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Objective. Microfold cells (M cells) are specific intestinal epithelial cells for monitoring and transcytosis of antigens, microorgan-
isms, and pathogens in the intestine. However, the mechanism for M-cell development remained elusive. Materials and Methods.
Real-time polymerase chain reaction, immunofluorescence, and western blotting were performed to analyze the effect of sorbitol-
regulated M-cell differentiation in vivo and in vitro, and luciferase and chromatin Immunoprecipitation were used to reveal the
mechanism through which sorbitol-modulated M-cell differentiation. Results. Herein, in comparison to the mannitol group
(control group), we found that intestinal M-cell development was inhibited in response to sorbitol treatment as evidenced by
impaired enteroids accompanying with decreased early differentiation marker Annexin 5, Marcksl1, Spib, sox8, and mature M-cell
marker glycoprotein 2 expression, which was attributed to downregulation of receptor activator of nuclear factor kappa-В ligand
(RANKL) expression in vivo and in vitro. Mechanically, in the M-cell model, sorbitol stimulation caused a significant upregulation
of phosphodiesterase 4 (PDE4) phosphorylation, leading to decreased protein kinase A (PKA)/cAMP-response element binding
protein (CREB) activation, which further resulted in CREB retention in cytosolic and attenuated CREB binds to RANKL promoter
to inhibit RANKL expression. Interestingly, endogenous PKA interacted with CREB, and this interaction was destroyed by sorbitol
stimulation. Most importantly, inhibition of PDE4 by dipyridamole could rescue the inhibitory effect of sorbitol on intestinal
enteroids and M-cell differentiation and mature in vivo and in vitro. Conclusion. These findings suggested that sorbitol suppressed
intestinal enteroids and M-cell differentiation and matured through PDE4-mediated RANKL expression; targeting to inhibit PDE4
was sufficient to induce M-cell development.

1. Introduction

Intestinal microfold (M) cells, playing a critical role in intestinal
immunity, were a unique subset of intestinal epithelial cells
(IECs) in the peyer’s patches, which allowed immune responses
to occur in response to intestinal pathogens/antigens through
sampling antigens/pathogens from the luminal surface to the

subepithelium, gaining access to lamina propria for the pur-
pose of infection and propagation and dissemination, such as
murine norovirus and reovirus [1, 2], mammalian orthoreo-
virus [3], Salmonella typhimurium (S. typhimurium) [4, 5]
and Candida albicans (C. albicans) [6, 7]. Moreover, M-cell
deficient in Spib−/− mice led to develop chronic and severe
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colitis with increased bacterial dissemination and attenuated
commensal-specific Th1 and Th17 responses [8], suggesting
the contribution of intestinal M cells to maintain intestinal
hemostasis under physiological conditions. Despite the criti-
cal role of M cells in intestinal immunity, M-cell development
and mature have not been fully addressed.

Up to date, limited studies have been available about
M-cell development. M cells differentiated from leucine-rich
repeat-containing G-protein-coupled receptor 5+ (Lgr5+)
stem cells and regulated by both the receptor activator of
the nuclear factor-κB ligand (RANKL) and transcription fac-
tor Spi-B [9–11]. Upon stimulation with RANKL, TNF
receptor-associated factor 6 (TRAF6) activation triggered
NF-κB pathway. The canonical RelA/p50 activation led to
induce expression of early M-cell (immature) markers such
as Marcks like 1 (MarcksL1) and chemokine (C–C motif)
ligand 9 (CCL9), CCL20, whereas noncanonical RelB/p52
activation caused Spi-B and Sox8 transcription factors expres-
sion, which was essential to maturation of M cells (marker:
glycoprotein 2: GP2) [12–14]. Moreover, Spi-B depletion or
conditional knockout TRAF6 [13], SRY-Box transcription
factor 8 (SOX8) [12], or S100A4 [15] could lead to decreased
M cells numbers in vivo, while a novel M-cell–specific tran-
scription factor polycomb repressive complexes 2 (PRC2)-
regulated estrogen-related–receptor g (Esrrg) has been dem-
onstrated to promote M-cell development and differentiation
[14]. In addition to these findings, signaling pathways
required for M-cell differentiation and mature remained
elusive.

