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Background. Observational researches reported the underlying correlation of plasma myeloperoxidase (MPO) concentration with
respiratory tract infections (RTIs), but their causality remained unclear. Here, we examined the cause–effect relation between
plasma MPO levels and RTIs. Materials and Methods. Datasets of plasma MPO levels were from the Folkersen et al. study (n=
21,758) and INTERVAL study (n= 3,301). Summarized data for upper respiratory tract infection (URTI) (2,795 cases and 483,689
controls) and lower respiratory tract infection (LRTI) in the intensive care unit (ICU) (585 cases and 430,780 controls) were from
the UK Biobank database. The primary method for Mendelian randomization (MR) analysis was the inverse variance weighted
approach, with MR-Egger and weighted median methods as supplements. Cochrane’s Q test, MR-Egger intercept test, MR pleiotropy
residual sum and outliers global test, funnel plots, and leave-one-out analysis were used for sensitivity analysis. Results. We found that
plasma MPO levels were positively associated with URTI (odds ratio (OR)= 1.135; 95% confidence interval (CI)= 1.011–1.274; P¼
0:032) and LRTI (ICU) (OR= 1.323; 95% CI= 1.006–1.739; P¼ 0:045). The consistent impact direction is shown when additional
plasmaMPO level genome-wide association study datasets are used (URTI: OR= 1.158; 95%CI= 1.072–1.251; P<0:001; LRTI (ICU):
OR= 1.216; 95% CI= 1.020–1.450; P¼ 0:030). There was no evidence of a causal effect of URTI and LRTI (ICU) on plasma MPO
concentration in the reverse analysis (P>0:050). The sensitivity analysis revealed no violations of MR presumptions. Conclusions.
Plasma MPO levels may causally affect the risks of URTI and LRTI (ICU). In contrast, the causal role of URTI and LRTI (ICU) on
plasma MPO concentration was not supported in our MR analysis. Further studies are needed to identify the relationship between
RTIs and plasma MPO levels.

1. Introduction

Myeloperoxidase (MPO), a member of the heme peroxidase-
cyclooxygenase superfamily [1], demonstrates elevated expres-
sion levels in neutrophil granulocytes, while exhibiting
comparatively lower expression levels in monocytes and
macrophages [2–4]. It not only catalyzes hypochlorous
acid (HOCl) and reactive oxygen species (ROS) to stimu-
late neutrophils to phagocytose bacteria and other micro-
organisms [5] but also actively participates in inflammation
regulation, immune cell recruitment at infection sites, and
influences inflammation resolution [6].

Respiratory tract infections (RTIs) are the most common
infections seen in primary care and the single most signifi-
cant contributor to the overall burden of disease worldwide
[7]. In the most severe instances, RTIs can progress rapidly
into sepsis, multiorgan failure, and even death. Therefore,
it is necessary to identify potential risk factors for RTIs
and thus improve global public health. The role of MPO in
inflammation, particularly in RTIs, has received more atten-
tion in recent years [8]. Several studies have reported an
elevation in plasma MPO levels among patients with vari-
ous respiratory conditions, such as influenza, SARS-CoV-2
infection, exacerbations of chronic bronchitis with airway
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obstruction, frequent exacerbations of chronic bronchitis
with airway obstruction, acute respiratory distress syndrome
(ARDS), and sepsis when compared to individuals without
these conditions [9–15]. However, whether individuals exhi-
biting heightened levels of plasma MPO are more susceptible
to RTIs is uncertain. Consequently, it is essential to investigate
the causal effects of plasmaMPO levels on RTIs at the scale of
the entire population.

Mendelian randomization (MR) is an epidemiological
tool using genetic variations (single-nucleotide polymorph-
isms, SNPs) as instrumental variables (IVs) to estimate the
causal relationship between exposures and outcomes at a
population level [16]. Genetic variation is randomly assigned
to offspring during conception, making it less susceptible
to interference from inverse associations and confounding
factors compared to traditional randomized controlled
trials (RCTs) [17]. A recent MR study genetically determined
that elevated plasma MPO levels are causally associated
with increased risks of ischemic stroke, cardioembolic stroke
(CES), heart failure (HF), and atrial fibrillation (AF) [18].
However, noMR research has been conducted on establishing
a causal link between plasma MPO levels and RTIs.

