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Objective. At present, Alzheimer’s disease (AD) lacks effective treatment means, and early diagnosis and intervention are the keys
to treatment. Therefore, for mild cognitive impairment (MCI) and AD patients, blood sample analysis using the 4D nonstandard
(label-free) proteomic in-depth quantitative analysis, looking for specific protein marker expression differences, is important.
These marker levels change as AD progresses, and the analysis of these biomarkers changes with this method, which has the
potential to show the degree of disease progression and can be used for the diagnosis and preventive treatment of MCI and AD.
Materials and Methods. Patients were recruited according to the inclusion and exclusion criteria and divided into three groups
according to scale scores. Elderly patients diagnosed with AD were selected as the AD group (n= 9). Patients diagnosed with MCI
were classified into the MCI group (n= 10). Cognitively healthy elderly patients were included in the normal cognition control
group (n= 10). Patients’ blood samples were used for 4D label-free proteomic in-depth quantitative analysis to identify potential
blood biomarkers. The sample size of each group was expanded (n= 30), and the selected biomarkers were verified by enzyme-
linked immunosorbent assay (ELISA) to verify the accuracy of the proteomic prediction. Results. Six specific blood markers,
namely, APOE, MMP9, UBR5, PLA2G7, STAT5B, and S100A8, were detected by 4D label-free proteomic quantitative analysis.
These markers showed a statistically significant upregulation trend in the MCI and AD groups compared with the normal
cognition control group (P<0:05). ELISA results showed that the levels of these six proteins in the MCI group were significantly
higher than those in the normal cognition control group, and the levels of these six proteins in the AD group were significantly
higher than those in the MCI group (P<0:05). Conclusion. The plasma levels of APOE, MMP9, UBR5, PLA2G7, STAT5B, and
S100A8 in cognitively healthy elderly patients and patients with MCI and AD were significantly different and, more importantly,
showed a trend of increasing expression. These results indicate that these six human plasma markers have important diagnostic and
therapeutic potential in the identification of cognitive impairment and have value for in-depth research and clinical application.

1. Introduction

Mild cognitive impairment (MCI) is a cognitive condition
between normal aging cognition and dementia characterized
by a higher-than-normal age-related cognitive decline that is
not enough to result in significant impairment of daily func-
tions [1]. The American Academy of Neurology guidelines

estimate the prevalence of MCI to be 6.7% in 65–69-year-olds
and 25% in 80–84-year-olds [2]. MCI is progressive and is
closely associated with oxidative stress, inflammation, and
atherosclerosis-related diseases, especially Alzheimer’s disease
(AD), and the incidence of progression to dementia can be as
high as 10%–15% each year. An increase in age is the main
risk factor for MCI, in addition to the living environment,
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education level, marital status, smoking, hypertension, hyper-
lipidemia, diabetes, heart disease, and cerebrovascular disease
[3]. The main clinical symptoms of MCI are impaired mem-
ory, impaired executive function, cognitive impairment such
as visual–spatial function in language use, and neuropsychiatric
and psychological abnormalities. Since the symptoms are not
obvious when the disease occurs and activities of daily living
(ADL) are not significantly affected, MCI is usually ignored or
missed. Only when the patient’s cognitive impairment develops
to the AD stage will it be taken seriously, which limits the
treatment options at this time [4]. Although research on drugs
aimed at protecting brain function is on the rise, there are
currently only a handful of drugs approved by the Food and
Drug Administration that can be used to treat MCI and hin-
der the progression of MCI to AD, such as Aduhelm, Done-
pezil, and Ebixa, among others. AD brings not only great pain
to patients but also heavy mental pressure and medical care
burdens to families and society. Therefore, early diagnosis and
treatment of MCI can play an important role in delaying the
onset of AD, improving the quality of life of patients, and
alleviating the burden on families and society.

There is currently no gold standard for the diagnosis of
MCI. The main diagnostic methods include neuropsycho-
logical assessment, imaging, and fluid testing, and their use
depends on the clinician’s knowledge of MCI [5]. The excessive
deposition of amyloid-β (Aβ) in the brain and the Aβ cascade
reaction are important mechanisms of the pathogenesis of AD.
Therefore, early detection of Aβ deposition by Aβ-specific posi-
tron emission tomography (PET) imaging can help identify
patients with MCI, but there are problems such as high cost,
long operation time, and increased radiation exposure. Similarly,
although humoral tests, such as cerebrospinal fluid (CSF) tests
for Tau protein and Aβ42, can detect early AD, they are limited
by the invasiveness of obtaining samples by lumbar puncture
[6, 7]. Therefore, it is important to find and identify standardized
and easy tests for the diagnosis of MCI.

Blood testing has become a research hotspot in the diag-
nosis of MCI due to its characteristics of easy sample acqui-
sition, minimal trauma, and high acceptance by patients.
Some blood markers have been studied extensively, such as
Aβ Tau protein and P-Tau NFL, which can also be used to
predict the progression of AD [8, 9, 10]. In recent years,
proteomic technology based on mass spectrometry (MS)
has been widely used to screen blood biomarkers. Proteomics
is essentially the large-scale study of the characteristics of
proteins under different conditions to obtain a comprehen-
sive understanding of disease mechanisms, cell metabolism,
and other processes at the protein level. 4D proteomics refers
to an advanced approach that adds the fourth dimension of
ion mobility separation (also known as collision cross-
section or CCS) to the traditional 3D proteomics analysis
based on retention time, mass-to-charge ratio, and peptide
intensity. CCS describes the volume occupied by an ion dur-
ing its migration, which depends on the ion’s molecular
structure and interactions with air molecules. By incorporat-
ing ion mobility separation, 4D proteomics can identify and
quantify proteins with higher precision, accuracy, and reliabil-
ity, making it a groundbreaking method in the field of

proteomics [11, 12, 13]. Through liquid chromatography–MS
(LC–MS), the corresponding protein can be quantified by
comparing the signal intensity of the corresponding peptide
in different samples. In this study, we applied a high-depth
blood proteomic technique to effectively quantify the plasma
proteome of patients and finally identified candidate biomar-
kers for MCI.