Alteration of metabolic reprograming in IECs is associ-
ated with many diseases, which is one of the key etiological
factors of inflammatory bowel disease (IBD) and other diges-
tive tract diseases [16–18]. The polyol pathway, an alterna-
tive glucose metabolism, was believed to play an important
role in explaining the pathogenesis of complications in
patients with end-stage diabetes [19]. The work from Huang
et al. [20] and Yang et al. [21], respectively, showed that
aldose reductase (AR) involved in intestinal epithelial cell
differentiation and AR-mediated sorbitol in plasmacytes
triggered metalloprotease 2 (MMP2) to cleave peptidoglycan
recognition receptor LC (PGRP-LC) in fat body to initiate
systemic innate immune communication in drosophila
[21, 22], suggesting the critical role of polyol pathway in
intestinal epithelial cell differentiation and immunity.
Herein, in this work, we further addressed sorbitol treatment
caused a significant downregulation of early M-cell differen-
tiation marker expression, including SOX8 and spi-B, and
mature marker GP2 expression, leading to inhibit M-cell
development, which was attributed to decreased RANKL
expression in vivo and in vitro. Further results showed that
sorbitol triggered phosphorylation of phosphodiesterase 4
(PDE4) in the M-cell model, leading to decreased protein
kinase A (PKA)/cAMP-response element binding protein
(CREB) signaling and nuclear translocation of CREB, which
attenuated CREB binds to RANKL promoter, suppressing
transcriptional activation of RANKL. What is more, inhibi-
tion of PDE4 could reverse the inhibitory effect of sorbitol on
M-cell development in vivo and in vitro. Taken together, our

study has extended the function of sorbitol and revealed a
novel mechanism underlying M-cell development.

2. Materials and Methods

2.1. Reagents and Antibodies. Dulbecco’s modified Eagle’s
medium/F12 (DMEM/F12) (GIBCO, C11330500BT) and fetal
bovine serum (FBS) (GIBCO, 10099141C) were purchased from
Life Technologies (Carlsbad, CA, USA); IntestiCult™ Organoid
Growth Medium (mouse) (06005) and gentle cell dissociation
reagent (07174) were purchased from STEMCELL Technologies,
CryoStor CS10 (07930) was from Biolife Soultions. Corning®

Matrigel® growth factor reduced (GFR) basement membrane
matrix (356231) was from Corning. Phenylmethanesulfonyl
fluoride (PMSF, P0100) and protease inhibitor cocktail (PIC,
P6730) were from Solarbio (Beijing, China); Beyozol RNA
Isolation Kit (R0011) was purchased from Beyotime
Biotechnology (Shanghai, China); All-in-One First-Strand cDNA
Synthesis Kit (QP006) and All-in-One quantitative polymerase
chain reaction (qPCR) Mix (QP005) were obtained from
GeneCopoeia (Rockville, MD, USA). D-Sorbitol (HY-B0400),
D-Mannitol (HY-N0378), and Dipyridamole (DIP, HY-
B0312) were from MedChemExpress (NJ, USA). RANKL
monoclonal antibody (Proteintech, 66610-1-Ig); phospho-
PDE4 (Immunoway, YP0668) was from Immunoway (Jiangsu,
China), PKACA (Proteintech, 67491-1-Ig), CREB1 polyclonal
antibody (Proteintech, 12208-1-AP); Phospho-CREB1
(Ser133) polyclonal antibody (Proteintech, 28792-1-AP),
Lamin A/C polyclonal antibody (Proteintech, 10298-1-AP)
and α-tubulin monoclonal antibody (Proteintech, 66031-1-Ig)
were from Proteintech; phospho-PKA (Thr197) (CST, 5661)
was from cell signaling technology (Danvers, MA, USA);
peroxidase-affiniPure goat anti-rabbit IgG (H+L) (111-035-
003) and peroxidase-affiniPure goat anti-mouse IgG (H+L)
(115-035-003)were purchased from Jackson. Alexa-488- and
594-conjugated secondary antibodies were from Immunoway
(Beijing, China).