Therefore, the objective of this current study is to con-
duct a two-sample bidirectional MR study using summary-
level data from a genome-wide association study (GWAS),
aiming to elucidate the potential causal bidirectional rela-
tionship between plasma MPO levels and RTIs, including
upper respiratory tract infection (URTI) and lower respira-
tory tract infection (LRTI) in the intensive care unit (ICU).

2. Materials and Methods

2.1. Study Design. The study design for bidirectional MR anal-
ysis is illustrated in Figure 1. Three fundamental assumptions
underlie the design of MR are as follows: (1) genetic variants
directly influence exposures; (2) genetic variants are not asso-
ciated with potential confounders; and (3) genetic variants
affect outcomes only via the effects on exposures [16]. All
original studies acquired ethical approval and obtained
informed consent from the participants. The data utilized
in this researchwere readily accessible within the public domain,
thus obviating the necessity for ethical approval and informed
consent in accordance with the study’s design. Meanwhile,
the results of this study were reported in adherence to
the Strengthening the Reporting of Observational Studies
in Epidemiology-Mendelian Randomization (STROBE-MR)
guidance from 2021 [19].

2.2. GWAS Data Summary for Exposures and Outcomes.
After searching the IEU OpenGWAS project (https://gwas.
mrcieu.ac.uk/), we identified two European-descent GWASs
[20, 21] with the SNPs of plasma MPO levels and the
UK Biobank database with the SNPs of URTI and LRTI
(ICU). Details of these GWASs are displayed in Table 1.
Folkersen et al. [20] collected 13,138,585 SNPs from 21,758
Europeans, while the INTERVAL study [21] collected
10,534,735 SNPs from 3,301 participants. Among them,
the Folkersen et al. [20] study is the primary dataset, and
the INTERVAL study [21] is the supplementary dataset.
URTI (2,795 cases and 483,689 controls) and LRTI (ICU)
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FIGURE 1: Study design for the MPO-RTIs two-sample bidirectional MR analyses. SNP, single-nucleotide polymorphism; URTI, upper
respiratory tract infection; LRTI (ICU), lower respiratory tract infection in the intensive care unit.
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(585 cases and 430,780 controls) were extracted from the
UK Biobank database. All cases were diagnosed according
to the International Classification of ICD-10 criteria.

2.3. Selection of Genetic Instruments. Based on these criteria,
SNPs were used as IVs: (1) SNPs significantly correlated with
plasma MPO levels (P<5× 10−6). This lenient threshold,
due to the limited number of SNPs meeting the conventional
threshold (P<5× 10−8), ensures the feasibility of the study
[22]; (2) to eliminate linkage disequilibrium (LD), SNPs were
clumped based on LD threshold (r2< 0.001) and distance
(10,000 kb); (3) we addressed SNPs not present in the out-
come GWAS data by removing them, except for proxy SNPs
identified with proxies=TRUE; (4) to avoid distortion of
strand orientation or allele coding, we deleted palindromic
SNPs (e.g., with A/T or G/C alleles); (5) SNPs without signifi-
cant horizontal pleiotropy (MR pleiotropy residual sum and
outliers (MR-PRESSO) global tests P values >0:05); and (6)
SNPs with F> 10. The F statistics for each SNP were com-
puted using the following formula: F= (R2/k)/([1−R2]/[n− k
−1]), where R2 is the proportion of risk factor variability
explained by genotype, k is the number of instruments used
in the model, and n is the sample size.

2.4. MR Analysis. Three alternative approaches—MR-Egger
regression, weighted median, and inverse variance weighted
(IVW) with the random effect model—were used to investi-
gate the genetic relationship between plasma MPO levels and
the risk of respiratory infection. Since the IVW method with
a random effects model assumes the validity of all SNPs uti-
lized in the study, it can yield the most accurate estimate.
Therefore, IVW with a random effects model was deemed
as the principal analysis approach in this study. The remain-
ing twomethods were employed as supplementary techniques
for MR analysis.

