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Atherosclerosis is a leading cause of death in the world. A significant body of evidence suggests that inflammation and various
players are implicated and have pivotal roles in the formation of atherosclerotic plaques. Toll-like receptor 4 (TLR4) is linked with
different stages of atherosclerosis. This receptor is highly expressed in the endothelial cells (ECs) and atherosclerotic plaques. TLR4
activation can lead to the production of inflammatory cytokines and related responses. Lectin-like oxidized low-density lipopro-
tein-1 (LOX-1), an integral membrane glycoprotein with widespread expression on the ECs, is involved in atherosclerosis and has
some common pathways with TLR4 in atherosclerotic lesions. In addition, proprotein convertase subtilisin/kexin type9 (PCSK9),
which is a regulatory enzyme with different roles in cholesterol uptake, is implicated in atherosclerosis. At present, TLR4, PCSK9,
and LOX-1 are increasingly acknowledged as key players in the pathogenesis of atherosclerotic cardiovascular diseases. Herein, we
presented the current evidence on the structure, functions, and roles of TLR4, PCSK9, and LOX-1 in atherosclerosis.

1. Introduction

1.1. Atherosclerosis. Atherosclerosis is one of the most com-
mon causes of cardiovascular diseases (CVDs) worldwide and
a common cause of death in the United States of America,
Europe, and Japan [1, 2]. Smoking, hypertension, dyslipide-
mia, and diabetes mellitus are the major risk factors for ath-
erosclerosis [3]. Endothelial dysfunction is a hallmark in the
pathogenesis of atherosclerosis. One of the early stages of
atherosclerosis is vascular wall damage, accompanied by changes
in arterial permeability [4]. Disruption in arterial permeability
results in loss of vascular polarity and makes the endothelial
cells (ECs) spindle-shaped; this process is the reason why
endothelial dysfunction and plaque formation usually occur
in areas with stressful hemodynamic states such as arteries

with high curvature or arterial branches with turbulent blood
flow [5, 6] Furthermore, adhesion molecules like vascular cell
adhesion molecule-1 (VCAM-1), intercellular adhesion mol-
ecule-1 (ICAM-1), E-selectin, and P-selectin facilitate the dia-
pedesis of leukocytes and the inflammatory response [7–10].

1.2. Lipid Accumulation.During the early steps in atheroscle-
rotic plaque formation, the LDL particles undergo oxidation,
which is influenced by reactive oxygen species (ROS). The
LDL particles will subsequently bind to scavenger receptors
(SRs) on macrophages to produce foam cells with abundant
amounts of lipid reserves [5, 8, 11–13]. The LDL uptake into
the macrophages can be done by micropinocytosis or by
phagocytosed crystals [11]. The formation of fatty streaks
from the accumulation of LDL-oxidized particles in foam
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cells is a characteristic of the early stages of atherosclerosis
[8, 9] (Figure 1).

As monocytes cROS the endothelium, they become tissue
macrophages, resulting in the differentiation of a series of
SRs such as SK-A, SK-B1, CD36, CD68, lectin-like oxidized
low-density lipoprotein-1 (LOX-1), and SR-PSOX, which
enable them to pick up the oxidized LDL and phosphatidyl-
serine particles [7, 8, 10, 11]. Cholesterol particles adsorbed
by activating the NLRP3 (NOD-, leucine-rich repeat (LRR)-,
and pyrin domain-containing protein 3) nuclear pathway
cause the production of pro-inflammatory cytokines like
IL-1β and C-reactive protein (CRP), accompanied by a gradual
increase in the levels of prostaglandins, matrix metalloprotei-
nases (MMP), nitric oxide species (NOS), and ROS [11, 14, 15].
After digestion of LDL oxidized particles by antigen-presenting
cell (APC), the Apo-B100 component is detected as an auto-
antigen by the MHC-II molecule via T-cell receptor (TCR) of
CD4+ T lymphocytes [6, 11, 14]. Furthermore, neutrophils,
under innate immunity, can exacerbate the atherosclerosis
process by producing and secreting granular proteins such
as azurocidin, cathepsin G, and α-defensin; these cells can

also facilitate the conversion of macrophages to foam cells
[7]. In advanced atherosclerotic lesions, mast cells secret his-
tamine, serotonin, leukotriene, thromboxane, serine protease,
and other eicosanoids, which may lead to plaque rupture
[7, 14], especially in the presence of metalloproteinases [16].
Growth factors are secreted from the endothelium, smooth
muscle cells (SMCs), and macrophages in response to OxLDL
and LOX-1 interaction, which may lead to smooth muscle
proliferation, extracellular matrix production, and the forma-
tion of new arteries [17]. It is important to note that growth
factors are released under specific circumstances, particularly
when levels of oxidative stress are low [18]. These new and
unstable arteries increase the risk of intraplaque bleeding and
subsequent atherosclerotic plaque rupture [5, 6, 8, 10, 19].