2.2. Cell Lines, M-Cell Model, and Treatment. As described in
a previous study [23], Raji B and CaCO2 cells were from the
American Type Culture Collection and cultured in RPMI1640
and DMEM, respectively, supplemented with 10% FBS accord-
ing to the manufacturer’s recommendations. For the M-cell
model, the CaCO2/Raji B coculture system was established as
follows: 4× 105 CaCO2 cells were digested and seeded into the
inserts in a 6-well plate, and 4×107 Raji B cells were placed into
the bottom of the insert. TEER was measured every 2 days,
starting from day 0 to day 21, to monitor cell differentiation.
The coculture was established for 4 days after CaCO2 cells was
maintained for 3 weeks, and themedium changed every day. For
treatment, mannitol and sorbitol were used at a final concentra-
tion of 100 mM; DIP was used at a final concentration of 6μM.

2.3. Crypt Isolation, Intestinal Organoid Culture, and
Treatment. Small intestines were isolated from C57BL6
and immersed into ice DPBS (STEMCELL, 37350) to cut
into 1–2mm pieces, followed by suspension with GCDR
(STEMCELL, 07174). Centrifugation at 290 g for 5min was
performed after incubation on a shaker at 20 rpm for 15min
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at room temperature; the supernatant was removed after gravity
settling for 30 s. The tissue fragment was resuspended with
10mL cold phosphate buffer solution (PBS) containing 0.1%
BSA and subjected by a 70μm cell strainer (Corning®, 352350)
to collect the filtrate in a clean 50mL tube to remove the tissue
fragments. The crypts were resuspended with intestiCult™
medium (STEMCELL, 06005) containing 50% matrigel®

(Corning®, 356231) after centrifugation at 200 g for 5min at
4°C and seeded in the center of 24-plate (Corning®; 3526) to
rest for 20min until the Matrigel forms a dome, 750μL
intestiCult™ medium were added into well to culture for
7–10 days in incubators at 37°C and 5% CO2 with changes of
medium every 2–3 days. Enteroids were imaged daily under a
microscope.

For treatment, the control group was treated with mannitol
(100mM) to rule out osmotic pressure and the sorbitol group
was treated with sorbitol (100mM), the treatment group was
stimulated with sorbitol combined with 8μM RANKL or
6μM DIP. Medium was replaced every 2 days, and organoids
were cultured for 7 days. On the 2nd, 4th, and 7th day of
culture, we observed the effect of indicated treatments on the
apparent changes of organoids during differentiation and mat-
uration. On the 7th day of organoid culture, the supernatant
was collected to measure RANKL expression in the superna-
tant. The total RNA level isolated from organoids was collected
to detect relative gene expression, or the organoids were har-
vested to fix to prepare for immunofluorescence (IF) analysis.

2.4. RNA Extraction and qRT-PCR. As described in our pre-
vious study, total RNA from the indicated treatment was
extracted and converted into cDNA according to the Beyozol
RNA Isolation Kit and the All-in-One™ first-strand cDNA syn-
thesis kit (Genecopoeia™, FulenGen), respectively. Quantitative
PCR (qPCR) was carried out to detect gene expression using the
All-in-One™ qPCR mix (Genecopoeia™, FulenGen) according
to the manufacturer’s instructions. Primer sequences used in this
study were listed as followed: GP2: forward: 5′-AATGTGCGG-
GAGAATGGTGT-3′ and reverse: 5′-TCTGAGCACTGGTTGA-
CACT-3′; spib: forward: 5′-ATCACAGCTGCCACCATCTC-3′

and reverse: 5′-ACAGCTTAAGTGTGGGCCAT-3′; Marcksl1:
forward:5′-GGAGAATGGCCACGTGAGAA-3′ and reverse: 5′-
TCGATGGCATCACCAGTAGC-3′; SOX8: forward: 5′-ATCAT
TGGGCCAGGCATTGA-3′ and reverse: 5′-GTTGGGGAGG
CTCTCCTTTC-3′; ANXA5: forward: 5′-GACCGACAGCAT-
CATGGCTA-3′ and reverse: 5′-AGCATTGCTTCGGGATG
TCA-3′; GAPDH: forward: 5′-TGTGTCCGTCGTGGATCTG-3′

and reverse: 5′-CCTGCTTCACCACCTTCTTGA-3′.