2.5. Sensitivity Analyses. We performed sensitivity analyses to
investigate potential pleiotropic bias by several approaches:
Cochrane’sQ test, MR-Egger intercept test, MR-PRESSO global
test, funnel plots, and leave-one-out analysis. Cochrane’s Q test
was used to examine the heterogeneity of the associations
(a P value of less than 0.05 revealed heterogeneity) [23].
Horizontal pleiotropy was examined utilizing the MR-Egger
intercept test, the MR-PRESSO global test (a P value of
less than 0.05 indicated horizontal pleiotropy), and the fun-
nel plot [24, 25]. Leave-one-out analysis to evaluate whether
a single SNP drove or biased the MR estimate [16].

2.6. Statistical Analysis. The odds ratio (OR), beta, and 95%
confidence interval (CI) were utilized to present the causal

estimates, and a P value of less than 0.05 was deemed statis-
tically significant. The statistical significance threshold of
sensitivity analyses was set at P>0:05. The forest plots, scatter
plot, leave-one-out plot, funnel plot, and all statistical analyses
performed in this study were performed in R (version 4.2.3)
using the “TwoSampleMR” package (version 0.4.20; https://
github.com/MRCIEU/TwoSampleMR).

3. Results

3.1. Genetic Prediction of Plasma MPO Levels for RTIs Risk

3.1.1. IV Selection.We first selected the IVs for plasma MPO
levels to assess the causal impact of plasma MPO levels on
the risk of URTI and LRTI (ICU). Initially, 33 SNPs closely
linked to plasma MPO levels were retrieved from the pri-
mary dataset [20] and 13 from the supplementary dataset
[21]. Following strict implementation of the IV selection
procedure (as described in Section 2), 28 SNPs were used
as IVs between plasma MPO levels and URTI, and 29 SNPs
were used as IVs between plasma MPO levels and LRTI
(ICU) in the primary MR study (Supplementary Tables S1
and S3). In the supplementary MR study, 11 SNPs were iden-
tified as IVs between plasma MPO levels and URTI, as well as
between plasma MPO levels and LRTI (ICU) (Supplementary
Tables S2 and S4). The F statistic values were all ≥10 (Supple-
mentary Tables S1–S4), suggesting that the possibility of
weak instrument bias is slight. Supplementary Tables S8
and S9 provide the SNP filtering process.

3.2. Plasma MPO Levels and URTI. In the primary MR study,
based on the IVW method with the random effect model, a
significant association was observed between plasma MPO
levels and the risk of URTI (OR= 1.135, 95% CI= 1.011–1.274,
P¼ 0:032). The weighted median results were consistent with
IVW(OR= 1.261, 95%CI= 1.003–1.586,P¼ 0:048).While the
MR-Egger analysis did not show a statistically significant rela-
tionship between plasma MPO levels and the risk of URTI
(OR= 1.198, 95% CI= 0.892–1.610, P¼ 0:242), the direction
of effect aligned with the main analysis, especially IVW
(Figure 2(a)). The supplementary MR study had a similar
causal effect of plasma MPO levels on URTI. The combined
OR estimated through the IVW method with the random
effect model was 1.158 (95% CI: 1.072–1.251, P<0:001)
(Figure 2(a)). The scatter plot and forest plot showed the
overall causal effect estimation and the causal effect estima-
tion of individual SNPs (Figures 3(a) and 3(c), Figures 4(a)
and 4(c)).

We performed several sensitivity analyses to evaluate the
robustness of the causal effect estimates of plasma MPO

TABLE 1: Details of the GWASs included in the Mendelian randomization.

Event GWAS ID Consortium Year Population Sample size

MPO ebi-a-GCST90012031 Folkersen et al. [20] study 2020 European 21,758
MPO prot-a-1930 INTERVAL study [21] 2018 European 3,301
URTI ieu-b-5063 UK Biobank database 2021 European 2,795/483,689
LRTI (ICU) ieu-b-4974 UK Biobank database 2021 European 585/430,780

MPO, myeloperoxidase; URTI, upper respiratory tract infection; LRTI (ICU), lower respiratory tract infection in the intensive care unit.
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FIGURE 2: MR analysis of the effect of plasma MPO levels on RTIs (a) and MR analysis of the effect of RTIs on plasma MPO levels (b). IVs,
instrumental variables; OR, odds ratio; OR (95% CI), 95% confidence interval of odds ratio. Beta (95% CI), 95% confidence interval of beta.
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FIGURE 3: Primary MR analysis results of the causal effect of plasma MPO levels on URTI: (a) comparison of the five MR analysis methods
employed; (b) funnel plot assessing directional horizontal pleiotropy; (c) forest plot displaying the effect estimates; (d) leave-one-out analyses
detecting outliers.

