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Abstract. Mobile distributed systems raise new issues such as mobility, low bandwidth of wireless channels, disconnections,
limited battery power and lack of reliable stable storage on mobile nodes. In minimum-process coordinated checkpointing, some
processes may not checkpoint for several checkpointinitiations. Inthe case of arecovery after afault, such processes may rollback
to far earlier checkpointed state and thus may cause greater loss of computation. In all-process coordinated checkpointing, the
recovery line is advanced for all processes but the checkpointing overhead may be exceedingly high. To optimize both matrices,
the checkpointing overhead and the loss of computation on recovery, we propose a hybrid checkpointing algorithm, wherein an
all-process coordinated checkpoint is taken after the execution of minimum-process coordinated checkpointing algorithm for a
fixed number of times. Thus, the Mobile nodes with low activity or in doze mode operation may not be disturbed in the case of
minimum-process checkpointing and the recovery line is advanced for each process after an all-process checkpoint. Additionally,
we try to minimize the information piggybacked onto each computation message. For minimum-process checkpointing, we
design a blocking algorithm, where no useless checkpoints are taken and an effort has been made to optimize the blocking of
processes. We propose to delay selective messages at the receiver end. By doing so, processes are allowed to perform their
normal computation, send messages and partially receive them during their blocking period. The proposed minimum-process
blocking algorithm forces zero useless checkpoints at the cost of very small blocking.
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1. Introduction

In the mobile distributed system, some of the processes are running on mobile hosts (MHs). An MH
communicates with other nodes of the system via a special node called mobile support station (MSS) [1].
A cell is a geographical area around an MSS in which it can support an MH. An MH can change its
geographical position freely from one cell to another or even to an area covered by no cell. An MSS
can have both wired and wireless links and acts as an interface between the static network and a part of
the mobile network. Static network connects all MSSs. A static node that has no support to MH can be
considered as an MSS with no MH.

Wang and Igbal [30] describe the applications of mobile technology in healthcare. In paper [24],
alternative data storage solution for mobile messaging services is provided. Location Management
techniques for mobile systems are given in [11,27]. Christoph Endres [10] provides a survey of soft-
ware infrastructures and frameworks for ubiquitous computing. Jayaputera and Taniar [14] propose an
approach of mobile query processing when the users location moves from one Base Station to another
and the queries cross multi-cells. Cooperative caching, which allows sharing and coordination of cached
data among clients, is a potential technique to improve the data access performance and availability in
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mobile ad hoc networks. N. Chand et al. [7] propose a utility based cache replacement policy to improve
the data availability and reduce the local cache miss ratio.

A checkpoint is a local state of a process saved on stable storage. In a distributed system, since
the processes in the system do not share memory, a global state of the system is defined as a set of
local states, one from each process. The state of channels corresponding to a global state is the set of
messages sent but not yet received. A global state is said to be “consistent” if it contains no orphan
message; i.e., a message whose receive event is recorded, but its send event is lost. To recover from
a failure, the system restarts its execution from a previous consistent global state saved on the stable
storage during fault-free execution. This saves all the computation done up to the last checkpointed state
and only the computation done thereafter needs to be redone. In distributed systems, checkpointing can
be independent, coordinated [3,9,15,29] or quasi-synchronous [2,12]. Message Logging is also used for
fault tolerance in distributed systems [25].

In coordinated or synchronous checkpointing, processes take checkpoints in such a manner that the
resulting global state is consistent. Mostly it follows two-phase commit structure [3,9,15]. In the first
phase, processes take tentative checkpoints and in the second phase, these are made permanent. The
main advantage is that only one permanent checkpoint and at most one tentative checkpointis required to
be stored. In the case of a fault, processes rollback to last checkpointed state. The Chandy-Lamport [6]
algorithm is the earliest non-blocking all-process coordinated checkpointing algorithm. In this algorithm,
markers are sent along all channels in the network which leads to a message complexity 8, @l
requires channels to be FIFO. Elnozahy et al. [9] proposed an all-process non-blocking synchronous
checkpointing algorithm with a message complexity of O(N). In coordinated checkpointing protocols,
we may require piggybacking of integer csn (checkpoint sequence number) on normal messages [5,9,16,
19,29]. Kumar et al. [18] proposed an all-process non-intrusive checkpointing protocol for distributed
systems, where just one bit is piggybacked on normal messages. It results in extra overhead of vector
transfers during checkpointing.

The existence of mobile nodes in a distributed system introduces new issues that need proper handling
while designing a checkpointing algorithm for such systems. These issues are mobility, disconnection,
finite power source, vulnerable to physical damage, lack of stable storage etc. These issues make tradi-
tional checkpointing technigues unsuitable to checkpoint mobile distributed systems [1,5,26]. To take a
checkpoint, an MH has to transfer a large amount of checkpoint data to its local MSS over the wireless net-
work. Since the wireless network has low bandwidth and MHs have low computation power, all-process
checkpointing will waste the scarce resources of the mobile system on every checkpoint. Prakash and
Singhal [26] gave minimum-process coordinated checkpointing protocol for mobile distributed systems.
In minimum-process coordinated checkpointing algorithms, only a subset of interacting process (called
minimum set) is required to take checkpoints in an initiation. A pro¢gss in the minimum set only
if checkpoint initiator process is transitively dependent uporPit.is directly dependent upoh; only
if there existsn such thatP; receivesn from P, in the current checkpointing interval [CI] arfe}, has
not taken its permanent checkpoint after sending

A good checkpointing protocol for mobile distributed systems should have low overheads on MHs
and wireless channels and should avoid awakening of MHs in doze mode operation. The disconnection
of MHs should not lead to infinite wait state. The algorithm should be non-intrusive and should force
minimum number of processes to take their local checkpoints [26]. In minimum-process coordinated
checkpointing algorithms, some blocking of the processes takes place [4,15], or some useless checkpoints
are taken [5,16,19].