1.3. Complications of Atherosclerotic Plaques. In general, pla-
ques may go into a nonobstructive, asymptomatic, and pro-
longed state over several months to years, whichmay progress
toward plaque rupture or chronic vascular occlusion [14, 20].
In the extracellular matrix of the plaque, there is a balance
between reconstruction and degradation depending on factors
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FIGURE 1: Different players in atherosclerosis. Increased LDL enters the cell via micropinocytosis and is converted into oxLDL. Additionally,
after digesting oxLDL by APC, TCRs detect APO-B100 as an autoantigen by MHC2, leading to the release of IL-17 and IFN-γ. Absorbed
cholesterol crystals can activate NOD, LRR, and pyrin domain-containing protein 3 (NLRP3) inflammasome, causing the production of
IL-1β. Furthermore, monocytes pass through the endothelium and differentiate into scavenger receptors, including SK-A, SK-B1, CD36,
CD68, LOX-1, and SR-PSOX. Macrophages will be enabled to absorb more oxLDL. Meanwhile, granular proteins such as azurocidin,
cathepsin G, and α-defensin produced by neutrophils, facilitate the conversion of macrophages to foam cells. Additionally, the binding of
oxLDL to LOX-1 leads to the release of growth factors that can increase the proliferation of smooth muscle cells. In summary, the aggregation
of foam cells can create fatty streaks, which is the initial step in the formation of atherosclerotic plaque. LDL, low-density lipoprotein; oxLDL,
oxidized low-density lipoprotein; APC, antigen-presenting cell; TCRs, T-cell receptors; APO-B100, apolipoprotein B-100; MHC2, major
histocompatibility complex class II; IL-17, interleukin-17; IFN-γ, interferon-gamma; NLRP3, NOD-, LRR-, and pyrin domain-containing
protein 3; IL-1β, interleukin-1β; SK-A, scavenger receptor class A; SK-B1, scavenger receptor class B type 1; CD36, cluster of differentiation
36; CD68, cluster of differentiation 68; LOX-1, lectin-like oxidized low-density lipoprotein receptor-1; SR-PSOX, scavenger receptor that
binds phosphatidylserine and oxidized lipoproteins.
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such as necrotic nucleus size, temperature, or pH of the envi-
ronment tissue [5]. In general, it is estimated that up to 65% of
plaques ultimately lead to cap rupture, 30%–35% lead to super-
ficial erosion, while only 2%–7% of them remain stable and
lead to calcification [10].

Some plaques only lead to erosion or localized damage to
the endothelium without the plaque rupturing. Areas with a
high risk of erosion have high levels of smooth muscle tissues
and proteoglycans and low levels of macrophages. Since sur-
face vulnerability increases endothelial destruction, there
may be an increase in aggregation of the platelets in the
eroded areas, which may eventually lead to thrombosis for-
mation [5, 14].

2. Toll-Like Receptor 4 (TLR4)

2.1. Structure, Function, and Signaling. TLRs were first dis-
covered in the dorsal–ventral development of drosophila in
1997 [21]. TLR4 is a type 1 transmembrane protein that con-
tains an LRR extracellular domain and a carboxy-terminal
intracellular domain similar to the intracellular domain of
the interleukin 1 receptor [22]. As shown in Table 1, TLR4,
similar to the other TLRs in its family, can recognize different
types of exogenous pathogen-associated molecular patterns,
such as lipopolysaccharide (LPS). Likewise, several endoge-
nous ligands for TLR4 have also been discovered, including
domain A fibronectin (Fibronectin-EDA) and heat shock
proteins.

Palsson-McDermmot and O’Neill [23] explained the
downstream signaling cascade of TLRs entirely in 2008.
TLR4 expressed on the surface of hematopoietic and non-
hematopoietic cells such as ECs is in noncovalent association
with myeloid differentiation 2 (MD2). This association is
required for ligand-induced activation and forms the TLR4/
MD2 receptor complex. Upon LPS recognition that leads to
several molecular interactions, including LPS-binding protein
(LBP), CD14, MD-2, and TLR4 and oligomerization of TLR4,
downstream adaptors such as myeloid differentiation factor
88 (MyD88) are recruited through interactions with the
Toll-interleukin-1 receptor (TIR) domains [24]. However,
TLR4 mainly acts through MyD88-dependent and MyD88-
independent pathways. In response to MyD88 binding,
IL-1R-associated kinase 1 (IRAK1) is activated due to phosphor-
ylation of IRAK1 by IL-1R-associated kinase 4 (IRAK4). This
allows tumor necrosis factor-associated receptor 6 (TRAF6) to
bind the phosphorylated IRAK4-IRAK1 complex. The second
complex, TAK1-binding protein 1 (TAB1), TAK1-binding
protein 2/3 (TAB2/3), is activated when IRAK1–TRAF6 dissoci-
ates from the TLR4 (Figure 2). When TAK1 is activated, it