Mediators of Inflammation 5



0.2

0.1

0.0

SN
P 

eff
ec

t o
n 

U
RT

I |
| i

d:
ie

u-
b-

50
63

–0.1
0.2 0.4

SNP effect on || id:prot-a-1930
0.6

MR test
Inverse variance weighted

MR-Egger

Simple mode

Weighted median

Weighted mode

ðaÞ

8

1/
SE

IV

6

4

–0.1 0.1 0.20.0
βIV

0.3

MR method
Inverse variance weighted

MR-Egger

ðbÞ

rs56213534

rs17027306

rs11980487

rs12467999

rs13036464

rs34097845

rs138531759

rs180698348

rs4925496

rs556811945

rs4694141

All — Maximum likelihood

All — Inverse variance weighted

–0.5 0.0

MR effect size for
“|| id:prot-a-1930” on “URTI || id:ieu-b-5063”

0.5

ðcÞ

rs4925496

rs4694141

rs556811945

rs34097845

rs180698348

rs138531759

rs13036464

rs12467999

rs11980487

rs17027306

rs56213534

All

0.0 0.1

MR leave-one-out sensitivity analysis for
“|| id:prot-a-1930” on “URTI || id:ieu-b-5063”

0.2 0.3

ðdÞ
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levels on URTI, including horizontal pleiotropy tests, hetero-
geneity tests, leave-one-out analysis, and funnel plot analysis.
The MR-Egger intercept tests and MR-PRESSO suggested
no horizontal pleiotropy (all P>0:05). Similarly, Cochran’s
Q statistics and the random-effects IVW method indicated
no heterogeneity (all P>0:05) (Table 2). The leave-one-out
sensitivity analysis, as shown in Figures 3(d) and 4(d), dem-
onstrated that any SNPs had little effect on the overall effect
of causal relationships. Last, the funnel plots for MR analysis
in Figures 3(b) and 4(b) revealed that the data points were
equally distributed around the funnel, indicating that no sub-
stantial asymmetry existed and that there was no evidence of
horizontal pleiotropy.

3.3. Plasma MPO Levels and LRTI (ICU). In the primary MR
study, the IVW method with the random effect model sug-
gested a significant association between plasma MPO levels
and the risk of LRTI (ICU) (OR= 1.323, 95% CI= 1.006–1.739,
P¼ 0:045). While the weighted median (OR= 1.341, 95%CI=
0.733–2.453, P¼ 0:349) and the MR-Egger analysis (OR=
1.483, 95% CI= 0.929–2.368, P¼ 0:099) did not demonstrate
a statistically significant relationship between plasma MPO
levels and the risk of LRTI (ICU), the direction of effect was
consistent with the IVWmethod with the random effect model
(Figure 2(a)). Analogous causal effects of plasma MPO concen-
tration on LRTI (ICU) were observed in the supplementaryMR
study. The combined OR estimated through the IVW method
with the random effect model was 1.216 (95% CI: 1.020–1.450,
P¼ 0:030) (Figure 2(a)). TheMR regression slopes and individ-
ual causal estimates of each SNP are illustrated in Figures 5(a)
and 5(c), Figures 6(a) and 6(c).

Additionally, no evidence of heterogeneity or horizontal
pleiotropy was observed in these analyses (all P>0:05).
(Table 2). The leave-one-out sensitivity analysis, as shown
in Figures 5(d) and 6(d), demonstrated that the overall esti-
mates were not disproportionately affected by any individual
SNP. Additionally, the funnel plots in Figures 5(b) and 6(b)
show no evidence of horizontal pleiotropy.