2. Materials and Methods

2.1. Grouping of Patients. A total of 90 patients in the First
AffiliatedHospital ofHeilongjiangUniversity of ChineseMed-
icine from October 2021 to April 2023 were enrolled. Accord-
ing to Petersen’s MCI diagnostic criteria published in 2001
[14] and the AD diagnostic criteria published by the National
Institute on Aging and the Alzheimer’s Disease Association
(NIA-AA) in 2011 [15], the study patients were divided into
the proteomic study group (10 patients with normal cognition,
10 patients with MCI and 9 patients with AD) and the valida-
tion study group (90 patients; 30 with normal cognition, 30
with MCI, and 30 with AD). The patient’s name, gender, age,
education and other basic information, medical history, and
related examinations were recorded (Supplementary 1). All par-
ticipants were screened using the Montreal Cognitive Assess-
ment (MoCA), ADL scale, clinical dementia rating (CDR), and
Hachinski ischemic score (HIS), and those who passed the
five examinations were enrolled. Please refer to the attach-
ment for specific criteria (Supplementary 2).

Patients were excluded if they met any of the following
exclusion criteria: (1) infarction, infection, or other lesions of
the central nervous system; (2) persistent severe neurological
deficits or brain structural abnormalities due to a history
of trauma; (3) serious sleep disorders or other mental dis-
eases or a history of drug or alcohol dependence and abuse;
(4) an inability to communicate, serious hearing or a visual
impairment, aphasia, or an inability to complete the screen-
ing tests; (5) other mental/neurological diseases leading to
dementia, certain diseases that can interfere with the evalu-
ation of cognitive function, extrapyramidal dysfunction, or
severe cognitive disturbances; (6) serious liver, kidney, and
heart diseases; (7) participation in drug trials; and (8) other
conditions making the patient not suitable for inclusion in
the study as judged by the researcher.

According to the Ethical Review Measures for Biomedi-
cal Research involving humans of the Ministry of Health of
the People’s Republic of China (2016), the Quality Manage-
ment Code for Drug Clinical Trials of the State Medical
Products Administration (2020), the Quality Management
Code for Clinical Trials of Medical Devices (2016), the ethical
principles of the Declaration of Helsinki of the World Medical
Association (2013) and the International Ethical Guidelines for
Human Biomedical Research (2020), this study was reviewed
and approved by the Ethics Committee of the First Affiliated
Hospital of HeilongjiangUniversity of ChineseMedicine (No.
HZYLLKY 202101201). As required, all participants signed
written informed consent to participate in the study.

2.2. Plasma Sample Collection. Blood samples were obtained
from all patients by venipuncture, collected into 5mL EDTA-
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containing vacuum tubes, gently mixed by turning upside
down 8–10 times, and immediately placed on ice. After cen-
trifugation at 1,300 RPM at 4°C for 10min, plasma samples
were obtained and stored at −80°C until proteomic analysis.

2.3. Proteomic Analysis

2.3.1. Protein Extraction. The samples were removed from the
−80°C freezer and centrifuged at 4−8°C and 12,000RPM for
10min. The cell fragments were removed. The supernatant was
transferred to a new centrifuge tube. High-abundance proteins
were removed with a Pierce™ Top 14 Abundant Protein
Depletion Spin Column Kit (Thermo Fisher Scientific). The
protein concentration was determined using a bicinchoninic
acid kit (Thermo Fisher Scientific).

2.3.2. Trypsin Enzymatic Hydrolysis. The proteins of each
sample were enzymatically hydrolyzed in equal quantities,
and the volume was adjusted to be the same as that of the
lysate. Then, dithiothreitol was added to a final concentration
of 5mM, and the protein was reduced at 56°C for 30min.
Then, iodine acetamide was added to a final concentration of
11mM, and the mixture was incubated for 15min at room
temperature, away from light. The alkylated samples were
transferred to an ultrafiltration tube, centrifuged at 12,000
RPM at room temperature for 20min, replaced with 8M
urea three times, and then replaced with replacement buffer
three times. Trypsin was added at a ratio of 1 : 50 (protease:
protein, M/M), and the samples were enzymolyzed overnight.
The peptide was centrifuged at 12,000 RPM for 10min at room
temperature to recover the peptide. The peptide was then
recovered once with ultrapure water, and the peptide solution
was combined twice.

2.3.3. LC–MS Analysis. The peptides were dissolved by
mobile phase A and separated by an ultrahigh-performance
liquid chromatography system, Easy-NLC 1200. Mobile phase
A was an aqueous solution containing 0.1% formic acid and
2% acetonitrile. Mobile phase B was an aqueous solution con-
taining 0.1% formic acid and 90% acetonitrile. The gradient
setting was 0–68min, 4%–20% B; 68–82min, 20%–32% B;
82–86min, 32%–80% B; and 86–90min, 80% B. The flow
rate was maintained at 500 nL/min. The peptides were sep-
arated by an ultrahigh-performance liquid phase system,
injected into a nanospray ionization source for ionization,
and then analyzed by an Orbitrap Exploris™ 480 mass
spectrometer. The ion source voltage was set to 2.3 kV,
and the field asymmetric waveform ionmobility spectrometry
compensation voltage (CV) was set to −45V and −70V. In
the MS analysis, a peptide concentration of 1 μg/μL was
injected, with a 4 μL sample loaded for analysis. A high-
resolution Orbitrap was used for the detection and analysis
of the peptide parent ions and their secondary fragments. The
scanning range of first-level MS was set as 400–1,200m/z, and
the scanning resolution was set as 60,000. The scanning range
of secondary MS was fixed as 110m/z, the resolution of sec-
ondary scanning was set as 30,000, and TurboTMT was set as
off. In the data collection mode, the data-dependent scan

program was used; that is, the first 15 peptide parent ions
with the highest signal intensity were selected to enter the
higher-energy C-trap dissociation (HCD) collision cell suc-
cessively after the first-level scan. Fragmentation was per-
formed at 27% of fragmentation energy, and secondary MS
was also performed in sequence. To improve the efficiency
of MS, the automatic gain control was set to 75%, the signal
threshold was set to 1E4 ions/s, the maximum injection time
was set to 100ms, and the dynamic exclusion time of the
tandem MS scan was set to 30 s to avoid repeated scanning
of parent ions.