stimulates the inhibitor of nuclear factor-κB (IkB) kinase
complex (IKK complex), which then phosphorylates IkB pro-
teins, which causes its degradation. After that, due to the
translocation of NF-κB to the nucleus, the production of
several pro-inflammatory cytokines is promoted. In the inde-
pendent myD88 pathway, upon activating TLR4, TIR domain-
containing adapter molecules (TRIF or TICAM-1) bind to the
intracellular TIR domain. TRIF activates IFN-related factor
3 (IRF3), which then activates the transcription of target genes
like interferons [22, 23].

2.2. TLR4 and Atherosclerosis. The critical role of TLRs in
atherosclerosis is well-documented. In addition to its role in
pathogen recognition, TLR4 is expressed by a variety of cells
in atherosclerotic lesions. Although TLR4 is expressed at low
levels by ECs in normal arteries, Edfeldt et al. [25] reported
increased expression of TLR4 on the ECs of human athero-
sclerotic lesions. Vascular smooth muscle cells (VSMCs) that
reside in the media of healthy adult arteries and regulate
vascular tone seem to upregulate TLR4 expression in human
atherosclerotic vessels [26]. It was found that TLR4 is expressed
in adventitial fibroblasts at the site of the formation of intimal
lesions [27]. Dendritic cells also mediate the immunity-related
processes of atherogenesis development through cell–cell con-
tact with innate and adaptive immune cells [28]. Platelets are
involved in the atherosclerosis process. Activated platelets can
release platelet microparticles, which are highly procoagulant
[29, 30]. Additionally, TLR4 is expressed on platelets, and acti-
vation of platelets by LPS triggers coagulation via TLR4 [31, 32].
High mobility group box 1 protein (HMGB1) is involved in the
activation of platelets and plays a role in coagulant dysfunction
during hemorrhagic shock and resuscitation [33]. Ahrens et al.
[34] showed that in human coronary artery thrombi, the
level of HMGB1 expression was increased. A growing body
of evidence has shown that the formation of foamy macro-
phage cells through the interaction between activated mono-
cytes and oxidized LDL (oxLDL) plays the main role in the
development and progression of atherosclerosis. These lipid-
laden foamy macrophages form the basis of the primary
lesion. However, TLR4 also plays a significant part in this
process by affecting the oxLDL-induced differentiation of
macrophages to foam cells alongside the induction of inflam-
matory cytokine expression in VSMCs [35].

In the early stage of atherogenesis, activation of ECs and
their overexpression of adhesive molecules leads to the roll-
ing of circulating monocytes along the vascular surface and
subsequent adherence at the site of activation. However, the
LPS-induced activation of TLR4 on macrophages initiates a
signal cascade that leads to the production of ROS and cyto-
kines [25]. Methe et al. [36] found that acute myocardial
infarction (MI) and unstable angina are associated with
enhanced expression and signaling events downstream of
TLR4 in circulating monocytes. Satoh et al. [37] reported a
strong association between activation of TLR4 and heart
failure following MI. The role of TLR4 in atherosclerosis
is also supported by several loss-of-function animal models.
According to Coenen et al.’s [38] study, deficiency of TLR4
expression in mice macrophages could reduce atherosclerotic

TABLE 1: Potential ligands for TLR4.

Endogenous ligands Exogenous ligands

Fibrinogen/fibrin Fusion protein (RSV)
Heat shock proteins LPS
Minimally modified LDL Lipoteichoic acids
OxLDL Taxol
Heparan sulfate Mannuronic acid polymers
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lesion size under fed low-fat diets. Zeng et al. [39] found that
treatment of high-fat fed ApoE−/− mice with intermittent
hypoxia triggered the activation of pro-inflammatory TLR4/
NF-κB signaling, leading to accelerated growth and vulnera-
bility of atherosclerotic plaque.Malgor et al. [40] also reported
an overexpression of Wnt5a in coincident with TLR4 and
TLR2 in an advanced stage of atherosclerosis.

