the total RNA data sequenced from wild and gefitinib-
resistant NSCLC cell lines. Data were directly downloaded
from the “Series Matrix File(s)” link. Further patient infor-
mation including gender, age, stage, and survival data is pro-
vided in Supplemental Table 1.

2.3. Differentially Expression Gene (DEGs) Analysis.We used
the limma package for DEG analysis based on the detailed
threshold [13].

2.4. Investigation of the Biological Aspect. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) were conducted for biological investigation [14].
Gene set enrichment analysis (GSEA) was utilized to identify
the biological differences between the two groups based on
the hallmark pathway set [15].

2.5. Prognosis Evaluation. The evaluation of patient progno-
sis was completed using the Kaplan-Meier (KM) survival
curves.

2.6. Single-Cell Analysis. The expression pattern of specific
genes at the single-cell level and potential cell interactions
was evaluated using the TSICH [16].

2.7. Cell Culture. The cell lines used include BEAS-2B, H441,
H1299, and A549. All these cells were cultured in the
DMEM culture medium under standard conditions.

2.8. Quantitative Real-Time PCR (qRT-PCR). The whole
process of qRT-PCR was conducted following the standard
protocol [17]. The primers used were as follows: CDH2, for-
ward primer, 5′-TCAGGCGTCTGTAGAGGCTT-3′, reverse
primer, 5′-ATGCACATCCTTCGATAAGACTG-3′.

2.9. Cell Transfection. The whole process of cell transfection
was conducted following the standard protocol [17]. The sh-
CDH2 and control plasmids were obtained from Genechem,
Shanghai, China.

2.10. Cell Proliferation Assays. Cell proliferation ability was
evaluated using the CCK8, colony formation, and 5-ethynyl-
2′-deoxyuridine (EdU) assays. The whole process of qRT-
PCR was conducted following the standard protocol [18, 19].

2.11. Transwell Assay. The whole process of transwell assay
was conducted following the standard protocol [20].

2.12. Wound-Healing Assay. The whole process of the
wound-healing assay was conducted following the standard
protocol [20].

2.13. Detection of Cell Viability. The whole process of cell
viability detection was conducted following the standard
protocol [18].

2.14. Statistical Analysis. The statistical analysis was con-
ducted in R, GraphPad Prism 8, and SPSS software. The
0.05 was set as the statistical threshold. For the comparison
of two groups using Wilcoxon’s rank-sum tests and the
comparison between continuous variables using Wilcoxon’s
rank-sum tests, Wilcoxon’s test was used to examine statisti-
cal significance.

3. Results

3.1. Identification of the Genes Contributing to Gefitinib
Resistance and Their Biological Role. Through the limma
package, we identified the DEGs between the wild and
gefitinib-resistant NSCLC cell lines, which are shown in
Figure 1(a). Totally, 476 downregulated and 322 upregulated
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Figure 1: Collection of the molecules involved in gefitinib resistance. Notes: (a) Heatmap was used to present the expression pattern of
DEGs between the wild and gefitinib-resistant NSCLC cell lines. (b) 476 downregulated and 322 upregulated molecules were identified as
involved in the gefitinib resistance in the cell level. (c) GO analysis of these DEGs. (d) KEGG analysis of these DEGs.
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molecules were identified as involved in the gefitinib resis-
tance in the cell level (Figure 1(b)). GO analysis revealed that
these DEGs were mainly associated with GO:0005201,
GO:0030020, GO:0061134, GO:0003779, GO:0005178,
GO:0098631, GO:0030198, GO:0043062, GO:0045785,
GO:0031589, GO:0034329, GO:0010810, GO:0062023,
GO:0005911, GO:0016324, GO:0045177, GO:0016328, and
GO:0016323 (Figure 1(c)), and all the results of GO analysis
were provided in Supplemental Table 2. KEGG analysis
indicated that these DEGs were primarily enriched in the
MAPK signaling pathway, PI3K/AKT signaling pathway,
leukocyte transendothelial migration, cell adhesion
molecules, and tight junction (Figure 1(d)).

3.2. RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1
Were Correlated with Gefitinib Resistance in Both Cell and
Tissue Levels. We next obtained the IC50 data of gefitinib
in the GDSC database (lung cancer). Then, we performed a
DEG analysis between the top 50 patients with the highest
or lowest IC50. Finally, 1711 upregulated genes were identi-
fied in LUAD (Figure 2(a)) and 2302 upregulated genes were
identified in LUSC (Figure 2(b)). The intersection of
GSE123066, TCGA-LUAD, and TCGA-LUAD identified
six genes, RNF150, FAT3, ANKRD33, AFF3, CDH2, and
BEX1, indicating that these genes were involved in gefitinib
resistance in both cell and tissue levels (Figure 2(c)). Results
indicated that all these genes were overexpressed in the
gefitinib-resistant cells (Figure 2(d)). Single-cell analysis
revealed that AFF3 was primarily expressed in B and endothe-

lial cells (Figure 2(e)); ANKRD33 was primarily expressed in
mono/macrocells (Figure 2(f)); CDH2 was primarily
expressed in fibroblast cells (Figure 2(g)); BEX1 was primarily
expressed in mono/macrocells (Figure 2(h)); FAT3 was pri-
marily expressed in mono/macro and fibroblast cells
(Figure 2(i)); RNF150 was primarily expressed in fibroblast l
cells (Figure 2(j)).