2.3.4. Database Retrieval. Secondary MS data were retrieved
by Proteome Discoverer (V2.4.1.15). Retrieval parameter set-
tings were as follows: the Homo _sapiens _9606_PR _ 202107
21 was used; the FASTA (78,120 sequences) anti-library was
added to calculate the false detection rate (FDR) caused by
random matching; the enzyme digestion mode was set to
trypsin (full); the number of missing cuts was set to 2; the
minimum peptide length was set to six amino acid residues;
and the maximum number of peptide modifications was set
to 3. The mass error tolerance of the primary parent ion was
set as 10 PPM, and that of the secondary fragment ion was
0.02Da. The carbamidomethyl (C) was set as the fixedmodifier,
and the oxidation (M), acetyl (N-terminus), met-loss (M),
and met-loss+ acetyl (M) were set as the variable modifiers.
The FDRs for protein, peptide, and peptide-spectrum match
identification were all set at 1%.

2.3.5. MS Quality Control Test and Sample Repeatability Test.
Most of the peptides were composed of 7–20 amino acids in
accordance with the general rules of trypsin-based enzymatic
hydrolysis and HCD fragmentation. Among them, effective
sequence identification could not be performed for peptides
with less than five amino acids due to too few fragment ions
generated. Peptides with more than 20 amino acids were not
suitable for HCD fragmentation due to their high mass and
charge number. The distribution of peptide length identified
byMSmet the requirements of quality control. To test whether
the quantitative results of biological or technical replication
samples were statistically consistent, three statistical analysis
methods, namely Pearson’s correlation coefficient (PCC), prin-
cipal component analysis (PCA), and relative standard devia-
tion (RSD), were used to evaluate the quantitative repeatability
of protein results.

2.3.6. Power Analysis. Power analysis was conducted using
the “pwr” package (version= 1.3.0) in R, which contains a
range of important functions. For each function, three of the
four quantities (sample size, significance level, power, and
effect size) can be specified, and the software calculates the
fourth quantity.

For the t-test, the pwr.t.test() function offers many useful
options for power analysis with the following parameters:

(1) “n” specifies the sample size;
(2) “d” specifies the effect size, which is the standardized

difference between means;
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d ¼ μ1 − μ2
σ

; ð1Þ

“where μ1 is the mean of group 1, μ2 is the mean of group
2, and δ is the variance of error.”

(3) “sig.level” specifies the significance level (default is 0.05);
(4) “power” specifies the desired power level;
(5) “type” specifies the type of t-test: two-sample, one-

sample, or paired. The default is two-sample.
(6) “alternative” specifies whether the t-test is two-sided

(two.sided) or one-sided (less or greater). The default
is two-sided.

2.3.7. Differential Protein Screening. For three or more repli-
cates: firstly, select the samples that need to be compared,
and calculate the fold change (FC) of each protein by divid-
ing the mean relative quantitative value of each protein in the
multiple replicates of the samples in group A by the mean
relative quantitative value of each protein in the multiple
replicates of the samples in group B. For example, calculating
the protein FC between sample group A and sample group B.
The formula for calculation is as follows, where R represents
the relative quantitative value of the protein, i represents the
sample, and k represents the protein.

FCA=B;k ¼Mean Rik; i 2 Að Þ=Mean Rik; i 2 Bð Þ: ð2Þ

In order to determine the significance of the difference, a
t-test is performed on the relative quantitative values of each
protein in the comparison group samples, and the corre-
sponding P-value is calculated as the significance index,
with a default P-value of less than 0.05. To make the test data
conform to the normal distribution required by the t-test, the
relative quantitative values of the protein need to be trans-
formed by logarithm base 2 (Log2) before the test. The for-
mula for calculation is as follows:

Pik ¼ T:test log2 Rik; i 2 Að Þ; log2 Rik; i 2 Bð Þð Þ: ð3Þ

For two replicates: first, select the samples that need to be
compared, and calculate the FC of each protein by dividing
the mean relative quantitative value of each protein in the
two replicate comparison groups. For example, calculating
the protein FC between sample group A and sample group B.
The formula for calculation is as follows, where R represents
the relative quantitative value of the protein, i represents the
sample, and k represents the protein.

FCA=B;k ¼Mean Rik; i 2 Að Þ= Rik; i 2 Bð Þð Þ: ð4Þ

In order to determine the significance of the difference,
calculate the coefficient of variation (CV) of each protein in
the two comparison groups as the significance index, with a
default CV of less than 0.1. The formula for calculation is as
follows:

CV¼ SD A1k=B1k;A2k=B2kð Þ=Mean A1k=B1k;A2k=B2kð Þ:
ð5Þ

For no replicates: first, select the samples that need to be
compared, and calculate the FC of each protein by dividing
the relative quantitative value of each protein in sample A by
the relative quantitative value of each protein in sample B.
For example, calculating the protein FC between sample A
and sample B. The formula for calculation is as follows, where
R represents the relative quantitative value of the protein, and
k represents the protein.

FCA=B;k ¼ RAk=RBk: ð6Þ

Based on the above differential analysis, when the P-value
is less than 0.05, a change threshold of greater than 1.5 is used
as the significant upregulation threshold, and less than 1/1.5 is
used as the significant downregulation threshold.

2.3.8. Search forMCI-RelatedModules Based onMfuzz Analysis.
Eggnog-mapper software (V2.0) was used to carry out Gene
Ontology (GO) annotations for the identified proteins, mainly
including the three aspects of biological process, cell compo-
nents, and molecular functions. The protein pathways were
annotated using the Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) pathway database. Fisher’s exact tests were
performed for the GO and KEGG pathway enrichment sig-
nificance analysis of differentially expressed proteins (with the
identified proteins as background). A P value < 0.05 was con-
sidered significant. Cluster analysis of expression patterns
revealed significant changes in protein abundance in the nor-
mal cognition control group compared with the MCI group
and AD group and identified modules associated with MCI.

2.3.9. Protein Interaction Network Analysis. The protein num-
bers or sequences screened from the differentially expressed
protein databases of the different groups were compared with
the STRING (V.10.5) protein network database, and the results
were compared according to the extracted differential protein
interaction relationships with a confidence degree >0.4 (high
confidence). Then, the R language packet network D3 tool was
used to visualize the differential protein interaction network.