Several studies have demonstrated the role of TLR4 in
plaque rupture. Activated macrophage cells within the pla-
que degrade extracellular matrix by secretion of MMP and
proteolytic enzymes, which lead to plaque rupture. Recogni-
tion of LPS by TLR4 induces the expression of MMP9 in
human macrophages, which degrades the collagen of fibrous
caps [41]. Induction of apoptotic molecules such as Fas–Fas
ligand is another important event in plaque rupture [42].
Destabilization of plaque may also occur through the induc-
tion and activation of proteolytic enzymes via TLR4 in
macrophages. Proteolytic enzymes are capable of degrading
the components of the extracellular matrix and predispose
plaque to rupture [43]. Together, these results suggested a
pivotal role for TLR4 in atherosclerosis progression. Our pre-
vious investigations have provided evidence for TLR4 role in

human atherosclerosis and associated complications [44–46].
We showed that there is an increase in monocyte expression
of TLR4 in patients with chronic coronary syndrome (CCS)
who underwent percutaneous coronary intervention (PCI)
[45]. In another study, we found that thrombolytic (fibrino-
lytic) therapies caused a more increase in monocyte expres-
sion of TLR4 expression and function compared to PCI in
patients with acute coronary syndromes (ACS) [44]. More-
over, it was shown that 100mg hydrocortisone prior to PCI
was effective to cause a reduction in TLR4 expression and
function in patients with CCS [47].

3. LOX-1

3.1. Structure, Function, and Signaling. LOX-1 (also known as
SR-E1) is a type II integral membrane glycoprotein that is
encoded by the lectin-like oxidized low-density lipoprotein
receptor 1 (OLR1) gene located on chromosome 12. This recep-
tor belongs to the C-type lectin family and is the major receptor
of oxLDL. LOX-1 consists of four domains, including a short
N-terminal cytoplasmic domain, a transmembrane domain,
an extracellular stalk region (neck domain), and a C-type
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extracellular lectin-like domain (which is responsible for
binding to ligands, especially oxLDL) at the C-terminus [48].
Several studies indicate the expression of LOX-1 in different
types of cells like ECs, SMCs, macrophages/monocytes, plate-
lets, fibroblasts, cardiomyocytes, airway epithelial cells, renal,
and neuronal tissues [49–55]. The ligands that have been
introduced for this receptor include modified lipoproteins
(oxLDL, acetylated LDL, and hypochlorite-modified high-
density lipoprotein), bacteria, apoptotic cells, advanced glyca-
tion end-products (AGEs), activated platelets, polyinosinic
acid, carrageenan, phosphatidylserine, phosphatidylinositol,
and CRP [55–60]. Importantly, LOX-1 is also expressed
in atheroma-derived of human and animal atherosclerotic
lesions. The expression of LOX-1 is induced by several pro-
inflammatory cytokines (TNF-α, IL-1, IFN-γ), CRP, LPS,
modified lipoproteins, hypertension-related stimuli (angio-
tensin II, endothelin-1, and fluid shear stress), hyperglycemic
stimuli (high glucose and AGEs), IL-6, and some other
stimuli-like homocysteine and free radicals [48, 61–63].
Pathological conditions such as diabetes mellitus, hyperten-
sion, hyperlipidemia, myocardial ischemia, and atherosclero-
sis are associated with an induction in LOX-1 expression.
LOX-1 is involved in OxLDLs/LDLs transcytosis, leading to
the macrophages transformation to foam cells and prolifera-
tion of SMCs [64].

3.2. Influence of LOX-1 on ECs. ECs activation by the LOX-1/
oxLDL axis, which tends to endothelial dysfunction, is a hall-
mark of atherosclerosis which leads to the reduced endothelium-
dependent relaxation, increased monocyte adhesion to ECs,
facilitates foam cell formation, and apoptosis of ECs [65].

Endothelial dysfunction is partially a consequence of
oxLDL/LOX-1 interaction. Several signaling pathways play
a part in this process. One pathway involves the production
of ROS caused by increased activity of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase. ROS, especially
superoxide, impairs endothelial NO synthase (eNOS), which
is responsible for producing nitric oxide using L-arginine
and oxygen [66]. Meanwhile, LOX-1 directly increases
L-arginase-1, which metabolizes arginine into ornithine
and urea. As a result, there is a further decrease in NO levels
and increased levels of inactivated NO. Finally, depletion of
NO can lead to EC impairment [67]. Another pathway is
related to EC apoptosis, which can enhance SMC prolifera-
tion and coagulation. OxLDL and LOX-1 can work together
to activate the apoptosis pathway and deactivate the anti-
apoptosis pathway; for example, they can increase caspase-
3 and caspase-9 and decrease Bcl2 (an antiapoptotic protein)
[68]. Lastly, oxLDL has a destructive effect on endothelial
progenitor cells (EPCs), which disturbs the migration and
proliferation of EPCs [69], and the resulting EPC dysfunc-
tion may play an important role in atherogenesis.