Acharya and Badrinath [1] gave a checkpointing protocol for mobile systems. In this approach, an MH
takes a local checkpoint whenever a message receipt is preceded by the message sent at that MH. This
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algorithm has no control over checkpointing activity on MHs and depends totally on communication
patterns. In worst case, the number of local checkpoints taken will be equal to the number of computation
messages, which may lead to high checkpointing overhead.

Cao and Singhal [5] achieved non-intrusiveness in the minimum-process algorithm by introducing the
concept of mutable checkpoints. The number of useless checkpoints in [5] may be exceedingly high in
some situations [19]. Kumar et al. [19] and Kumar et al. [16] reduced the height of the checkpointing
tree and the number of useless checkpoints by keeping non-intrusiveness intact, at the extra cost of
maintaining and collecting dependency vectors, computing the minimum set and broadcasting the same
on the static network along with the checkpoint request.

Koo and Toeg [15], and Cao and Singhal [4] proposed minimum-process blocking algorithms. Neves
et al. [22] gave a loosely synchronized coordinated protocol that removes the overhead of synchroniza-
tion. Higaki and Takizawa [13] proposed a hybrid checkpointing protocol where the mobile stations
take checkpoints asynchronously and fixed ones synchronously using the algorithm [15]. Kumar and
Kumar [20] proposed a minimum-process coordinated checkpointing algorithm where the number of
useless checkpoints and blocking are reduced by using a probabilistic approach. A process takes its
mutable checkpoint only if the probability that it will get the checkpoint request in the current initiation
is high.

Transferring the checkpoint of an MH to its local MSS may have a large overhead in terms of
battery consumption and channel utilization. To reduce such an overhead, an incremental checkpointing
technique could be used [28]. Only the information, which changed since last checkpoint, is transferred
to MSS.

In the present study, we design a hybrid coordinated checkpointing algorithm for mobile distributed
systems, where an all-process checkpoint is taken after executing minimum-process algorithm for a fixed
number of times. By proposing a hybrid scheme, we try to balance the checkpointing overhead and the
loss of computation on recovery. We also reduce the piggybacked information onto each computation
message. For minimum-process checkpointing, we propose a blocking algorithm, where processes are
allowed to perform their normal computation, send messages and partially receive them during the
blocking period.

The rest of the paper is organized as follows. We formulate the hybrid checkpointing algorithm in
Section 2. The correctness proof is provided in Section 3. In Section 4, we evaluate the proposed scheme.
Section 5 presents conclusions.

2. Theproposed hybrid checkpointing algorithm
2.1. Systemmodel

Our system model is similar to [5,19]. There amespatially separated sequential processes

Py, Py, ..., P,_1, running on MHs or MSSs, constituting a mobile distributed computing system. Each
MH/MSS has one process running on it. The processes do not share memory or clock. Message passing
is the only way for processes to communicate with each other. Each process progresses at its own speed
and messages are exchanged through reliable channels, whose transmission delays are finite but arbitrary.
A processinthe cell of MSS means the process is either running on the MSS or on an MH supported by it.

It also includes the processes of MHs, which have been disconnected from the MSS but their checkpoint
related information is still with this MSS. We also assume that the processes are non-deterministic. The
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ith CI (checkpointing interval) of a process denotes all the computation performed betwé@rgits!
(i + 1)* checkpoint, including thé™ checkpoint but not théi + 1) checkpoint.

When an MH sends an application message, it is first sent to its local MSS over the wireless cell.
The MSS piggybacks appropriate information with the application message, and then routes it to the
destination MSS or MH. When the MSS receives an application message to be forwarded to a local MH,
it first updates the data structures that it maintains for the MH, strips all the piggybacked information, and
then forwards the message to the MH. Thus, an MH sends and receives application messages that do not
contain any additional information; it is only responsible for checkpointing its local state appropriately
and transferring it to the local MSS.

2.2. Basicidea

In minimum-process checkpointing, some processes, having low communication activity, may not
be included in the minimum set for several checkpoint initiations and thus may not advance their
recovery line for a long time. In the case of a recovery after a fault, this may lead to their rollback
to far earlier checkpointed state and the loss of computation at such processes may be exceedingly
high. Furthermore, due to scarce resources of MHSs, this loss of computation may be undesirable. In
all-process checkpointing, recovery line is advanced for each process after every global checkpoint
but the checkpointing overhead may be exceedingly high, especially in mobile environments due to
frequent checkpoints. MHs utilize the stable storage at the MSSs to store checkpoints of the MHs [1].
Thus, to balance the checkpointing overhead and the loss of computation on recovery, we design a
hybrid checkpointing algorithm for mobile distributed systems, where an all-process checkpointis taken
after certain number of minimum-process checkpoints. The number of times, the minimum-process
checkpointing algorithm is executed, depends on the particular application and environment and can be
fine-tuned.

In coordinated checkpointing, an ever-increasing integer csn is generally piggybacked onto normal
messages [9,29]. We propose a strategy to optimize the size of the csn. In order to address different
checkpointing intervals, we have replaced integer csn with k-bit Cl. Integer csn is monotonically increas-
ing, each time a process takes its checkpoint, it increments its csn by 1. k-bit Cl is used to serve the
purpose of integer csn. The value of k can be fine-tuned. If we use p-bit CI, we will be able to distinguish
only 2° different Cls and it will be implicitly assumed that no message is delivered dfteri2Cls. The
lower limit of k is ‘1" which will lead to CI of ‘1’ bit [18].

In the present study, we assume that all-process coordinated checkpoint is taken after the execution of
minimum-process algorithm for seven times which requires only three-bit Cl. In this case, any delay of
a message that extends to more than seven Cls may cause a false checkpoint [18], i.e., it may trigger a
checkpoint even if an initiator does not trigger checkpointing activity. Thus, in this algorithm, such delay
needs to be avoided. The limit of maximum delay period of a message can be extended to fifteen Cls
by using four-bit Cl, but it will increase the information piggybacked onto each computation message
by 1-bit. By using four-bit Cl, we have the option of executing minimum-process algorithm for 3, 7 or
15 number of times before taking an all-process checkpoint. If we use two-bit Cl, the maximum delay
of a massage should not exceed three Cls, which seems to be unreasonably small in mobile systems. In
this case, minimum-process algorithm needs to be executed for three times before taking an all-process
checkpoint.