2.3.10. Enzyme-Linked Immunosorbent Assay (ELISA) Validation
Test. A human proteinase ELISA kit (Provided by Hangzhou
Jingjie Biotechnology Co., Ltd.) was used to determine
endogenous protein levels in plasma according to the
manufacturer’s instructions. It mainly includes reagent
kits for the following types: APOE, UBR5, MMP9, S100A8,
STAT5B, and PLA2G7. First, standard diluent was configured
according to the instructions: 50 μL of sample was accurately
added to the standard coated plate, 40 μL of sample diluent
was added to the sample well, and 10 μL of the sample to be
tested was added to the well. The incubation plate was closed
with a sealing plate membrane and incubated for 37min. A
washing solution diluted 30-fold with distilled water was added
for washing 30 times, and the sealing plate membrane was
carefully removed after incubation. The liquid was discarded,
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and the plate was dried by swinging. The washing solution
was added to each well and allowed to be set for 30 s, and then
the washing solution was discarded; this process was repeated
five times. The plate was dried by patting. Horseradish
peroxidase-conjugated reagent (50μL) was added to each
well, except for the blank well. The incubation and washing
steps were repeated for color. Chromogenic agent A (50 μL)
was added to each well. Chromogenic agent B (50μL) was
added, mixed gently, and incubated at 37°C in the dark for 10
min. Finally, 50 μL of stop solution was added to each well,
the stop reaction was set to zero at the blank well, and the
absorbance of each well was measured in sequence at 450 nm.
The standard curve of each protein was determined by the
continuous dilution of a standard sample of known protein
concentration provided by the manufacturer.

2.3.11. Multiple-Group Analysis Based on Logistic Regression:
Using Biological Markers and Participant Scores. We set the
total sample size to 90, including three groups: 30 with nor-
mal cognition, 30 with MCI, and 30 with AD. Using ELISA
measurements of six biological markers (APOE, UBR5, MMP9,
S100A8, STAT5B, and PLA2G7) and four participant scores
(CDR, MoCA, ADL, and HIS), we constructed binary
classification models for each pair of features using logistic
regression. Prior to constructing the models, the 11 features
were standardized using Z-scores to ensure that they had the
same scale and mean. The total sample data was then divided
into training and testing sets in an 8 : 2 ratio, with the
proportion of each group being equal in both sets. Logistic
regression models were trained on the training set, and the
model’s performance was tested on the testing set. MATLAB
programing language, please refer to Supplementary 3.

2.4. Statistical Analysis. SPSS 22 software was used for statis-
tical analysis. The measured data were normally distributed
and are statistically presented as xÆ s. An independent-sam-
ple t-test was used for the comparative analysis of differences
between groups. Median and quartile spacing were used for
statistical analysis, and the rank-sum test was used for inter-
group difference testing. Count data were analyzed by fre-
quency statistics, and differences between groups were tested
by the χ2 test.

Differences in protein screening conditions: FC> 1.2,
P <0:05. The first step was to calculate the differential expres-
sion of proteins in the two samples from the groups being
compared. First, we calculated the average quantitative values
from analyses repeated many times for each sample, and then
we calculated the ratio of the average calculated value between
the two samples, which was the final difference in expression
from the control group. The second step was to calculate the
significance value of protein differential expression in the two
samples. First, the relative quantitative evaluation of the data
was carried out to make the data conform to a normal
distribution, and then the P value was calculated by a Welch
two-sample two-tailed t-test. When P <0:05, FC> 1.2 was
the significantly upregulated change threshold, whereas FC<
1/1.2 was the significantly downregulated change threshold.

3. Results

3.1. Study Design and Patients. We collected blood samples
from the cohort of study patients in the First Affiliated Hospital
of Heilongjiang University of Chinese Medicine and carried out
the study in strict accordance with the experimental protocol
design approved by the Ethics Committee of the First Affiliated
Hospital of Heilongjiang University of Chinese Medicine
(Figure 1). Basic information was obtained from the patients
enrolled in each study group according to the inclusion and
exclusion criteria. This basic information included sex and age
as well as the MoCA, CDR, ADL, and HIS scale scores, which
were used for the diagnosis of MCI and AD (Figure 1(b1), 1(b2),
1(b3), 1(b4), 1(b5), and 1(b6)). There were no statistically signifi-
cant differences in age or sex among groups (P >0:05). Accord-
ing to the MoCA, CDR, ADL, and HIS scale scores, significant
differences were found between the MCI group and the normal
cognition control group (P <0:01) and between theMCI group
and the AD group (P <0:01). These findings suggested that
with the progression of the disease, the cognitive function of
the patients changed significantly. The collection of basic
information involved in the study fully met the basic require-
ments of the ethics committee.

3.2. Plasma Proteomic Analysis. Plasma proteins in normal
cognition control, MCI, and AD patients were identified by
MS. A total of 2,030,350 spectrograms were detected, includ-
ing 520,692 matched spectrograms. A total of 14,283 peptides
were identified by spectral analysis, among which 12,941 were
unique peptide segments (Figure 2(a)). SDS–PAGE Electropho-
resis Results and Protein Concentration Measurement Results
are available in Supplementary 4. To evaluate the reliability of
the proteomic data, a series of quality control evaluations were
carried out to ensure that the results met the standards. Most
peptides were composed of 7–20 amino acids, which conforms
to the general rule based on enzymatic hydrolysis and MS frag-
mentation mode. The distribution of peptide length identified
byMSmet the quality control requirements (Figure 2(b)). Most
proteins were composed of more than two peptides. During
quantification, one protein corresponded to multiple specific
peptides (or corresponded to multiple spectrograms), which is
beneficial to increase the accuracy and credibility of quantitative
results (Figure 2(c)). The molecular weight of the identified
protein was uniform at different stages (Figure 2(d)). PCA
found that the quantitative results of biological or technical
duplicates were statistically consistent (Figure 2(e)). Each
patient sample yielded a protein count ranging from 1,588
to 1,814, with a total of 29 samples analyzed (Figure 2(f)).
When assessing the correlation of protein abundance changes
among the samples, we calculated PCC, a commonly used
statistical metric for evaluating the linear relationship between
two variables. PCC values were calculated for protein abun-
dance across sample groups, and the resulting correlation
coefficients are displayed (Figure 2(g)). Furthermore, we gen-
erated box plots based on the RSD of protein quantification
values among replicates within each group. These plots dem-
onstrated consistently low RSD values, indicating excellent
quantification repeatability (Figure 2(h)). Based on these
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results, we have comprehensively characterized the plasma pro-
tein profiles of all study samples and confirmed the high repro-
ducibility of our samples, making them suitable for further
investigation. The results showed that there were high numbers
of differentially expressed proteins in the plasma samples of each
group of patients, suggesting that there may be a single bio-
marker or a combination of biomarkers in the proteomic data.