3.4. Genetic Prediction of RTIs for Risk of PlasmaMPO Levels.
To assess reverse causality, we extracted 13 and 7 SNPs indepen-
dently linked toURTI and LRTI (ICU) in the primaryMR study,
respectively, with a significance of P<5× 10–6. Our supplemen-
tary MR investigation identified 11 and 7 SNPs substantially
associated with URTI and LRTI (ICU) risk (P<5×10–6). Infor-
mation on genetic instruments is presented in Supplementary
Tables S5–S7, and the detailed SNP filtering process is shown
in Supplementary Tables S8 and S9. The F statistic of the
instrument SNPs ranged from 3,997 to 21,953. The MR
results indicated that there were no causal effects of URTI
(beta= 0.021, 95% CI=−0.005–0.046, P¼ 0:111; beta=
−0.007, 95% CI=−0.119–0.106, P¼ 0:905) or LRTI (ICU)
(beta= 0.013, 95% CI=−0.001–0.026, P¼ 0:068; beta=
−0.006, 95% CI=−0.039–0.026, P¼ 0:705) on plasma MPO
levels using the IVW method with the random effect model
(Figure 2(b)). There was no heterogeneity or pleiotropy in the
sensitivity analysis of the reverse MR analyses. The results of
the sensitivity analysis are shown in Table 2.

4. Discussion

Previous observational and clinical studies have shown an
association between plasma MPO levels and RTIs, but the
exact causal relationships have yet to be well established. In
this study, we conducted a bidirectional MR analysis to sys-
tematically explore the causative relationships among plasma
MPO levels and RTIs based on summary-level data from
large-scale GWASs. We showed a direct causality between
higher plasma MPO levels and a higher URTI and LRTI
(ICU) risk for the first time. In contrast, the causal role of
URTI and LRTI (ICU) on plasma MPO concentration was
not supported in our MR analysis.

Observational studies have provided abundant evidence
for the association between MPO and the risk of RTIs. For
instance, in an analysis based on three pediatric patients with
ARDS infected with H5N1 influenza and 31 non-H5N1
influenza-infected ARDS children, plasma MPO levels were

TABLE 2: Pleiotropy and heterogeneity test of the bidirectional Mendelian randomization study.

Exposure Outcome

Pleiotropy test Heterogeneity test

MR-Egger PRESSO MR-Egger IVW

Intercept SE P-value P-value Q Q_df Q_P val Q Q_df Q_P val

MPO∗ URTI −0.005 0.012 0.674 0.972 14.526 26 0.965 14.707 27 0.973
MPO∗ LRTI (ICU) −0.001 0.027 0.957 0.908 18.768 27 0.878 18.771 28 0.905
MPO# URTI −0.007 0.024 0.790 0.923 4.462 9 0.878 4.537 10 0.920
MPO# LRTI (ICU) −0.009 0.052 0.865 0.901 5.003 9 0.834 5.034 10 0.889
URTI MPO∗ −0.008 0.009 0.406 0.972 3.719 11 0.977 4.466 12 0.973
LRTI (ICU) MPO∗ 0.007 0.021 0.749 0.945 1.570 5 0.905 1.684 6 0.946
URTI MPO# 0.008 0.026 0.773 0.428 10.069 9 0.345 10.168 10 0.426
LRTI (ICU) MPO# −0.013 0.047 0.790 0.948 1.574 5 0.904 1.653 6 0.949

Horizontal pleiotropy analyses were conducted by MR-Egger regression and MR-PRESSO methods, and the results showed that there is no evidence of
horizontal pleiotropy in IVs of infectious diseases (all P>0:05). Heterogeneity tests were conducted by MR-Egger regression and IVW with the fixed model,
and the results showed that there is no evidence of heterogeneity in IVs of infectious diseases (all P>0:05). PRESSO, MR-Pleiotropy RESidual Sum and Outlier;
IVW, inverse variance weighted method with the fixed effect model. MPO∗, MPO-related SNPs from the Folkersen et al. [20] study; MPO#, MPO-related SNPs
from INTERVAL study [21].
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higher in pediatric patients with ARDS infected with H5N1
influenza than in non-H5N1 influenza-infected ARDS chil-
dren [13]. In addition, a prospective study of 279 individuals
showed that plasma MPO levels in nonsevere (NS), severe
(S), and postacute phase (PAP) COVID-19 patients were
significantly different from the levels in healthy individuals,
and plasma MPO levels had high diagnostic power for the
disease severity of COVID-19 [26]. Moreover, Chang and
Yao [12] conducted a prospective cohort study on adult
acute exacerbation of chronic obstructive pulmonary disease
(AECOPD) patients, suggesting that plasma MPO levels in
patients with frequent AECOPD exacerbations were signifi-
cantly higher than in patients with infrequent AECOPD
exacerbations. Similar associations were reported for MPO
levels in respiratory specimens and the risk of respiratory
infection [27–30]. Our findings further highlight these asso-
ciations. We found that plasma MPO concentration was
genetically associated with increased risks of respiratory
infections (URTI: OR= 1.135, 95% CI= 1.011–1.274,
P¼ 0:032; LRTI in the critical care units: OR= 1.323, 95%
CI= 1.006–1.739, P¼ 0:045). Unfortunately, null causal
effects of URTI and LRTI (ICU) risk on plasma MPO con-
centration were observed in our MR study (URTI: beta=
0.021, 95% CI=−0.005–0.046, P¼ 0:111; LRTI in the critical
care units: beta= 0.013, 95% CI=−0.001–0.026, P¼ 0:068).