The minimum-process checkpointing algorithm is based on keeping track of direct dependencies
of processes. Similar to [4], initiator process collects the direct dependency vectors of all processes,
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computes minimum set, and sends the checkpoint request along with the minimum set to all processes.
In this way, blocking time has been significantly reduced as compared to [15].

During the period, when a process sends its dependency set to the initiator and receives the minimum
set, may receive some messages, which may alter its dependency set, and may add new members to the
already computed minimum set. In order to keep the computed minimum set intact and to avoid useless
checkpoints as in [16,19], we propose to block the processes for this period. We have classified the
messages, received during the blocking period, into two types: (i) messages that alter the dependency
set of the receiver process (i) messages that do not alter the dependency set of the receiver process. The
former messages need to be delayed at the receiver side. The messages of the later type can be processed
normally. All processes can perform their normal computations and send messages during their blocking
period. When a process buffers a message of former type, it does not process any message till it receives
the minimum set so as to keep the proper sequence of messages received. When a process gets the
minimum set, it takes the checkpoint, if it is in the minimum set. After this, it receives the buffered
messages, if any. By doing so, blocking of processes is reduced as compared to [4].

2.3. Data Structures

Here, we describe the data structures used in the proposed checkpointing protocol. A process on MH
that initiates checkpointing, is called initiator process and its local MSS is called initiator MSS. If the
initiator process is on an MSS, then the MSS is the initiator MSS. All data structures are initialized on
completion of a checkpointing process if not mentioned explicitly.

() Each process P, maintains the following data structures, which are preferably stored on local MSS.

CCi; : Three-bit current checkpointing interval.

nci; : Three-bit next checkpointing interval. Maintenanceafandnci is given below in point
(iv). It is the next checkpointing interval, i.e., ; takes a new checkpoint, the new
checkpointing interval will be ngi

tentative; : A flag that indicates thaP; has taken its tentative checkpoint for the current initiation.

ddv;[]: A bit vector of sizen. ddv;[j] is setto ‘1’ if P; receives a message froR} such that?;
becomes directly dependent upBpfor the current Cl. Initially, the bit vector is initialized
to zeroes for all processes except for itself, which is initialized to ‘1’. For;Mlis kept
at local MSS. On global commitldv] ] of all processes are updated. In all-process
checkpointing, each process initializesdtl/[ ] on tentative checkpoint. Maintenance of
dadv[ ] is given in point (vi) below.

blocking; : A flag that indicates that the process is in blocking period. Setto ‘1’ wheneceives the
ddv[ ] request; set to ‘0’ on the receipt of the minimum set.

buffer; :  Aflag. Setto ‘1’ whenP; buffers first message in its blocking period.

c state; :  Aflag. Setto ‘1’ on the receipt of the minimum set. Set to ‘0’ on receidogmit or
abort.

(i) Initiator MSS maintains the following Data structures:
minset[ ]: A bit vector of sizen. Computed by taking transitive closureddv] ] of all processes
with theddv[ ] of the initiator process [4]. Minimum set{ P, such thaminset[k]=1}.
R[]: A bit vector of lengthn. R[I]is setto ‘1’ if P; has taken a tentative checkpoint.
Timer1: A flag; set to ‘1’ when maximum allowable time for collecting minimum-process global
checkpoint expires.
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Timer2: A flag; set to ‘1’ when maximum allowable time for collecting all-process checkpoint
expires.

(iii) Each MSS (including initiator MSS) maintains the following data structures.

D[] : A bit vector of length n.D[i|]=1 implies P; is running in the cell of MSS.

EE[]: A bit vector of lengthn. EE[i] is set to ‘1’ if P; has taken a tentative checkpoint and
DJi] =1.

s hit: A flag at MSS. Initialized to ‘0. Setto ‘1’ when some relevant process in its cell
fails to take its tentative checkpoint.

P, : Initiator process identification.

CCi;y, : P,,’s cci after it took its tentative checkpoint;

matd,,.s| ] : A bit dependency matrix to determine whether a message of a particular Cl will affect the
davl ] of receiver or notn rows denote the processes and eight columns denote eight
Cls.

gchkpt:  Aflagwhichissetto ‘1’ onthe receipt of (i) checkpointrequestin all-process checkpointing
or (ii)ddv [ ] request in minimum-process algorithm.

chkpt A flag which is set to 1 when the MSS receives the checkpoint request in the minimum-
process algorithm.
mss.id An integer. It is unique to each MSS and cannot be null.

(iv) Maintenance of Different Cls

Initially, for a processgcci andnci are [000] and [001] respectively. When a process updates its
Cls, it sets: (i)cci=nci (i) nci=modulo 8¢-+nci); for simplicity, we only mention:cci=nci. When a
process takes its tentative checkpoint, it updates its Cls. This updating is undone if the checkpointing
process is aborted. During minimum-process checkpointing, all such processes, that are not part of the
minimum-set, also update their Cls on commit. In this way, when no checkpointing process is going on,
all the processes are having the same valuesiof

(v) Maintenance of matd[ ]
Initially, an all-process global checkpoint commit, witt;,, = [000], is assumed. On global checkpoint
commit withcci;, =cci., matd[ ] is maintained as follows:

if (cci, ==000) // all-process global checkpoint commit
{initialize matd[ 1;
for (k= 0; k<n; k++)
matd[k,0]=1;}
ese
{ for (k= 0; k<n; k++) // minimum-process checkpoint commit
matd[k, cci.]=1;
if (minset[k]==1)
{ for (s=0; s<ccCi;s++)
matd[k, s]=0;}}