Leukocyte adhesion to the ECs is a crucial step in the
development of atherosclerosis. Li and Mehta [70] demon-
strated that incubation of human coronary artery ECs
(HCAECs) with oxLDL results in the upregulation of mono-
cyte chemoattractant protein-1 (MCP-1) expression, beside,
using a human LOX-1 antisense RNA could inhibit this

response. It suggests that LOX-1 is a key factor in ox-
LDL–mediated monocyte adhesion to HCAECs [70]. More-
over, the binding of oxLDL to LOX-1 activates the NF-κB
signaling pathway and promotes monocyte adhesion to
ECs [61].

3.3. LOX-1 and Atherosclerosis. LOX-1 is a cell surface SR
that participates in the binding, endocytosis, and proteolytic
degradation of oxLDL and also mediates the induction of
endothelial dysfunction, vascular inflammation, foam cell
formation, and collagen deposition, resulting in atheroscle-
rosis [71]. Previous studies have shown that LOX-1 is over-
expressed in atherosclerotic lesions. Inoue et al. [72] showed
the overexpression of LOX-1 in atherosclerosis in a mice
model. Expression of LOX-1 is mainly regulated through a
feed-forward system stimulated by oxLDL, a major compo-
nent of atherosclerosis. Several signaling pathways are induced
by LOX-1, which leads to the activation of protein kinase,
transcription factors, and regulation of apoptotic and antia-
poptotic genes; the final result is the development of atheroma.
In pro-inflammatory states, there is an increase in the expres-
sion of LOX-1 up to 40% [73]. Internalization of oxLDL into
ECs by LOX-1 increases in the macrophages. In this process,
calpains, which is a calcium-dependent protease, have a crucial
role in macrophage migration [74]. Wang et al. [75] showed
that macrophage migration is associated with upregulation of
LOX-1 and calpain-2 and downregulation of calpain-1, the
same as oxLDL. As a result, macrophages remain in the intima
layer of arteries and then transform into foam cells, promoting
the development of plaques. Eto et al. [76] demonstrated that
after vascular injury, the expression of LOX-1 increases [76].
Overproduction of oxLDL is responsible for the upregulation
of LOX-1 on SMCs, which triggers pro-apoptotic pathways in
vascular SMCs [77]. Exposure to high levels of oxLDL can
induce upregulation of pro-apoptotic protein Bcl-2-associated
X protein (Bax) and also downregulation of antiapoptotic
B-cell lymphoma 2 (Bcl- 2). This process may have an impact
on vulnerability and rupture of the atherosclerotic lesions [78].

OxLDL/LOX-1 activation and enhancement of NADPH
oxidase may lead to the increased production and activation
of mitogen-activated protein kinase (MAPK) and transcrip-
tion factors (such as NF-κB), which can elevate the produc-
tion of ROS and reduce the production of NO, ultimately
leading to apoptosis and autophagy (autophagy refers to the
destruction of cytoplasmic components by lysosomes, which
differs from endocytic degradation by extracellular proteins
and plasma membranes and is performed by the autophago-
some [79]). Ding et al. [80] showed the dose-dependent
VSMC’s behavior in response to oxLDL level; a modest con-
centration (20–40 μg/ml) caused autophagy and apoptosis,
and a higher concentration (60–100 μg/ml) caused apoptosis
and declined autophagy. In vivo, it has been demonstrated
that deletion of LOX-1 in low-density lipoprotein receptor
(LDLR)/LOX-1 double-knockout mice alleviated autophagy
[81]. Noncoding RNA, specifically microRNA, negatively
modulates gene expression via binding to their mRNA
[82]. Hsa-let-7g is a microRNA that can diminish the expres-
sion of LOX-1 and ROS formation in VSMCs [80]. It can also
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cause an overexpression of autophagymarkers (beclin-1, LC3,
and Atg5). Hence, there is a similar effect between hsa-let-7g
and LOX-1 antibody.