3.3. Role of Fibroblast in NSCLC Microenvironment. Consid-
ering that most of these six genes were expressed in fibro-
blast, following this, we investigated the role of fibroblasts
in the NSCLC microenvironment. In the EMTAB-6149
cohort, we found that in KEGG analysis, fibroblast was cor-
related with upregulated focal adhesion, ECM receptor
interaction, dilated cardiomyopathy, and B cell receptor sig-
naling pathway while downregulating ribosome, cell adhe-
sion molecules (CAMs), leishmania infection, and some
immune-related pathway activities (Figures 3(a) and 3(b)).
As for the hallmark pathway, we noticed that fibroblast
was positively correlated with UV response DN, adipogene-
sis, epithelial_mesenchymal_transition (EMT), angiogenesis,
myogenesis, coagulation, and hypoxia (Figure 3(c)), while
negatively correlated with mTORC signaling, E2F targets,
allograft rejection, and the interferon alpha response
(Figure 3(d)). Cell interaction analysis showed that the fibro-
blast could interact with malignant and endothelial cells
(Figure 3(e)). In the LUAD-GSE146100 cohort, fibroblasts
were positively correlated with focal adhesion, ECM recep-
tor interaction, dilated cardiomyopathy, complement, and
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Figure 2: Identification of the hub genes. Notes: (a) DEG analysis between the top 50 patients with the highest or the lowest IC50 (LUAD).
(b) DEG analysis between the top 50 patients with the highest or the lowest IC50 (LUSC). (c) The intersection of GSE123066, TCGA-LUAD,
and TCGA-LUAD identified six genes. (d) The expression level of RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1 in wild and gefitinib
resistance cells. (e–j) The single-cell level of RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1.
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coagulation cascades while negatively correlated with many
immune-related pathways (Figures 3(f) and 3(g)). For
hallmark analysis, fibroblasts were positively correlated
with angiogenesis, apical junction, apoptosis, coagulation,

EMT, myogenesis, and UV response DN, yet negatively
correlated with allograft rejection, IL2/STAT5 signaling,
complement, mTORC1 signaling, and PI3K/AKT/mTOR
signaling (Figures 3(h) and 3(i)). Cell interaction analysis
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Figure 3: Role of CAFs in NSCLC microenvironment. Notes: (a) The upregulated KEGG terms regulated by CAFs (EMTAB-6149 cohort).
(b) The downregulated KEGG terms regulated by CAFs (EMTAB-6149 cohort). (c) The upregulated hallmark terms regulated by CAFs
(EMTAB-6149 cohort). (d) The downregulated KEGG terms regulated by CAFs (EMTAB-6149 cohort). (e) Cell interaction in EMTAB-
6149 cohort. (f) The upregulated KEGG terms regulated by CAFs (LUAD-GSE146100 cohort). (g) The downregulated KEGG terms
regulated by CAFs (LUAD-GSE146100 cohort). (h) The upregulated hallmark terms regulated by CAFs (LUAD-GSE146100 cohort). (i)
The downregulated KEGG terms regulated by CAFs (LUAD-GSE146100 cohort). (j) Cell interaction in EMTAB-6149 cohort.
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indicated that in the LUAD-GSE146100 cohort, fibroblasts
mainly interacted with epithelial and endothelial cells
(Figure 3(j)).

3.4. Prognosis Analysis of RNF150, FAT3, ANKRD33, AFF3,
CDH2, and BEX1. Then, we tried to explore the clinical
value of RNF150, FAT3, ANKRD33, AFF3, CDH2, and
BEX1. KM survival curves indicated that only CDH2 signif-
icantly affects patient survival (Figure 4(a), overall survival,
HR = 1:35; Figure 4(b), disease-free survival, HR = 1:51;
Figure 4(c), progression-free survival, HR = 1:35). However,
no significant difference was found in patients with better or
worse clinical features (Figures 4(d)–4(f)).

3.5. CDH2 Facilitates the Malignant Biological Behaviors of
NSCLC Cells. We next investigated the influence of CDH2
on NSCLC biological behaviors. Data of TCGA indicated
that CDH2 was overexpressed in NSCLC tissue
(Figure 5(a)). Also, in the cell level, the NSCLC cell lines
had a higher CDH2 expression compared to the normal cell
line (Figure 5(b)). The result of qRT-PCR demonstrated that
the knockdown efficiency of sh#2 might have the best per-
formance, therefore it was selected for further analysis
(Figure 5(c)). The CCK8 assay indicated that the suppres-
sion of CDH2 in NSCLC cells could inhibit the proliferation
ability (Figures 5(d) and 5(e)). The same result was also
observed through colony formation and EdU assay
(Figures 5(f) and 5(g)). A transwell assay was applied to
evaluate the invasion and migration abilities of NSCLC cells.
Results indicated that the inhibition of CDH2 could remark-
ably reduce the invasion and migration cells per filled com-
pared to the control group (Figure 6(a)). The wound-healing
assay showed that the inhibition of CDH2 could significantly
hamper the cell mobility of NSCLC cells (Figure 6(b)).