(vi) Maintenance of dav[ ]
In this section, we describe, how tlielv vector of a proces$; is updated on the receipt of a
message or during minimum-process checkpointing. Whesets itsc_state, it maintains two temporary
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bit dependency vectorsidvl] ] andddv?[ ], of length n. These are initialized to all zeroes. The
dependencies created during checkpointing process are temporarily maintained in these vectors.

checkpoint completion, these vectors update dependencies of the process.
Supposep; receivesn from P;, wherem.cci is thecci at P; at the time of sending:. minset[ | is

the exact minimum set received along with the checkpoint request. The dependency vetdiddst

ddvl andddv2] are maintained as follows:

if (blocking;==0 Ac_state;==0) //no checkpointing going on
{if ( matd[j, m.cci]==1) dav[j] =1, //P; becomes dependent upé} after receivingn
elsereceivefn); // P; has taken some permanent checkpoint after sendingp ddv| | is
/lupdated

}
elseif ( blocking;==1) receive(n); // P; is in blocking period; naldv[ ] is updated:;
I/selective messages are buffered during this period [Refer Section 2.4(c) and 2.5(c)]
elseif ((tentative;Am.cci= =cci; ) Vv (!tentative; Am.cci= =nci;)) ddv1[j] =1,
/P; has taken its checkpoint for the current initiation before senging

else if (matd[j, m.cci]==1) ddv2[j]=1; // Neither P; has taken its checkpoint for the current

/linitiation nor P; has taken any permanent checkpoint after sending m
elsereceivefn);
On Commit or Abort, ddv vector of P; isupdated asfollows:
Case 1. The checkpointing processisaborted.
for (k= 0; k<n; k++)
if (davl[k]==1V ddv2[k]==1) ddv[k]=1;}
Case 2. The checkpointing processis committed and P;isin the minimum set.
for (k=0; k<n; k++)
{ddv[k] =O0;
if (ddvl[k]==1) ddv[k]=1;
if (ddv2[k]==1 A minset[k]==0) ddv[k]=1;}
dav[i] =1,
Case 3. The checkpointing processiscommitted and P;is not in the minimum set.
for (k= 0; k<n; k++)
{ if (ddv[k]==1 A minset[k] ==1) ddv[k]=0;
if (ddvl[k]==1) ddv[k]=1;
if (ddv2[k]==1 A minset[k] ==0) davik]=1;}

2.4. The proposed minimum:-process checkpointing algorithm

(a) Checkpoint initiation

On

The initiator MSS sends a request to all MSSs (MSSs of the mobile system under consideration) to

send theddv vectors of the processes in their cells. Atlv vectors are at MSSs and thus no initial
checkpointing messages or responses travels wireless channels. On receigdwjthequest, an MSS

records the identity of the initiator process (say fwss mssid;,, ) and initiator MSS, sends back tdev{
] of the processes inits cell, and sgtshkpt. If the initiator MSS receives a request flv] ] from some

other MSS (say ms&l= mssid,,2) and mssd,,, is lower than mssd;,,», the current initiation (having
mssid= mssid;,,) is discarded and the new one (having oss mssid;,2) is continued. Similarly,

if an MSS receives ddv requests from two MSSs, then it discards the request of the initiator MSS with
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lower mssid. Otherwise, on receivinddv vectors of all processes, the initiator MSS compumesset|
], sends checkpoint request to the initiator process and sends checkpoint request alongmiitbethe
] to all MSSs.

(b) Reception of a checkpoint request

On receiving the checkpoint request along withthiaset] ], an MSS, say MS$, takes the following
actions. It sends the checkpoint requesPioonly if P; belongs to thaminset[ ] and P; is running in
its cell. On receiving the checkpoint requeBf,takes its tentative checkpoint and informs MS®n
receiving positive response froiy, MSS; updatescci;, nci;, resetsblocking;, and sends the buffered
messages té;, if any. Alternatively, If P; is not in theminset[ ] and P; is in the cell of MSS, MSS;
resetdlocking; and sends the buffered messag®tpif any. For a disconnected MH, that is a member
of minset[ ], the MSS that has its disconnected checkpoint, converts its disconnected checkpoint into
tentative one and updates its Cls.

(c) Computation message received during checkpointing

During blocking periodP; processes:, received fromP;, if following conditions are met: (i) (‘bufey
i.e. P; has not buffered any message (i.¢ci != nci;) i.e. P; has not taken its tentative checkpoint
before sendingn (iii) (ddv;[j]=1) v (matd[j, m.cci]= 0)) i.e. P, is already dependent upd?y in the
current Cl orP; has taken some permanent checkpoint after sending

Otherwise, the local MSS d?; buffersm for the blocking period of?; and setduffer;. On receiving
messagesldv vectors are updated as described in Section 2.3(vi).

(d) Termination
When an MSS learns that all of its processes in minimum set have taken their tentative checkpoints or
at least one of its process has failed to checkpoint, it sends the response message to the initiator MSS.
Finally, initiator MSS sends commit or abort to all processes. On receiving abort, a process discards its
tentative checkpoint, if any, and undoes the updating of data structures. On receiving commit, processes,
in theminset[ ], convert their tentative checkpoints into permanent ones. On receiving commit or abort,
all processes update theltv vectors and other data structures.

2.5. Formal outline of the proposed minimum-process algorithm

(a) Actions Taken when P; sendsm to P;:
send @;, m, cci;);

(b) Algorithm Executed at the initiator MSS:

1. If the checkpoint initiator process, s&y,, runs on an MH, it sends the checkpoint initiation
request to its local MSS, s@ySS;,,.