Colocalization of LOX-1 and oxLDL within SMCs of
human restenotic plaques suggests that LOX-1 has an effect
on oxLDL-dependent VSMC proliferation and restenosis [76].
VSMC proliferation is involved in atherogenesis through vas-
cular remodeling and subsequent lesion formation [83–85].
NF-κB- and JNK-signaling pathways are involved in VSMC
proliferation, as well [74]. NO is an antioxidant that inhibits
VSMC proliferation by reducing the ubiquitin-conjugating
enzyme UbcH10 level, which is responsible for the ubiquiti-
nation of cell cycle protein. This reduction leads to G0/G1 cell
cycle arrest, which in turn inhibits VSMC proliferation [86].
As a result of increased ROS production and decreased NO
production Ang2 (a LOX-1 and VSMC proliferation inducer)
can be upregulated [87, 88].

3.4. Influence of LOX-1 on Platelets. LOX-1 is expressed on
the surface of human platelets in an activation-dependent
manner. The binding of oxLDL to platelets induces throm-
bus formation by contributing to the ADP-induced activa-
tion of fibrinogen receptors such as alpha (IIb) beta (3) and
alpha (2) beta (1) integrins [65].

Different pro-inflammatory cytokines like platelet factor
4 (PF4 or CXCL4) and growth factors like platelet-derived
growth factor (PDGF) are secreted from the activated plate-
lets [89, 90]. PF4 released from activated platelets facilitates
the uptake of oxLDL into the macrophages, which may lead
to foam cell formation [91]. PDGF released from activated
platelets causes the proliferation and migration of VSMCs
[90]. The binding of activated platelets to endothelial surface
LOX-1 causes the secretion of endothelin-1, which induces
vascular constriction and endothelial dysfunction [92]. Also,
the formation of ROS and, subsequently, the inactivation of
NO are the next events. As a result, it seems that LOX-1
induces atherosclerosis through binding to oxLDL and acti-
vated platelets. It has been demonstrated that aspirin and
statins reduce the expression of LOX-1 in platelets [65]. Addi-
tionally, LOX-1 and ox-LDL interaction may cause destabili-
zation of plaque through the release of the extracellular MMP
inducer CD147 [93].

4. Proprotein Convertase Subtilisin/Kexin
Type 9 (PCSK9)

4.1. Structure, Function, and Signaling. PCSK9, a key protein
in lipid metabolism, is the ninth member of the proprotein
convertase family and is encoded by the PCSK9 gene in
humans on chromosome 1 [94, 95]. PCSK9 is abundantly
expressed in the cells of arterial walls, such as endothelium,
SMCs, andmacrophages, which can regulate vascular homeo-
stasis and atherosclerosis [96–98]. PCSK9 is primarily bio-
synthesized in the hepatocytes, where it binds LDLR; in
addition, it is also expressed in many other tissues, including
the kidney, small intestine, lung, pancreas, and brain [99]. In
hepatocytes, PCSK9 transports the immature LDLR made in
the endoplasmic reticulum to the Golgi membrane, which is
glucosidated in the Golgi and then converts to its mature

form. Mature LDLR that reaches the cellular level can now
be linked to circulating LDL [100–102]. Emma et al. [103]
showed that there is a negative correlation between PCSK9
level and liver damage, which means PCSK9 may play a pro-
tective role against liver damage. They also showed that
PCSK9 levels decreased in hepatic steatosis [103]. In addition,
circulating PCSK9 can interfere with the metabolism of
triglycerides in heart cells, skeletal muscles, and adipose
tissues by degrading very low-density lipoprotein receptors
(VLDLR) and apolipoprotein E 2 receptors (ApoER2 or
LRP8) [101, 104]. In the atherosclerotic plaque, degradation
of LRP-1 (lipoprotein-related protein-1), in which PCSK 9
increases the degradation of this protein, leads to increased
expression of tissue factor by ECs and increased pro-
inflammatory response by macrophages [105, 106]. The use
of NADPH oxidase inhibitors or NF-κB knockout in EC cells
has been shown to reduce the production of ROS and LOX-1
and reduce PCSK9 expression [80, 97, 107]. Molecular
mechanisms dependent on the regulatory effects of PCSK9
involved in the proliferation and migration of SMCs include
the effects of this enzyme on LDLR, LRP-1, VLDLR, and
CD36 [108–110]. PCSK9 can proliferate SMCs by mammalian
targets of rapamycin [111]. Moreover, PCSK9 is involved in
the synthesis of cytokines as well as pro-inflammatory triggers
(LPS, ox-LDL, IL-6, IL-1β, TNFα, and INF-γ). In addition,
PCSK9 in macrophages can modulate oxLDL uptake and
increase foam cells by regulating LOX-1, CD36, and SRA
[98, 112–114]. In addition to its role in the degradation of
LDL receptors, PCSK9 is associated with an increased risk of
coronary artery disease [115]. Based on observational
epidemiological studies, plasma levels of CRP are associated
with an increased risk of subsequent coronary artery disease
[116]. According to a large prospective multicenter study of
patients with ACS, those with higher levels of circulating
PCSK9 suffer a greater degree of acute-phase inflammation
as measured by hs-CRP [117]. Dwivedi et al. [118] observed a
relationship between PCSK9 and inflammation. In a mouse
sepsis model, PCSK9 overexpression exacerbated lung and
liver inflammation, whereas PCSK9 deficiency reduced levels
of IL-6 in the blood and reduced organ inflammation.
Additionally, some human studies have shown that patients
with a PCSK9 LOF allele have significantly lower plasma
levels of pro-inflammatory cytokines like TNF-α, IL-6, IL-8,
and MCP-1 compared with those with a GOF allele [119].