2.5. IF. As described in the previous studies [24, 25], after
dewaxing and dehydration, the slide of intestinal organoid
was subjected from antigen retrieval and blocked with goat
serum for 30min. The slips were incubated with the primary
antibody overnight at 4°C, followed by incubation with
Alexa-488- or Alexa 594-conjugated secondary antibodies
for 1 hr at room temperature. The coverslips were mounted
onto glass slides with prolonged gold antifade reagent with
DAPI, and stained cells were imaged under a laser scanning
confocal fluorescent microscope.

2.6. Enzyme-Linked Immunosorbent Assay (ELISA). RANKL
level in the supernatant of the M-cell model in response to
mannitol and sorbitol treatment was measured using Mouse
RANKL ELISA Kit (Cloud Clone Corp. TX; SEA855Mu)
according to manufactory instruction. Absorbances were
measured at a wavelength of 450 nm, subtracting the values
measured at 570 nm, using a microplate reader.

2.7. Western Blotting (WB) and Immunoprecipitation (IP).
As described in our work [20, 25], for IP, cells were lysed
in ice-cold buffer composed of 50mmol/L Tris–HCl (pH
7.4), 150mmol/L NaCl, 0.1% NP-40 and protease inhibitors,
followed by incubation overnight with anti-PKA, and further
incubation was performed with protein A/G beads for 1 hr at
4°C. Beads were washed five times with low-salt lysis buffer,
and immunoprecipitates were eluted for sodium dodecyl
sulfate–polyacrylamide gel electrophoresis. For the immuno-
blotting, proteins were transferred into nitrocellulose (NC)
membranes to incubate with primary antibodies overnight
after blocking with 3% milk in PBST; the secondary antibo-
dies were added to incubate for a further 1 hr at room tem-
perature, and proteins were detected using an enhanced
chemiluminescence (Perkin Elmer).

2.8. Luciferase Assay. As described in our work [25], the
reporter plasmid containing RANKL promoter was transfected
into HT-29 cells with internal control pGL4.74 for 24hr, and
mannitol and sorbitol were used to treat for another 24hr, the
relative luciferase unit wasmeasured according to dual-luciferase
reporter assay system (Promega).

2.9. Chromatin Immunoprecipitation (ChIP). As described in
previous studies [26, 27], CaCO2 cells were grown up to 80%
confluence, the cell was treated with serum-free medium for
24hr and stimulated with Mannitol or Sorbitol for another
1 hr, respectively, and the ChIP was performed according to
the manufacturer’s protocol to analyze the effect of sorbitol on
CREB binds to RANKL promoter. Quantitative PCR of co-
immunoprecipitated genomic DNA fragments was performed
with specific primers was synthesized from thermolife.

2.10. Ethical Approval of Animal Studies. About 6–8 weeks,
C57BL/6 mice were obtained from Southern Medical Uni-
veristy to isolate crypt isolation for intestinal organoid
experiments, which were housed in individually ventilated
cages in a barrier facility proactive in environmental enrich-
ment under specific pathogen-free conditions in line with
European Union regulations. All experimental animal pro-
cedures were approved by the Institutional Animal Commit-
tee of Southern Medical University (SMUL2021156).