2. if (g_chkpt) { discard the checkpoint initiation request; inform initiator; gxit
/I some global checkpoint recording is already going on

3. MSS;, sends request to all MSSs fdav vectors; sey_chkpt;,,.

4. On the receipt of request to send ddv vectors from some other process, say Py, :
if (P,.ID> P;,.ID) {discardP;,’s initiation; honorP;’s request; exit;
else { ignore the request a?;, ;}// it avoid concurrent initiations of the algorithm

5. Onthereceipt of all ddv vectors:

(i) Computeminset[ ] // compute minimum set of processes
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(i) Send checkpoint request 18,,; CCi;,,=NCi;y;
(iii) Sendtake_checkpoint (P;,, MSS;,,, cci;,, minset[ ]) request to all MSSs;

(o2

. Settimer1;

7. Wait for response;

8. On receiving Response (P;,,, MSS;,,, MSS;, EE[ ], s_bit) or at timer out {timer1}:
/I MSS; is the identity of MSS sending the response

/I EE[ ] contains the processes at M3ghich have checkpointed

(i) 1f ((timerl) Vv (s_bit))

{ send messag#ort( P;,, MSS;,, cci;, ) to all MSSs; exit}
(i) for (k= 0; k<n; k++)

if (EE[K]= =1) R[K] =1;

9. for (k=0; k<n; k++)
if (R[j] #minset[j]) go to step 7; //Itimplies response froi; is still awaited.
10. Send messagemmit (P;,, MSS;,, cci;,) to all MSSs;

(c) Actions taken when P; receives m from P;:
if ('blocking;) receivefn);
elseif((!buffer;)A( m.cci = nci;){
if (ddv;[j]= =1V (matd[j, m.cci]= 0) receivefn);}
else {buffer(m); setbuffer;;}
/I P; updates itgldv] ] on processing m as described in Section 2.3 (vi)

(d) Algorithm Executed at any MSS, say MSS;:
1. Upon receiving a message to send ddv| ] fromthe initiator MSS,
if (! g-chkpt)
{Sendddv[ ] of all processes in its cell ;
Setg _chkpt;
for (j=0; j<n; j++)
if (D[j]==1) setblocking; ;}
elseif (Ppew.ID> P,y.1D)
Il P\, 1S the new initiator process,,4 is the earlier initiator process.
Sendddv[ ] of all processes in its cell;
else {ignore the request;
2. Upon receiving message take_checkpoint(P;,,, MSS;,,, cCi;,, minset[ ]):

(i) if (chkpt) discard the checkpoint request; // duplicate request
(i) setchkpt; initialize EE[ ]; resets_bit;
(iii) for (j=0; j<n; j++)
{if (Dli]==1) A (minset[j] ==1))
{Send the checkpoint request®y; cci;=nci;; }
else { resetblocking;
send the buffered messagedig if any;}
}

3. Wait for a response to the checkpoint request;

21
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4. Upon receiving response to checkpoint request fromP; :

(i) if (P; has taken the tentative checkpoint successfully)
{EE[]]=1; send the buffered messaged1g if any;
resetblocking;; }
else sets_hit;
(i) if ((s-bit)v(V; s.t.(minset[j] ==1AD[j]) EE[j]=1) //some relevant process has
/ffailed to checkpoint or all relevant processes in the cell took checkpoints
send the messadresponse(P;,, , MSS;,,, MSS;, D[], s.bit) to MSS;,;;
elsego to step 3;

5. Onreceiving Commit () or Abort():

— send the request to all of its processes;
— update data structures;

(e) Algorithm Executed at any process P;:
1. Upon receiving a tentative checkpoint request:

— Take a tentative checkpoint;
— Send the response to local MSS;

2. On receiving Commit( ):

if (tentative;) {

{discard old permanent checkpoint, if any;

convert the tentative checkpoint into permanent gne;
3. Onreceiving Abort ( ):

if (tentative;)

{discard the tentative checkpoit;

2.6. All-process checkpointing

Our all process checkpointing algorithm is similar to EInozahy et al. [8]. Initiator MSS sends request to
all processes to checkpoint. On receiving the checkpoint request, a process takes the tentative checkpoint
if it has not taken the checkpoint during current initiation. After taking a checkpoint, a process updates
its Cls. A process, after taking its tentative checkpoint or knowing its inability to take the checkpoint,
informs its local MSS.

When a process sends a computation message, it appecuisiith the message. When a process, say
F;, receives a computation messageom some other process, s&y P; takes the tentative checkpoint
before processing the messagmitci equalanci;; otherwise, it simply processes the message.

When an MSS learns that its all processes have taken the tentative checkpoints successfully or at least
one of its processes has failed to checkpoint, it sends the response to the initiator MSS. Finally, initiator
MSS sends commit or abort to all MSSs.

On commit, all processes convert their tentative checkpoints into permanent ones and update their data
structures. For MHs, MSSs update the data structures. On abort, all processes discard their tentative
checkpoints, if any, and undo the updating of data structures.
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2.7. Handling node mobility and disconnections

An MH may be disconnected from the network for an arbitrary period of time. The Checkpointing
algorithm may generate a request for such MH to take a checkpoint. Delaying a response may significantly
increase the completion time of the checkpointing algorithm. We propose the following solution to deal
with disconnections that may lead to infinite wait state.

When an MH, sapMH;, disconnects from an MSS, sM5S;, MH; takes its own checkpoint, sals-
connect_ckpt;, and transfers it tMSS,. MSS, stores all the relevant data structures disdonnect ckpt;
of MH; on stable storage. During disconnection peril&S;, acts on behalf oMH; as follows. In
minimum-process checkpointing, MH; is in theminset[ ], disconnect_ckpt; is considered aMH;’s
checkpoint for the current initiation. In all-process checkpointingyJiif;’'s disconnect_ckpt; is already
converted into permanent one, then the committed checkpoint is considered as the checkpoint for the
current initiation; otherwisegisconnect_ckpt; is considered. On global checkpoint comnhitSS,. also
updatesMH;’s data structures, e.ddv[ ], cci etc. On the receipt of messages H;, MSS, does not
updateMH;’s ddv[ ] but maintains two message queues, daym g andnew m g, to store the messages
as described below.