Many polycystic ovary syndrome (PCOS) patients are
obese and suffer from atherogenic dyslipidemia, leading to
a higher risk of CVD. Recent investigations have elucidated
that PCSK9 directly affected ovarian lipid metabolism in
PCOS mice. Wang et al. [120] showed that PCSK9 inhibition
by alirocumab partly improved lipid profiles and the mor-
phology and function of the ovary in PCOS mice, including
dysfunctions associated with endocrine function, follicular
growth, and ovulation [112].

4.2. PCSK9 and Atherosclerosis. Although the exact role of
PCSK9 in the formation of atherosclerotic plaque is unclear,
several studies have provided strong evidence for PCSK9
blockade in ischemic heart disease and the development of
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atherosclerotic plaque through an inflammation-mediated
process. The expression of PCSK9 in ECs and SMCs is trig-
gered in pro-inflammatory conditions comprised of ox-LDL,
TNF-α, IL-1β, and LPS [80]. Boyd et al. [121] have found
that elevated plasma levels of PCSK9 are associated with
systemic inflammatory response syndrome and sepsis. Denis
et al. [122] also reported a positive correlation between PCSK9
and atherosclerosis. According to Cheng et al. [123], PCSK9
levels are linearly correlated with the fraction and amount of
necrotic core tissue in coronary atherosclerosis, independently
of serum LDL cholesterol levels. Notably, PCSK9 inhibitors,
either as fully humanmonoclonal antibodies (evolocumab and
alirocumab) or as humanized monoclonal antibodies (bocosi-
zumab), effectively lower LDL-C levels [124]. Treatment with
these medicines could significantly reduce major adverse car-
diovascular events. In the FOURIER (Further Cardiovascular
Outcomes Research with PCSK9 Inhibition in Subjects with
Elevated Risk) trial, evolocumab significantly reduced LDL-C
levels by 15% for patients with atherosclerotic CVD and LDL-
C> 70mg/dL on statin therapy (HR 0.85; 95% CI, 0.79–0.92;
P<0:001) the risk of the primary endpoint (a composite of
CV death, MI, stroke, hospitalization for unstable angina,
or coronary revascularization) and by 20% (HR 0.80; 95%
CI, 0.73–0.88; P<0:001) the risk of the secondary endpoint
(a composite of CVdeath,MI, or stroke) after amedian follow-
up of 2.2 years [125]. In addition, based on the results of the
ODYSSEYOUTCOMES trial, alirocumab therapy reduced the
incidence of ACS (the incidence of the primary endpoint
(a composite of death from CHD, nonfatal MI, fatal or
nonfatal stroke, unstable angina requiring hospitalization)) by
15% in patients on high-intensity statin therapy (HR 0.85; 95%
CI, 0.78–0.93; P<0:001). The greatest absolute reduction was
observed in the subgroup of patients with the highest baseline
LDL-C levels (100mg/dL) [126]. A study by Bonaca MP
indicated that the presence of PCSK9 antibodies was more
prevalent in patients with higher CV risk. In fact, patients
with peripheral artery disease (PAD) had a greater benefit
from evolocumab therapy than patients without PAD [127].

Recent studies have proved that decreasing PCSK9 expres-
sion via endogenous RNA interference is a promising thera-
peutic approach to acutely reducing LDLc and have paved the
way for the development of novel PCSK9 lowering agents for
the management of severe hypercholesterolemia.

As the first-in-class cholesterol-lowering small interfer-
ing RNA (siRNA), Inclisiran (Leqvio®; Novartis) targets tri-
antennary N-acetylgalactosamine carbohydrates (GalNAc).
This agent has been approved in the EU in December 2020
as a possible treatment for adults with primary hypercholes-
terolemia (heterozygous familial and nonfamilial) and mixed
dyslipidemia [128].