3.3. Power Analysis and Differential Protein Screening Results.
First, we conducted a power analysis on the actual data from the
proteomics project in this study, individually analyzing the
power for each protein within the three comparison groups.
This involved calculating effect sizes and statistical power for
each protein within a comparison group, with the condition that
each protein in each group had a sample size of 10 and did not
contain anymissing values (NA). Please refer to Supplementary 5,
“Power_analysis_result.xlsx,” for detailed data tables.

Based on the performance of the real data with a sample
size of 10 in each group, it appears that there are a sufficient
number of proteins with power values exceeding 80% or even
approaching 100%. This suggests a high degree of confidence in
identifying proteins that exhibit differences between the two
groups. These results indicate that even when the sample size in
each group is 10, highly differentially expressed proteins can
still be detected using the T-test method, demonstrating the
effectiveness of the T-test approach.

Furthermore, we conducted power analysis through simula-
tion to investigate the impact of sample size on statistical power,
with a fixed effect size of 1.5. The experimental results are as
follows: at an effect size of 1.5, with only 10 samples in each
group, the power can reach 88.7%, which exceeds 80%. This
suggests that choosing a sample size of 10 for each group is
reasonable, as there is sufficient statistical power to detect differ-
ences between groups (Figure 3(a), 3(b), 3(c), and 3(d)). Please
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refer to Supplementary 6, “Power_analysis_simulation_result.
xlsx,” for detailed data tables related to the simulation study.

In the end, we visualized the differences in protein abun-
dance between different samples or groups using heatmaps and
volcano plots. In the heatmap, differences in protein expression
between different samples or groups are determined by compar-
ing the shades of colors (Figure 3(e)).

In the volcano plot, each point represents a protein, allowing
us to identify proteins with significant differential expression
(Figure 3(f), 3(g), and 3(h)). In the final analysis, we discovered
the following: in the N vs. M group, there were 36 upregulated
proteins and 73 downregulated proteins. In the N vs. A group,

there were 89 upregulated proteins and 96 downregulated pro-
teins. In the M vs. A group, there were 71 upregulated proteins
and 88 downregulated proteins (see Figure 3(i)).

3.4. Target Protein Screening by Mfuzz Analysis. Based on the
above most commonly used biological information sources
for proteomic studies [16], we conducted gene expression pro-
filing and pathway enrichment analysis for the differentially
expressed genes and signaling pathways of MCI. Combined
with relevant results, we found that the factors related to lipid
metabolism for Mfuzz analysis should be addressed. Figure 4
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shows a protein heatmap, with the ordinates representing dif-
ferent proteins and the ordinates representing abbreviations
for groups.

The protein functions of cluster 4 were related to the
structure of the lipoprotein membrane. Cluster 4 has four
enrichment functions that are highly related to cell mem-
brane structure: calcium-dependent phospholipid binding,
phospholipid binding, secretory granules, and the endo-
membrane system. Cluster 5 is closely related to gene expres-
sion, transcription, and protein synthesis, for example,
protein N-terminus binding, nucleic acid binding, protein-
containing complexes, and nucleic acid-templated transcrip-
tion. According to Mfuzz analysis, the variation trend of
different protein expression differences among groups can
also be obtained. As biomarkers, the variation trend of pro-
tein expression at different stages of disease should be mono-
tonic. That is, marker proteins with low expression in the
normal group should be highly expressed in the AD group,
and their expression showed an upward trend in the MCI
group.

3.5. Protein Interaction Network Analysis. We further ana-
lyzed the protein interaction networks of clusters 4 and 5.
The proteins PLA2G7, S100A8, and MMP9 were derived
from cluster 4, and the protein STAT5B was derived from
cluster 5. In addition, we found that the expression of the
proteins APOE and UBR5 showed an increasing trend in the
normal cognition control group, MCI group, and AD group.
Therefore, we added APOE and UBR5 to the protein inter-
action network for joint analysis and found that these two
proteins were closely related to the proteins in cluster 4 and
cluster 5. In addition, cytoplasmic translational initiation,
RAGE receptor binding, and low-density lipoprotein remo-
deling are important potential biological processes changing
from MCI to dementia. Most importantly, plasma APOE,
MMP9, S100A8, UBR5 PLA2G7, and STAT5B play a poten-
tially crucial role in the progression of cognitive disorders
(Figure 5).

3.6. Validation of Biomarkers. To further validate the feasi-
bility of the biomarkers screened in proteomics, we expanded

the number of patients in each group to 30. Plasma levels
of APOE, UBR5, MMP9, S100A8, PLA2G7, and STAT5B,
according to ELISA, showed that the measured protein
levels were increased in the MCI group compared with the
normal cognition control group. The plasma protein levels in
the AD group increased significantly.

All proteins showed statistically significant differences
among the different groups (P <0:05; P <0:01; P <0:001).
However, compared with the normal cognition control group,
the elevation of S100A8 in the MCI group was more conser-
vative than the elevations of the other five markers (P <0:05)
(Figure 6(a), 6(b), 6(c), 6(d), 6(e), and 6(f)).

To further compare the differences among the selected bio-
markers, we conducted receiver operating characteristic (ROC)
prediction judgment analysis for distinguishing between two
patient groups based on the results of the six biomarkers
detected by ELISA (Figure 6(g), 6(h), and 6(i)). When distin-
guishing between the normal cognition control group and the
MCI group, the six biomarkers, in the order of the highest to
lowest area under the ROC curve (AUC) values, were PLA2G7
(AUC= 0.8896), UBR5 (AUC= 0.8112), APOE (AUC=
0.8096), STAT5B (AUC= 0.7712), MMP9 (AUC= 0.7504),
and S100A8 (AUC= 0.6432) (Figure 6(g)). When distin-
guishing between the normal cognition control group and
the AD group, the six biomarkers, in the order of the highest
to lowest AUC values, were UBR5 (AUC= 0.9776), PLA2G7
(AUC= 0.9744), STAT5B (AUC= 0.9744), APOE (AUC=
0.9664), MMP9 (AUC=0.9568), and S100A8 (AUC=0.8512)
(Figure 5(h)). When distinguishing between the MCI group and
the AD group, the six biomarkers, in the order of the highest to
lowestAUCvalues,wereMMP9 (AUC=0.8680),UBR5 (AUC=
0.8592), APOE (AUC= 0.8496), STAT5B (AUC= 0.8272),
S100A8 (AUC= 0.7856) and PLA2G7 (AUC= 0.7800)
(Figure 6(i)). The AUC values for each marker in each group
were between 0.5 and 1, indicating that these six markers
showed good clinical diagnostic performance.