On thereceipt of amessagemfor MH; at M SS;, from any other process:

if((m.cci= = cci; vV (m.cci= =nci;)V (matd[j, m.cci]= =1))
add (n, new_m_q); // keep the message in haw._q
else

add(m, old_m_q);
On all-process checkpoint commit:

Mergenew_m_q to old_m_g;
Freefew_m.q);

WhenMH;, enters in the cell oMSS;, it is connected to th#SS; if g_chkpt; is reset. Otherwise, it
waits forg_chkpt; to be reset. Before connectidvSS; collectsMH;’s ddv[ ], cci, new_m_g, old_m_gfrom
MSS;; andMSS;, discarddViH;’s support information andisconnect_ckpt;. MSS; sends the messages in
old_m_qg to MH; without updating theldyv] ], but messages inew_m_q, updateddv| ] of MH,.

2.8. Example

We explain our minimum-process checkpointing algorithm with the help of an example. In Fig. 1,
at time t, P, initiates checkpointing process and sends request to all processes faldtheéectors.
During the blocking time of a process, selective messages are buffered as folfowsocessesn,
becausepP; has taken permanent checkpoint after sending P processesng, becauseddvs [3] is
already 1 due to receive af3. P, buffersmy, becauseddv, [4] is 0 due to non-receipt of any message
from P, during current CI.P, buffersmsg to keep the proper sequence of messages recedgrd. [5]
equals 1 due to @) therefore P, processesiy. Similarly, Ps processes: g, becauseddv; [4] equals 1
due to m. Ps5 buffersm,s, becauseP; has taken a hew checkpoint before sending and P; has not
received the checkpoint request fram.

At time t;, P, receives theddv[ ] from all processes [not shown in the figure], comput@sset| |
[which in case of Fig. 1i$ P, P», P3}], setscci;=nciy, sends checkpoint request along with thieset]

] to all processes, and takes its own tentative checkpoint.
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When P, gets the checkpoint request, it finds itself a member ofitimset [ ]. It takes the following
actions: (i) take its own tentative checkpoint, (ii) seit,=nci,, (iii) send the response tB; [not shown
in the figure], (iv) process the buffered messages,#®.andms. When P;5 receives the checkpoint
request, it is not a member of tmnset[ |; therefore, it does not checkpoint but processes the buffered
message, i.enm3. At time t3, P, receives responses, decides to commit or abort the checkpointing
activity, and sends abort or commit request to all processes.

2.9. Multiple concurrent initiations

We point out the following problems in allowing concurrent initiations in minimum-process check-
pointing protocols, particularly in case of mobile distributed systems:

(i) If B, andP; concurrently initiate checkpointing process a@doelongs to the minimum set &,
then P;’s initiation will be redundant. Some processesHyis minimum set, will unnecessarily
take multiple redundant checkpoints. This will waste the scarce resources of the mobile distributed
system.

(i) In case of concurrent initiations, multiple triggers need to be piggybacked on normal messages
[23]. Trigger contains the initiator process identification and its csn. This leads to considerable
increase in piggybacked information.

Concurrent initiations may exhaust the limited battery life and congest the wireless channels. There-
fore, the concurrent executions of the proposed protocol are not considered.
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2.10. Handling failures during checkpointing

Since MHs are prone to failure, an MH may fail during checkpointing process. Sudden or abrupt
disconnection of an MH is also termed as a fault. Suppbsés waiting for a message fro; and
P; has failed, thenP; times out and detects the failure £f. If the failed process is not required to
checkpoint in the current initiation or the failed process has already taken its tentative checkpoint, the
checkpointing process can be completed uninterruptedly. If the failed process is not the initiator, one way
to deal with the failure is to discard the whole checkpointing process similar to the approach in [15,26].
The failed process will not be able to respond to the initiator’s requests and initiator will detect the failure
by timeout and will abort the current checkpointing process. If the initiator fails after secalimgit or
abort message, it has nothing to do for the current initiation. Suppose, the initiator fails before sending
commit or abort message. Some process, waiting for the checkpoint/commit request, will timeout and
will detect the failure of the initiator. It will sendbort request to all processes discarding the current
checkpointing process.

The above approach seems to be inefficient, because, the whole checkpointing process is discarded
even when only one participating process fails. Kim and Park [17] proposed that a process commits its
tentative checkpoints if none of the processes, on which it transitively depends, fails; and the consistent
recovery line is advanced for those processes that committed their checkpoints. The initiator and other
processes, which transitively depend on the failed process, have to abort their tentative checkpoints.
Thus, in case of a node failure during checkpointing, total abort of the checkpointing is avoided.

3. Correctness proof

The correctness proof for the proposed minimum-process checkpointing algorithm is as under:
Let GG = {Ci ., Coy, ..., C,.} be some consistent global state created by our algorithm, where
C;.. is thez'™ checkpoint ofP;.

Theorem 1. The global state created by thi@ iteration of the checkpointing protocol is consistent.

Proof. Let us consider that the system is in consistent state when a process initiates checkpointing.
The recorded global state will be inconsistent only if there exists a messagéveen two processéy
andP; such thatP; sendsn after taking the checkpoiit; ., P; receivesn before taking the checkpoint
Cj .y, and bothC; . andC); , are the members of the new global state. We prove the result by contradiction
that no such message exists. We consider all four possibilities as follows:

Casel: P; belongsto minimum set and P; does not:

As P; is in minimum set(; .. is the checkpoint taken bi;during the currentinitiation and; , is the

checkpoint taken by’; during some previous initiation i.€; , — C; . . Therefore reet) — C},,

andC; , — send {n) implies rec(n) — C;, — C; , — send {n) implies rec{n) — send {n) which

is not possible. -’ is the Lamport’s happened before relation [21].