3.6. CDH2 Lead to Gefitinib Resistance through PI3K/AKT/
mTOR Signaling. We next added gefitinib to the CDH2-
inhibited and control cells. Cell viability detection showed
that the inhibition of CDH2 could significantly decrease
the IC50 of gefitinib in both A549 and H1299 cells
(Figure 7(a): A549, sh#ctl, IC50 = 18:46, sh#2, IC50 = 13:70;
Figure 7(b): H1299, sh#ctl, IC50 = 18:46, sh#2, IC50 = 13:70).
GSEA showed that CDH2 could significantly affect the path-
way activity of PI3K/AKT/mTOR signaling (Figure 7(c)).
The previous study indicated that the PI3K/AKT/mTOR
pathway could affect the gefitinib resistance. Therefore, we
tried to evaluate whether CDH2 could affect the pathway
activity of PI3K/AKT/mTOR signaling.

4. Discussion

Although the reform of medical technology has brought
high-quality medical services, lung cancer is still facing the
threat of a high incidence rate and mortality [21]. In clinical
practice, early detection often enables patients to undergo
radical surgery at the early stage of the disease and obtain
long-term treatment benefits [22]. However, since the early
symptoms are not obvious, many lung cancer patients have
already had disease progression at the time of initial diagno-
sis and lost the best opportunity for surgery [23]. Gefitinib
can improve the prognosis of advanced NSCLC patients,
but it is still limited by acquired drug resistance. For several
years now, a crucial role has been played in bioinformatics
analysis in cancer research [24–26]. The objective of this
study was to determine the underlying mechanism behind
lung cancer resistance to gefitinib through bioinformatics
analysis and corresponding experiment validation.

Here, we obtained the expression profile data of wild and
gefitinib-resistant cells. Combined with the data from the
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TCGA and GDSC databases, we identified six genes,
RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1, that
were involved in gefitinib resistance in both cell and tissue
levels. We found that most of these genes were expressed
in the fibroblast of the NSCLC microenvironment. Hence,
we also comprehensively investigated the role of fibroblast
in the NSCLC microenvironment, including its biological
effect and cell interaction. Ultimately, CDH2 was selected
for further analysis for its prognosis correlation. In vitro
experiments presented the cancer-promoting role of CDH2
in NSCLC. Moreover, cell viability detection showed that
the inhibition of CDH2 could significantly decrease the
IC50 of gefitinib.

We noticed that the DEGs were primarily enriched in
the MAPK signaling pathway, PI3K/AKT signaling pathway,
leukocyte transendothelial migration, cell adhesion mole-

cules, and tight junction. Some previous studies have begun
to explore the relationship between the above pathways and
gefitinib. AlAsmari et al. revealed that MAPK/NF-κB sig-
naling could significantly lighten the cardiotoxicity induced
by gefitinib [27]. Lu et al. found that in NSCLC, the trans-
3,5,4′-trimethoxystilbene could inhibit the MAPK/Akt/Bcl-
2 axis by upregulating miR-345 and miR-498, further
reducing gefitinib resistance [28]. Zheng et al. found that
polyphyllin II could regulate the gefitinib resistance by
affecting the PI3K/Akt/mTOR signaling [29]. These results
indicated that the activation of the above pathways may
promote the development of gefitinib resistance under the
influence of specific factors.

Our results also found that RNF150, FAT3, ANKRD33,
AFF3, CDH2, and BEX1 were involved in gefitinib resistance
in both cell and tissue levels. The role of these genes in
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cancer has also been reported. Guo et al. found that FAT3
was correlated with the prognosis of esophageal cancer
patients [30]. In breast cancer, Shi et al. found that FAT3
was associated with resistance to tamoxifen [31]. Wang
et al. revealed that the BEX1 methylation regulated by
DNMT1 could contribute to liver cancer stemness and
tumorigenicity [32]. Lee et al. found that BEX1 could pro-
mote glioblastoma progression by activating the YAP/TAZ
signaling [33]. In NSCLC, cancer-associated fibroblasts
might exert an important role. Yi et al. noticed that the CAFs
could lead to EMT and the resistance of EGFR-TKI by medi-
ating the HGF/IGF-1/ANXA2 signaling axis [34].

The arrival of the big data era has produced massive
data. On this basis, the secondary analysis of open data or
research can facilitate researchers and draw valuable conclu-
sions. Based on high-quality data and analysis process, our
research has improved researchers’ understanding of gefi-
tinib resistance. Nevertheless, some limitations should be
noted. Firstly, most of the populations included in the study
are from Western countries. There are biological differences
between populations of different races, which may reduce
the reliability of our conclusions. Secondly, some patients
have incomplete clinical baseline data, which may lead to
sample bias to some extent.
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