3.7. Biological Markers and Participant Scores’ Results in
Multiple-Group. We separately calculated the accuracy,
ROC curves, and AUC values of the model on the training

N vs. M

N vs. A

M vs. A

36

89

71

73

Compared
sample Upregulated Downregulated

96

88

ðiÞ
FIGURE 3: Power analysis and differential protein screening results. (a) Effect size vs. statistical power relationship plot for the N vs. M comparison
group. (b) Effect size vs. statistical power relationship plot for the N vs. A comparison group. (c) Effect size vs. statistical power relationship plot
for the M vs. A comparison group. (d) Power analysis simulation result. (e) Heatmap result. (f ) Volcano plot results for the N vs. M comparison
group. (g) Volcano plot results for the N vs. A comparison group. (h) Volcano plot results for the M vs. A comparison group. (i) Summary result
of all differentially expressed proteins. N, normal cognition control; M, mild cognitive impairment; A, Alzheimer’s disease.
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and testing datasets. The results indicated that all three clas-
sification models (N vs. A, M vs. A, N vs. M) achieved an
accuracy and AUC value of 1, enabling them to completely
and correctly differentiate between different groups (Figure 6(j),
6(k), 6(l), 6(m), 6(n), and 6(o)). Additionally, we derived the
logistic regression equation for comparing two groups as follows:

(1) N vs. A

y ¼ 0:3630212726297349 × APOE þ 0:503837278589717 × UBR5þ 0:45480591796503533 × MMP9

þ 0:1283158996025137 × S100A8þ 0:2883415540718194 × STAT5Bþ 0:3709678607850625 × PLA2G7

þ 0:6783376714393615 × CDR þ −0:9097053097540923 × MoCA þ 0:676209124052747 × ADL

þ 0:11146359143518329 × HIS þ 0:2891868688116039:

ð7Þ
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FIGURE 6: Serological validation of plasma biomarkers and the multiple-group analysis based on logistic regression. (a–f ) Levels of the
different biomarkers in plasma. (a–f ) Correspond to APOE, MMP9, UBR5, PLA2G7, STAT5B, and S100A8, respectively. The bold dotted
line in each box represents the median; the two thinner dotted lines on the top and bottom represent the values of 75% and 25%, respectively;
the top and bottom represent the maximum and minimum values, respectively; and the difference in width represents the situation of sample
aggregation. The wider the box is, the more samples that were gathered there. (g–i) ROC curves of different biomarkers. (g) Patients in the
normal cognition control group and MCI group were identified using six different biomarkers. (h) Patients in the normal cognition control
group and AD group were identified using six different biomarkers. (i) Patients in the MCI and AD groups were identified using six different
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AUC is the size of the area below the ROC curve. (j–o) Multiple-group analysis based on logistic regression. (j) Results for N vs. M on the
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(2) M vs. A

y ¼ 0:26246573735459194 × APOE þ 0:3506063771419758 × UBR5þ 0:4803959904062068 × MMP9

þ − 0:0028488379192457155 × S100A8þ 0:17682273291933967 × STAT5Bþ 0:08672123471665183 × PLA2G7

þ 0:7517438825017654 × CDR þ −1:1615725126015188 × MoCA þ 0:9360695574690933 × ADL

þ − 0:08734839499641048 × HIS þ 0:2237026159877827:

ð8Þ

(3) N vs. M

y ¼ 0:3021360272736927 × APOE þ 0:2521693867082287 × UBR5þ 0:3267493349482505 × MMP9

þ − 0:031002765088110354 × S100A8þ 0:04775536548813992 × STAT5Bþ 0:4606650763906919 × PLA2G7

þ 1:6059593104806753 × CDR þ −0:9833403308009726 × MoCA þ 0:4445285285315958 × ADL

þ 0:19724010957261218 × HIS þ 0:3713351800237155:

ð9Þ

4. Discussion

Research on blood markers of cognitive disorders, such as
dementia, is a popular topic in the field of psychiatry and is
the key to the diagnosis and treatment of these disorders. At
present, the existing methods used in clinical practice for the
diagnosis of MCI have some limitations. Clinically, the diag-
nostic methods of cognitive disorders mainly include the
MoCA, ADL, CDR, HIS, and other scales [17, 18]; magnetic
resonance imaging (MRI) [19, 20]; and 18F-labeled deoxyglu-
cose PET (18FDG-PET) technology [21]. These methods have
provided some help in the diagnosis and judgment of cognitive
disorders, especially AD, but their limitations are relatively
numerous, as shown in the following: (1) These methods are
essentially not effective until patients have advanced to the
middle and late stages of AD and cannot be used to prevent
the underlying MCI stage or to diagnose abnormalities in neu-
ronal metabolic activity at an earlier stage. (2) The MRI and
PET equipment involved in imaging diagnosis is large in size
and high in cost, and MRI and PET require high data analysis
ability of researchers. The MRI and PET experimental results
involved in imaging diagnosis are subject to large transnational
or transregional fluctuations due to different instrument
brands, parameter settings, data analysis, and other factors.
In addition, the accuracy of various clinical scales, including
the MoCA, ADL, CDR, HIS, and so on, can be affected by the
temporary performance of patients and subjective factors of
testers. (4) Detection without the use of biomarkers cannot
distinguish AD from dementia caused by other causes. In con-
trast, biomarkers have attracted much attention in recent years
due to their ability to diagnose disorders in early stages, low
cost, and high sensitivity.

How to combine cutting-edge science and technology
with existing clinical diagnostic testing methods to solve

psychiatric problems related to dementia is a very urgent
problem to be solved. For patients with cognitive decline,
CSF and brain biopsy collection are invasive and costly,
which, to some extent, hinders the identification of patients
in the presymptomatic stage and cognitively normal-MCI
stage. Blood samples for the analysis of multiple candidate
biomarkers are easier to obtain; therefore, the development
prospects of biomarkers may be broader. However, the
detection of blood biomarkers is also challenging. First, the
existence of the blood–brain barrier (BBB) makes the con-
centration of brain-derived biomarkers in the blood low,
which requires higher detection sensitivity [22, 23]. Second,
some biomarkers related to AD pathology are also expressed
in the periphery [24, 25], which may interfere with the detec-
tion results. Moreover, the protein content in blood samples
is relatively difficult to detect by general proteomics based on
MS [26], which largely restricts the types of blood markers
reported by current researchers in the premorbid stage of
AD, the MCI stage.