Casell: Both P; and P; arein minimum set:

Both C; , andC} , are the checkpoints taken during current initiation. There are following possibil-

ities:

(a) P; sends m after taking the tentative checkpoint and P ; receives m before receiving request for
dependency:
Any process can take the checkpoint only after initiator receives the dependencies from all
processes. Therefore a message sent from a process after taking the checkpoint can not be
received by other process before getting the dependency request.
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(b) P; sends m after taking the tentative checkpoint and P ; receives m after getting the dependency
request but before taking the checkpoint:
In this case, following condition will be true at the time of receiving (blocking;) &&
(m.cci=nci;). Therefore;n will be buffered atP;, and it will be processed only afté?; takes
the tentative checkpoint.

(c) P; sendsmafter commit and P; receives m before taking tentative checkpoint:
As P; is in the minimum set, initiator can issue a commit only affetakes tentative checkpoint
and informs initiator. Therefore the event reg(at P; cannot take place before; takes the
checkpoint.

Caselll: P; isnot in minimumset but P; isin minimum set:
CheckpointC'; , belongs to the current initiation an@; ; is from some previous initiation. The
messagen can be received by

(i) before receiving request for dependency
(i) after receiving request for dependency but before taking the checkpgint C

If m is received during above (if;; will be included in the minimum set. I is received during
(i) above,P; will processmn, before taking the tentative checkpoint, if any of the following conditions
is true:

a. ddv;[i] =1. In this caseP; will also be included in the minimum set.
b. (matd[j, m.cci]= 0). This is possible only ifP; has taken some permanent checkpoint after
sendingn. In that casem is not an orphan message.

Case|V: Both P; and P; are not in minimum set:
Neither P; nor P; will take a new checkpoint, therefore, no suehis possible unless and until it
already exists.

Theorem 2. Checkpointing Algorithm terminates in finite time.
Proof: When initiator initiates a new checkpoint, the initiator and other processes take the
following steps:

— Initiator asks all MSSs to send tldelv vectors of processes in their cells. All MSSs send the same.

— Initiator computes the minimum set and sends it to all MSSs along with checkpoint request.

— All nodes that are members of minimum set take tentative checkpoints and inform the initiator. If
the process is at MH, then the MH may be: disconnected, changing the cell or connected. In the
first case, the disconnected checkpoint of MH is used and the last MSS converts this checkpoint
to tentative on behalf of MH. In second case, the checkpoint request is delayed and MH takes the
checkpoint in the new cell. In third case, MH takes the checkpoint as it is still connected. The MSS
that have disconnected checkpoints or the tentative checkpoints of MHs, inform the initiator.

— After getting response from all processes/MSSs, the initiator sends commit message to all the
processes.

— The processes convert their tentative checkpoints into permanent ones after receiving the commit
message from the initiator.

All nodes will complete above steps in finite time unless a node is faulty. If a node in the mini-
mum set becomes faulty during checkpointing, the whole of the checkpointing process is aborted (see
Section 2.10). Hence, it can be inferred that the algorithm terminates in finite time.
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Table 1
A comparison of average number of messages blocked during checkpointing
Message sending rate 0.001 0.01 0.1 1 10
Proposed algorithm 410 4*10°¢ 4*107° 4*107* 4*10°3

Cao-Singhal algorithm [4]  8*10° 8*10° % 8*10°° 8*10™* 8*10°°

4. Evaluation of the protocol

Our protocol is a hybrid of all-process and minimum-process coordinated checkpointing schemes. We
have also formulated a minimum-process checkpointing algorithm that can be applied independently by
using integer csn in place of k-bit Cl. Therefore, we evaluate our minimum-process algorithm and the
hybrid algorithm separately.

4.1. Evaluation of the proposed minimum-process checkpointing algorithm

4.1.1. Computation of average blocking time and average number of messages blocked

The mobile distributed system considered has N MHs and M MSSs. Each MSS is a fixed host that
has wired and wireless interface. The two MSSs are connected using a 2Mbps communication link.
Each MH or MSS has one process running on it. The length of each system message is 50 bytes. The
average delay on static network for sending system message is (8*50*1000)/(2*10800@0ns. The
blocking time is 2*0.2= 0.4 ms. In the proposed algorithm, selective incoming messages at a process
are blocked during its blocking period. We consider the worst case in which all incoming messages are
blocked. In Cao-Singhal [4] algorithm, a process can neither send nor receive any messages during its
blocking period. The number of messages blocked at a process during its blocking period depends upon
the message sending rate and blocking period and are shown in the Table 1.

The average blocking period of a message in both the algorithms is0@L2ms. Hence, the number
of messages blocked in our algorithm is less than half the number of messages blocked in the Cao-
Singhal [4] algorithm, which has got the minimum blocking time of all the existing minimum-process
blocking algorithms.

4.1.2. Performance of the proposed minimum-process algorithm
We use the following notations for performance analysis of the algorithms:

Noss: number of MSSs.

Ny number of MHs.

Cpp: cost of sending a message from one process to another.

Cst cost of sending a message between any two MSSs.

Cui: cost of sending a message from an MH to its local MSS (or vice versa).

Chst: cost of broadcasting a message over static network.

Csearch: cost incurred to locate an MH and forward a message to its current local MSS, from a
source MSS.

T average message delay in static network.

Tt average message delay in the wireless network.

Ton: average delay to save a checkpoint on the stable storage. It also includes the time to

transfer the checkpoint from an MH to its local MSS.
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N: total number of processes.

Noin: number of minimum processes required to take checkpoints.

Nt number of useless mutable checkpoints [5].

Ning: number of useless induced checkpoints [19].

Niutp: number of useless mutable checkpoints [16].

p: number of new processes found for the minimum set after the computation of tentative
minimum set at the initiator MSS [16].

h: height of the checkpointing tree in Koo-Toueg [15] algorithm.

k. number of bits used in Cl in the proposed algorithm.

m. number of times the minimum-process algorithm is executed before enforcing an all-
process algorithm in the proposed protocol.

Tecarch: average delay incurred to locate an MH and forward a message to its current local MSS.