2.11. In Vivo Experiment. About 6–8 weeks, C57BL/6 mice
were randomly grouped into three groups: mannitol group,
sorbitol group, and sorbitol group received DIP treatment. In
detail, mice received with mannitol or sorbitol alone dis-
solved in H2O at concertation of 100mM for 1 week and
combined with DIP for another 1 week. This 2-week cycle
was repeated for 3 times. Mice were killed for intestine isola-
tion to analyze M-cell differentiation.
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2.12. Statistics Analysis. The data were displayed as meanÆ s.
e.m. and statistical analysis was conducted with GraphPad
Prism nine software. The difference in qPCR assay was ana-
lyzed by one sample t test, and one-way ANOVA was used to
determine the difference in RANKL level through ELISA
assay. Two ANOVAs were used to analyze the difference
in luciferase assays. A p value less than 0.05 was significant.

3. Results

3.1. Sorbitol-Inhibited M-Cell Development In Vitro. To fur-
ther determine the potential role of sorbitol on M-cell devel-
opment, intestinal organoid combined with IF and qPCR
was used to identify the relative gene expression changes
involved in the differentiation and maturity of M cells. As
shown in Figure 1(a), mannitol was employed as a control
group to rule out osmotic pressure, and sorbitol treatment
led to a significantly impaired intestinal organoid. qPCR
results from intestinal organoid further showed that in com-
parison with the mannitol group, downregulation of genes
involved in M-cell differentiation, including ANXA5, Spi-B,
SOX8, and Marcksl1 were obviously observed in response to
sorbitol stimulation. In addition, Mature M cells marker GP2
was largely inhibited by sorbitol (Figure 1(b)). Further anal-
ysis showed that impaired intestinal organoid was observed
in response to sorbitol stimulation in a dose-dependent man-
ner (Figure 1(c)). What is more, the apoptosis-related pro-
tein expressions, including caspase3 and Bax, were increased,
while BCL-2 and ki67 expressions were decreased in
response to sorbitol treatment (Figure S1(a)); in addition,
caspase3 mRNA level expression was increased in response
to sorbitol treatment (Figure S1(b)). These findings sug-
gested that sorbitol inhibited the development of intestinal
M cells.

3.2. Sorbitol-Suppressed M-Cell Differentiation through
RANKL. The above results implied that sorbitol played an
important role in regulating intestinal M-cell development.
RANKL has been reported to induce mature marker GP2
expression during M-cell differentiation [28, 29], which
focused us to explore whether sorbitol-regulated M-cell
development is dependent on RANKL. As shown in
Figures 2(a) and 2(b), in comparison with mannitol, both the
results from WB and ELISA have shown that RANKL was
largely decreased in intestinal organoid treated with sorbitol at
the protein level in the M-cell model. What’s more, the addition
of recombinant of RANKL could reverse the impaired effect of
sorbitol on intestinal organoid (Figure 2(c)). Taken together,
these results suggested sorbitol destroyed intestinal organoids
through RANKL.

3.3. CREB was Required for Sorbitol-Mediated RANKL
Expression. The binding of CREB to the RANKL promoter
and subsequent transcription activation has been addressed in
a large number of studies [30, 31], which focused us to seek
whether sorbitol-regulated RANKL expression is dependent
on CREB. As shown in Figure 3(a), overexpression of CREB
significantly enhanced the relative luminescence unit (RLU) of
RANKL in HT-29 cells transfected with a reporter gene

containing RANKL promoter and pGL4.74 in the mannitol
group, while sorbitol treatment largely blocked the promotion
of CREB on RANKL luminescence. Moreover, ChIP revealed
that in comparison with mannitol, sorbitol stimulation led to a
significant downregulation binding of CREB to the RANKL
promoter (Figure 3(b)). What is more, ectopic expression of
CREB in CaCO2 cells largely rescued the inhibitory effect of
sorbitol on RANKL expression and secretion (Figure 3(c)).
These results suggested that CREB is required for sorbitol-
derived RANKL expression.