Several possible pathophysiological mechanisms under-
lying the detrimental effect of plasmaMPO levels on the risks
of RTIs have been suggested by previous studies, including
impaired neutrophil function, oxidative stress, and altered
immune regulation [31–33]. MPO is an essential component
of neutrophils, but excessive release of MPO can impair their
function. Thus, elevated levels of MPO may lead to neutro-
phil dysfunction, making it more difficult for the immune
system to clear respiratory pathogens effectively [31]. MPO
and its oxidative products can directly harm the respiratory
epithelium, increase airway epithelial permeability, compro-
mise the integrity of the mucosal barrier, and decrease the
mucociliary clearance mechanism, making it easier for patho-
gens to establish infections in the airways [32]. In addition,
MPO has been shown to modulate the activity of various
immune cells, such as macrophages and lymphocytes [33].
Dysregulation of immune responses due to elevated MPO
levels can lead to an imbalance in the immune system, poten-
tially impairing the body’s ability to defend against respiratory
pathogens effectively. Therefore, the detailed mechanism
underlying the different associations of plasma MPO levels
with RTIs and their subtypes warrants further study.

To the best of our knowledge, this study is the first to
assess plasma MPO levels as a causal risk factor for RTIs
using the MR design with data from a substantial number
of individuals. There are several important public health
significances and clinical implications. In the present MR
study, we demonstrated the potential causal relationships
between plasma MPO levels and incidence of URTI and
LRTI (ICU) from the genetic insights, which might provide
novel clues for preventing RTIs. According to our findings,
plasma MPO levels could be a promising biomarker for
identifying high-risk individuals for active surveillance and

early intervention of RTIs. Furthermore, investigating
whether targeting MPO could reduce the risk of RTIs is of
clinical interest.

However, several limitations were also present. First, all
GWAS data came from the European population. Whether
our described findings would be consistent in other popula-
tions remains to be investigated. Second, the plasma MPO
levels may be affected by both genes and the environment.
However, our results can only explain the relationship between
the changes in plasma MPO levels caused by genetic variation
and infections [34]. Third, the GWAS database did not include
detailed demographic characteristics or clinical data. There-
fore, subgroup analysis cannot be further performed. Last, as
mentioned in our previousmethod, three assumptions must be
met to use variables as genetic instruments in MR analysis. If
the first assumption is not satisfied, a “weak instrument prob-
lem,” such as weak statistical power and increased bias due to
pleiotropic effects, occurs. The first assumption is tested by
checking whether the F-statistic exceeds 10. Our study’s
F-statistic values were all≥10, indicating no relevance assump-
tion violation. However, due to the relatively small number of
SNPs related toMPOwe obtained, we did not validate Hypoth-
eses 2 and 3, which may have led to some bias in our results.

5. Conclusion

Our two-sample MR study provides strong evidence for a
causal relationship between plasma MPO levels and RTIs.
We found that plasma MPO levels increased the risk of
URTI and LRTI (ICU). However, there was no evidence of
reverse causation. Our findings prompt future studies to
investigate and confirm the role of MPO as a clinical bio-
marker that regulates the risk of RTIs and its potential role in
therapeutic interventions.
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