In this study, our research team used cutting-edge 4D
label-free deep quantitative proteomic analysis to obtain pro-
teins with a higher accuracy than ordinary proteomic analy-
sis. A total of 2,067 proteins were identified, among which
1,986 proteins were quantified. This is the highest number
identified in plasma proteomics currently known in the field
of dementia. This technology has greatly solved the bottle-
neck of common proteomics technology based on MS in the
study of disease mechanisms and the discovery of new blood
biomarkers and has laid an innovative foundation for the
auxiliary diagnosis of blood markers for cognitive disorders.
Our results reveal the clinical changes in the proteome in
cognitively healthy participants and MCI and AD patients
and suggest that lipid metabolism and ubiquitin modifica-
tion may be important in the pathogenesis of the progression
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of cognitive impairment, in which biological processes mainly
involve cytoplasmic translational initiation, RAGE receptor bind-
ing and low-density lipoprotein remodeling. This study reports
the currentmechanismofADand reveals that a total of 6markers,
PLA2G7, UBR5, APOE,MMP9, STAT5B, and S100A8, can cross
the BBB into the peripheral blood. These markers, although not
found at high levels in the peripheral blood of healthy persons, can
be stably detected by routine ELISA.

In this study, six markers found in 4D label-free deep
proteomic analysis were verified by ELISA, and the samples
were amplified to 30 cases in each group. The blood levels
of these six specific proteins were found to be significantly
higher in the MCI and AD groups than in the normal cogni-
tion control group. This finding also suggests that PLA2G7,
UBR5, APOE, MMP9, STAT5B, and S100A8 are predictive
of MCI in the early diagnosis of disease markers and that the
level of cognitive impairment can be predicted to a certain
extent (Figure 7). These findings add to the ongoing work in
the field of clinical dementia. In 2018, the NIA-AA published
three biomarkers for AD, i.e., Aβ accumulation-related bio-
markers (A), Tau accumulation-related biomarkers (T), and
neurodegeneration (N)-related biomarkers or other biomar-
kers of specific pathological processes, referred to as ATN.

APOE, short for apolipoprotein E, is a widely recognized
biomarker for AD risk prediction [23]. APOE promotes Aβ
degradation to neurotoxic fragments, including Aβ oligo-
meric and fibrous states, and the amount of Aβ42 depends
on the presence of the APOEε4 allele, with the highest con-
centration of Aβ42 found in patients homozygous for the
APOEε4 allele [27]. In addition, the APOEε4 allele interferes
with the clearance of Aβ in the brain by affecting the integrity
of the BBB [28]. Epidemiological data showed that the risk of
AD in APOEε4 homozygous individuals was more than 50%,
and the incidence of AD in the APOEε4 heterozygous APOEε3
population was approximately 20%–30% [29]. In normal cog-
nition, elderly APOEε4 carriers, the degree of ventricular dila-
tion was positively correlated with the decrease in CSF Aβ42.
In patients with APOEε4-positive AD, ventricular dilation
was associated with CSF Tau content [30]. Previous studies
have suggested that combining APOE analysis with core CSF
biomarker analysis can improve the accuracy of the clinical
diagnosis of AD. Our study also found that plasma APOE
levels in patients with cognitive impairment were of diagnos-
tic significance, and the ELISA detection method we used is
more convenient and easier for patients and medical staff to
accept.

PLA2G7, short for phospholipase A2 group VII, is a mem-
ber of the lipoprotein-associated phospholipase (LP-PLA2)
family, which plays an important role in lipid metabolism
[31]. Davidson et al.’s [32] study found that the LP-PLA2
level of MCI patients was higher than that of healthy controls,
and the higher the level of LP-PLA2 was, the more severe the
degree of cognitive impairment. Yin et al. [33] study found
that LP-PLA2 was associated with the APOEε4 gene, and
individuals carrying the APOEε4 gene were more likely to
have elevated LP-PLA2. In addition, LP-PLA2 is involved in
inflammatory and lipidmetabolism processes, and it mediates
the biological activity of phospholipid substrates, thereby
exacerbating inflammatory and oxidative stress responses
[34]. Our results showed that PLA2G7 levels were signifi-
cantly higher in the MCI and AD groups than in the normal
cognition control group, which is consistent with previous
studies. The APOEε4 gene is one of the important potential
risk factors for MCI, which indirectly demonstrates the asso-
ciation between PLA2G7 and MCI; therefore, PLA2G7 has
the potential to be an important biomarker for the diagnosis
of MCI and AD.

UBR5 is a member of the E3 ubiquitin ligase family
associated with ubiquitination. It has been confirmed by a
genome-wide association study that UBR5 is an important
biomarker in the progression of AD [35]. Over time, UBR5
levels changed significantly over the course of the disease. In
addition, there is an association between Aβ abnormalities
and ubiquitin–proteasome system dysfunction in AD [36].
Early in the disease, hippocampal proteasome activity is
reduced, and protein aggregation reduces proteasome func-
tion, most likely due to Tau and Aβ oligomerization. The
expression of the ubiquitin-binding enzyme E2K (E2-25K/
HIP-2) is upregulated in Aβ-induced neurons and has been
shown to inhibit proteasome function through its association
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FIGURE 7: Key biomarkers in the pathogenesis from MCI to AD; the
crucial involvement of six significant biomarkers (APOE, PLA2G7,
UBR5, MMP9, STAT5B, and S100A8) in the pathogenesis of Alz-
heimer’s disease (AD) from mild cognitive impairment (MCI). It
emphasizes the roles of three main pathogenic processes: (1) acti-
vation of RAGE receptors, highlighting the impact of neuroinflam-
mation and neuronal damage; (2) LDL (low-density lipoprotein)
remodeling, pointing to its role in amyloid-beta accumulation and
plaque formation; and (3) the UBR5-mediated ubiquitination cas-
cade alongside proteasomal degradation, underlining the ubiquitin-
proteasome system (UPS)’s crucial function in maintaining protein
quality control. These processes signify pivotal biological changes
that occur as the disease progresses fromMCI to dementia, suggest-
ing that these biomarkers and their associated pathways offer
potential targets for therapeutic intervention.