4.3. Possible Cross-Talks between LOX-1, TLR4, and PCSK9.
As previously mentioned, NO overproduction can lead to
endothelial dysfunction, which is the initial step toward ath-
erosclerosis [129]. OxLDL interferes inmodulating the eNOS/
inducible nitric oxide synthase (iNOS) machinery. As the
oxLDL level rises, so does HMGB1. HMGB1 is a nonhistone

DNA-binding protein expressed in most cells, mainly in the
nucleus and as a structural component of chromatin. Among
the important roles of this protein can be mentioned the
participation in the process of DNA replication, recombina-
tion, transcription, and repair [130, 131]. HMGB1 can act as a
cytokine by being expressed on the plasma membrane or
secreted in the extracellular environment and interacts with
TLR 2, TLR4, and TLR9 [132]. The interaction of HMGB1
with TLR4 is involved in inducing the release of cytokines
such as TNFα, IL-1, IL-6, and IL-8 by activated macrophages
through the NF-κB pathway [133]. In normal aorta, HMGB1
is expressed in ECs, SMCs, and in CD68 positive macro-
phages, but in abnormal conditions and in atherosclerotic
lesions, HMGB1 expression is increased. Also, strong expres-
sion of HMGB1 has been observed in the areas near the
necrotic core of atherosclerotic lesions [134]. HMGB1 can
activate vascular ECs and thereby lead to the expression and
secretion of ICAM-1, VCAM-1, colony-stimulating factor
granulocyte, RAGE, and TNFα [135, 136]. In response to
cellular stress, HMGB1 is released into the extracellular space,
studies showed that suppression of HMGB1 leads to reduced
LDL transcytosis in human coronary artery EC and vice versa.
Studies have shown that this protein plays a role in autophagy
and the inhibition of inflammatory nucleosomes, leading to a
reduction in inflammation [137, 138].

As shown in Figure 3, HMGB1 is involved in TLR4/Caveo-
lin-1 expression pathway in ECs [139]. This pathway downregu-
lates eNOS activity. One important part of TLR4 activation is
Caveolin-1 Tyr14 phosphorylation [140]. Furthermore, there is
a positive feedback between TLR4 and LOX-1 [141]. Therefore,
when TLR4 is activated (by modulating HMGB1), the LOX-1
level also increases. The high level of LOX-1 increases the NF-κB
pathway in the nucleus [67]. NF-κB signaling can affect iNOS and
causes vascular damage due to an increase in iNOS level (which
leads to increased EC apoptosis) and an eNOS level decrease
(which leads to reduced protective autophagy); endothelial
dysfunction can be initiated [142]. NADPH Oxidase is a
key mediator of the LOX-1-PCSK9 axis. In addition, there
is a strong correlation between the intracellular ROS concen-
tration and PCSK9 expression [107]. After attaching oxLDL
to LOX-1, ROS synthesis is promoted due to the activation of
NADPH oxidase. A rise in intracellular ROS leads to upregu-
lation of PCSK9 through a rise in TNF-α and reducing eNOS
level [143, 144]. Increasing PCSK9 levels cause the degrada-
tion of LDLR and consequently leads to LOX-1 upregulation
[145]. As mentioned earlier, the reduction in eNOS levels
reduces protective autophagy. The combination of increased
iNOS and reduced eNOS leads to endothelial dysfunction.
More interestingly, RIF and MyD88 are selective adapter
molecules involved in TLR4 signaling. According to a study
by Liu et al. [146], although the TLR4-MyD88-NF-κB path-
way plays an important role in regulating PCSK9, TLR4-TRIF
does not. Through the TLR4-MyD88-NF-κB pathway, NF-κB
translocation causes the expression of pro-inflammatory genes
such as IL-1β, IL-18, MCP-1, IL-6, TNFα, IL-12, IFNγ, and
GM-CSF, leading to an upregulation of PCSK9 [146].
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5. Conclusion

TLR4, LOX-1, and PCSK9 have distinctive roles in athero-
sclerosis development. Data from clinical and experimental
investigations indicate that their inhibitions can be effective
to slow the progression of atherosclerosis. Inflammation has
a well-distinguished position in atherothrombosis. At pres-
ent, it is not clearly known how and when to diminish it.
Moreover, it is not still conclusive which pharmaceutical
interventions are preferred choices. Of note, current findings
by important studies like FOURIER, ODYSSEY, and CANTOS
are to pave the way for future research and a more robust
understanding about lowering lipid levels and also inflam-
mation inhibition.
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