3.4. Sorbitol-Modulated PDE4/PKA/CREB Cascade Signaling.
CREB is the critical transcript factor in cAMP signaling;
targeting to inhibit PDE4 by dipyridamole (DIP) could
enrich CD8+CD39+T cells abundance and enhance CDX2 in
IECs, alleviating intestinal inflammation and inducing mucosa
healing [32, 33]. The M-cell model was used to analyze the
potential changes of PDE4/PKA/CREB signaling in response
to sorbitol stimulation [34, 35]. The results from WB demon-
strated that sorbitol treatment led to a significant retention of
cytosolic CREB, which was attributed to impaired interaction
between PKA and CREB caused by sorbitol (Figure 4(a)). The
work further showed that sorbitol triggered activation of PDE4,
leading to inhibited phosphorylation of PKA (Thr197) and
CREB (Ser133) confirmed by the immunoblotting from the
M-cell model, despite no significant difference was observed in
the baseline of PDE4/PKA/CREB (Figure 2(b)). What is more,
inhibition of PDE4 by DIP largely blocked the effect of sorbitol
on PDE4/PKA/CREB signaling, leading to increased RANKL
secretion (Figure 4(b)). Most importantly, intestinal organoids
have further confirmed that inhibition of PDE4 by DIP could
reverse the sorbitol on intestinal organoids development, leading
to enhanced GP2 and RANKL expression (Figures 4(c) and
4(d)). Taken together, these findings suggested that sorbitol
suppressed RANKL expression through modulating PDE4/
PKA/CREB signaling.

3.5. DIP Improved Sorbitol-Mediated M-Cell Differentiation
Inhibition In Vivo. To confirm whether inhibition of PDE4
could rescue the effect of sorbitol on M-cell differentiation
in vivo. The in vivo model was established as described in
Yang et al. [36] work with brief modification. As shown in
Figure 5(a), mice were fed with water supplemented with 2%
(wt/vol) mannitol or sorbitol for 7 days and combined with
PDE4 inhibitor DIP treatment for another week. This 2-week
treatment was repeated for three cycles. On the last day, the
intestine was isolated for analysis of M cells after mice were
euthanized. As expected, the results showed that, in compar-
ison with mannitol group, sorbitol treatment led to a signifi-
cant inhibition of mature M cells labeled with GP2, while
DIP treatment reversed the inhibitory effect of sorbitol on M
cells development (Figure 5(b)). Collectively, this work sug-
gested that targeting PDE4 by DIP could be a promising
strategy to induce M-cell differentiation.

4. Discussion

Metabolites or metabolic reprograming is critical for cell fate.
Up to now, to our best knowledge, there are no available
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FIGURE 1: Sorbitol suppressed M-cell differentiation: (a) intestinal organoids were analyzed in response to 100mM mannitol and 100mM
sorbitol. The representative image of intestinal organoids was captured to analyze the effect of sorbitol on M-cell differentiation; (b) the total
RNA was extracted from the indicated group described in (a), and real-time PCR was employed to detect related gene expression involved in
M-cell differentiation, including GP2, ANXA5, spi-B, SOX8, and Marckl1. Data presented as the meanÆ s.e.m. of three independent
experiments and were analyzed by one sample t test, ∗∗∗p<0:001, ∗∗p<0:01; (c) the representative image of intestinal organoids was imaged
in response to various concertation of sorbitol. Bar: 75 μm, data presented as the meanÆ s.e.m. were analyzed by one ANOVA,
∗∗∗∗p<0:0001.
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reports about the function of metabolites or metabolic repro-
graming on intestinal M-cell development. In this work, we
demonstrated sorbitol, the production of the polyol pathway,
and derived intestinal organoid damage through the reduc-
tion of RANKL expression. Mechanically, activation of PDE4

was obviously observed in the M-cell model after treatment
with sorbitol, which further led to inhibited phosphorylation
of PKA/CREB, reducing CREB nuclear translocation and
decreasing the binding of CREB to RANKL promoter.
What is more, endogenous PKA interacted with CREB,
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FIGURE 2: Sorbitol regulated M-cell differentiation through PDE4/PKA/CREB signaling-mediated RANKL: (a) after establishing M-cell
model, the total protein was extracted from M-cell model treated with 100mM mannitol or 100mM sorbitol for 24 hr, western blotting
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and this interaction was disrupted by sorbitol stimulation.
Most importantly, inhibition of PDE4 by DIP could over-
come the inhibitory effect of sorbitol on intestinal M-cell
development in vivo and in vitro. These findings extended
the role of sorbitol in M-cell differentiation and suggested
targeting to inhibit PDE4 by dipyridamole, which is a prom-
ising strategy for intestinal M-cell development.