18 Mediators of Inflammation



Cohort

① Proteomics analysis ② Machine depth analysis ③ Validation

N M

Mfuzz PPI

APOE
UBR5

MMP9 PLA2G7

STAT5BUbiquitin modification
Endomembrane system

RAGE receptor binding

Enriched pathways

Lipid metabolism

Cytoplasmic translational initiation
low-density lipoprotein particle remodeling

S100A8

ELISA

Substrate

Label A

Label B

Label C

Label D

Label E

Label F

Label G

Label H

Label I

Label J

La
be

l 1

La
be

l 2

La
be

l 3

La
be

l 4

La
be

l 5

A

N M A
N M A

Plasma LC–MS/MS Proteomes

FIGURE 8: The paradigm and results of this study.

Mediators of Inflammation 19



with the mutant ubiquitin, ubiquitin B+ 1 (UBB+ 1) [37].
The results of this study also showed that the UBR5 level in
the MCI group was significantly higher than that in the
normal cognition control group. The level of UBR5 in the
AD group was significantly higher than that in the MCI
group. However, the mechanism of action between UBR5
dysfunction and cognitive impairment remains to be further
studied.

The fact that matrix metallopeptidase 9 (MMP9) levels
are significantly elevated in the course of many neurological
diseases has been demonstrated repeatedly, and postmortem
studies have observed higher levels of MMP9 in various brain
tissues in patients with AD than in cognitively healthy
patients, for example, in cytoplasmic neurofibrillary tangles,
amyloid plaques, and blood vessel walls in the hippocampus
and cerebral cortex [38]. The inhibition of MMP9 promotes
Aβ passage through the BBB, thereby promoting Aβ trans-
port, and eliminating MMP9 regulation alters brain Aβ levels
by promoting lipoprotein receptor passage through the BBB
[39]. High levels of MMP9 degrade the base proteins in
blood vessels, leading to the destruction of the BBB and brain
damage. On the other hand, the injection of Aβ increases
MMP9 expression, and this increase has been associated with
the development of cognitive impairment and neurotoxicity
[40]. Our work also found that plasma MMP9 levels were
significantly increased in the MCI and AD groups compared
to the normal cognition control group, and the level of
MMP9 in the AD group was higher than that in the MCI
group. Therefore, MMP9 is closely correlated with the pro-
gression of AD and can be used as a biomarker for diagnosis
and treatment.

STAT5B is short for signal transducer and activator of
transcription 5B. STAT proteins are major proteins involved
in the regulation of synaptic plasticity, neuroprotection, and
cognitive function. A recent continuous cohort study [41]
found that STAT5B may serve as a tumor-associated molec-
ular determinant of neurocognitive deficits in patients with
diffuse glioma. Cognitive performancemay be affectedmainly
through mechanisms such as affecting neuronal communica-
tion. Previous studies [42] have also found that mice without
STAT5 genes show obvious memory deficits. STAT5 affects
cognitive processes by inhibiting the expression of its target
gene, IGF-1, suggesting that STAT5 plays an important role
in learning and memory. In this study, ELISA verified that
STAT5B levels were increased significantly in the MCI group
and AD group compared with the normal cognition control
group, consistent with the trends observed in previous studies,
suggesting that STAT5 plays an important role in the progres-
sion of cognitive disorders, and its blood level can be used as a
potential biomarker for diagnosis and treatment.

S100A8 refers to migration inhibitory factor-related pro-
tein-8, also known as MRP8. S100A8 has been shown to
activate the MAP kinase [43] and NF-κB [44] signaling path-
ways and has been shown to mediate the toxic and proin-
flammatory effects of Aβ [45]. S100A8 is a calcium-regulating
inhibitor of Aβ42 aggregation. Increased levels of S100A8
promote the formation of Aβ plaques, which in turn aggravate
neuroinflammation [46]. S100A8 alters APP processing,

increases β-secretase activity, and leads to more Aβ peptide
production. Positive feedback between S100A8 and Aβ42 has
been observed, and the increase in S100A8 levels was closely
related to hippocampal Aβ deposition, which may, in turn, be
a promoter of brain Aβ deposition [45]. Our experimental
results also showed that S100A8 is the main disease-causing
gene ofMCI andAD, and S100A8 has high connectivity in the
protein–protein interaction network of MCI and AD. The
level of S100A8 is significantly different in different stages of
disease and can be used in the diagnosis of cognitive impairment.

This study presents a novel exploration into the patho-
genesis of MCI, particularly focusing on the roles of lipid
metabolism and ubiquitinationmodification as significant pre-
cursors to AD. Our findings introduce six proteins (PLA2G7,
UBR5, APOE, MMP9, STAT5B, and S100A8) as highly sensi-
tive predictive markers. These markers hold promise for iden-
tifying the transition from normal cognitive function to MCI
and subsequently to AD. By determining critical detection
time points, these biomarkers could significantly enhance early
clinical diagnosis and the initiation of effective treatments for
AD (Figure 8).

Our years of dedicated research in cognitive impairment
have led us to propose criteria for the ideal MCI biomarker: it
should reflect MCI’s basic pathological features, be detected
through minimally invasive methods, yield easily interpret-
able results, be cost-effective, and possess high specificity and
sensitivity. Moreover, an ideal biomarker would indicate the
optimal timing for intervention and reflect the efficacy of
subsequent treatments. While the search for such compre-
hensive biomarkers continues globally, our study contributes
to this endeavor by highlighting potential candidates.

4.1. Limitations and Future Research Directions. Acknowl-
edging the limitations highlighted in this study, including the
study’s small sample size and cross-sectional design, future
research should aim for larger, more diverse, and longitudi-
nal studies. These studies would better establish the causality
and predictive value of identified biomarkers across different
populations and stages of cognitive decline. Expanding the range
of validation techniques beyond ELISA and incorporating
advanced diagnostic comparisons, such as with MRI or
18FDG-PET technology, will also be crucial.

5. Conclusion

In summary, our investigation underscores the emerging
significance of lipid metabolism and ubiquitin modification
in the progression of cognitive disorders. The plasma levels
of PLA2G7, UBR5, APOE, MMP9, STAT5B, and S100A8
emerge as pivotal biomarkers for predicting the evolution
from normal cognition to MCI and further degradation to
AD. These findings offer a valuable diagnostic reference and
pave the way for proactive disease management strategies.
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