The polyol pathway, the conversion of glucose into sor-
bitol, is almost silent, which is activated in hyperglycemic
conditions and has deleterious effects on human health

[19, 37]. In addition, the polyol pathway is necessary for
ChREBP nuclear localization in hepatocytes and glucose tol-
erance in mice, and long-term uptake of sorbitol could
induce a significant change in the composition of the gut
microbiome [38]. The further work showed that sorbitol
could induce an upregulation of Aquaporins 7 expression
in a time-dependent manner [39] and apoptosis [40, 41].
What is more, sorbitol was found to be able to relay gut-
fat body immunological communication (GFIC) by activa-
tion of metalloprotease 2, which further cleaved PGRP-LC to
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FIGURE 4: Sorbitol modulated PDE4/PKA/CREB signaling: (a) upper panel: CaCO2 cells were serum starved for 24 hr and stimulated with
mannitol, sorbitol, and sorbitol+DIP for further 1 hr. Cell fraction was isolated and levels of cytosolic CREB were detected by western
blotting. α-Tubulin and lamin A/C were used as internal controls for the cytosolic and nuclear fractions, respectively. Bottom panel: CaCO2

cells were confluence, serum starved for 24 hr, then stimulated with 100mM mannitol or sorbitol combined with or without DIP for 1 hr.
Immunoprecipitation was performed with antibodies targeting endogenous PKA and immunoblotting was used to detect CREB; (b) after
establishing M-cell model, the total protein was extracted fromM-cell model treated with 100mMmannitol or 100mM sorbitol and 100mM
sorbitol+DIP for 24 hr, western blotting was used to detect RANKL, baseline and phosphorylation of PDE4/PKA/CREB. α-tubulin was
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detect M cells mature marker GP2 expression and RANKL expression in the indicated group.
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activate immune deficiency response in fat bodies [21]. In
this work, we further extended the novel role of sorbitol in
gastroenterology that sorbitol suppressed intestinal M-cell
differentiation and matured through RANK in vivo and
in vitro, which was attributed to the activation of PDE4.
Inhibition of PDE4B by DIP could rescue the inhibitory
effect of sorbitol on M-cell development. However, in addi-
tion to M cells, the further work is required to address the
potential function of sorbitol in other intestinal epithelial cell
development, including goblet cells, paneth cells, and tuft
cells.

The classical second messenger cAMP pathway has been
confirmed to be essential for a variety of physiological func-
tions, including mitochondrial biology, lipid metabolism,
ischemia, and inflammation [42]. Recent work has demon-
strated that inhibition of PDE4 by apremilast modulated
cAMP-predominant PKA-CREB signaling ameliorated the
clinical symptoms of chronic UC as evidenced by improve-
ment in mucosal ulcerations, tissue fibrosis, and inflamma-
tory infiltrations [43, 44]. Our previous work has suggested
that PDE4 inhibition could lead to CDX2 expression, leading
to intestinal epithelial cell differentiation [33]. In this work,
inhibition of PDE4 could alleviate sorbitol-induced impaired
M-cell development. These works suggested that PDE4 activ-
ity is critical for M-cell development. However, the further
work was required to address how sorbitol activated PDE4
phosphorylation, the receptor of sorbitol is urgently to be
identified, and whether the sorbitol receptor involved in
M-cell development remained elusive.

Taken together, these findings extended the role of sor-
bitol and established the mechanism through which sorbitol
regulated M-cell development by activation of PDE4, which
could be a theoretical foundation for DIP used in maintain-
ing mucosal immunity function.
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