The Blocking Time:

During the time, when an MSS sends /[ ] vectors and receives the checkpoint request, all the
processesin its cell remain in blocking period. During the blocking, a process can perform its normal
computations, send messages and partially receive them. In worst case, blocking period of a process
is 2Tg;.

The Synchroni zation message over head:

In worst case, it includes the following:
The initiator MSS broadcasts seddv| ], take checkpoint() and commit() messages to all MSSs:
3Cpst-
The checkpoint request message from initiator process to its local MSS and its respoRsg:-2
All MSSs sendddv] ] of their processes and response to checkpoint requdst; 2« Cs;.
MSSs send checkpoint and commit requests to relevant processes and receive response messages:
3th * Cwl-
Total Message Overhead (SBYOH ,inp): 3Chst+ 2Cireless+2Nmss* Cst+ 3Nmp* C.
Number of processes taking checkpoints: In our algorithm, only minimum number of processes is
required to checkpoint.

4.1.3. Comparison with other algorithms

The Koo-Toueg [15] algorithm is a minimum-process coordinated checkpointing algorithm for dis-
tributed systems. It requires processes to be blocked during checkpointing. Checkpointing includes
the time to find the minimum interacting processes and to save the state of processes on stable storage,
which may be too long. Therefore, this extensive blocking of processes may significantly reduce the
performance of the system in mobile environments where some of the MHs may not be available due to
disconnections. Each process uses monotonically increasing labels in its outgoing messages. In Koo-
Toueg algorithm [15]: (i) only minimum number of processes take checkpoints (i) message overhead
IS Npp*( 6C w1 + Csearcn) (ili) Blocking time is Ny Ty, + Tsearen + 4Tw1) [Refer Table 2]. Mes-
sage overhead and blocking time is on significantly higher side in comparison to our minimum-process
algorithm.

In Cao-Singhal algorithm [4], blocking time is reduced significantly as compared to [15]. Every
process maintains direct dependencies in a bit array of length n for n processes. Initiator process collects
the direct dependencies and makes a set of interacting procegsgs J8/hich need to checkpointalong
with the initiator. After sending its dependencies to the initiator and before receiyipg:;Sa process
remains in the blocking state. During blocking period, processes can do their normal computations but



P. Kumar / A low-cost hybrid coordinated checkpointing protocol for mobile distributed systems 29

Table 2
A comparison of system performance of the proposed min-process algorithm
Cao-Singhal [4] Cao-Singhal [5] Koo-Toueg [15] P. Kumar et al. [16] Proposed

min-process

algorithm
Avg. blocking time st 0 Noh (Ten+Tse+4T 1) O 2T,
Average no. of checkpointéV,,;n Nmin+ Nmut  Nmin Nrin + Nmutp Nmin
Average message overheadOH,,ir, 2*Npin®* Cpp N *(6Cwi + Csearch 3Chst + 2Cw1 MOH,,inp

+Cbst +(2Nmss +p) * Cst
+3th * C'Lul

Piggybacked information  Nil Integer Integer Integer Integer
Concurrent executions No Yes No No No

cannot send any messages. The authors claim that the processes can receive messages during blocking
time. The algorithm [4] is not adapted to handle the following situation. Suppgesethe checkpoint
initiator and it receives m fron®; such thatP; has taken permanent checkpoint after sending miand
receives min the current checkpointing interval before initiatio?;[6loes not send any message to any
process such thda?, becomes transitively dependent upBn P, does not need to take its checkpoint
initiated by P,. But in the above situatio® will send the checkpoint request #® unnecessarily.
This problem arises because no information is piggybacked onto normal messages so that the receiver
process can decide whether it becomes dependent upon the sender after processing the message. In
our algorithm, a three-bit checkpoint sequence numbers are piggybacked onto normal messages and
there is sufficient information at every MSS such that the receiver is able to maintain exact dependency
information. During blocking period, processes can do their normal computations, send messages and
can process selective messages. By doing so, we reduce the blocking of processes as compared to [4].
In algorithm [4]: (i) only minimum number of processes take checkpoints (ii) message overhead
IS 3Chst+2C wiretessT2Nmss* Cst+3Nmn* Cy (iil) Blocking time is 2T, [Refer Table 2]. However,
these parameters are similar to our algorithm. They have not piggybacked any information onto normal
messages. The algorithm cannot tackle some messages as mentioned earlier in this section. In our
protocol, during blocking time, processes continue their normal computation, send messages and partially
receive them.
The algorithms proposed in [5,16] are non-blocking, but they suffer from useless checkpoints. The
message overhead in these algorithms is also on higher side as compared to the proposed scheme.

4.2. Evaluation of the proposed hybrid algorithm

In the proposed hybrid algorithm, the all process algorithm proposed by EInozahy et al. [9] is enforced
after executing proposed min-process algorithm for m times. Therefore, the performance of the hybrid
algorithm is mainly dependent upon these two algorithms and the value of m.

As shown in Table 3, the average blocking time of the Koo-Toueg [15] protocol is the highest, followed
by Cao-Singhal [4] algorithm. The average blocking time of the proposed hybrid scheme is slightly less
than [4]. The other schemes are non-blocking, [5,9,16,19]. In Elnozahy et al [9] algorithm, all processes
take checkpoints. In the protocols [4,15], only minimum numbers of processes record their checkpoints.
In non-intrusive minimum-process checkpointing scheme [5,16,19], some useless checkpoints may be
taken, which are discarded on commit. The number of useless checkpoints in [19] is negligibly small
as compared to [5]. In the minimum-process algorithms, some processes may starve to checkpoint and
the loss of computation in the case of a recovery after a fault may be exceedingly high. In the proposed
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algorithm, the average number of processes that take checkpoints in an initiation is slightly greater than
the minimum required; but it reduces the loss of computation on recovery.

The average message overhead in the proposed protocol is slightly less than [4,19], but greater than [9]
[Refer Table 3]. In coordinated checkpointing, an integer csn is generally piggybacked on normal
messages [5,9,16,19]. In the algorithm [4], no information is piggybacked on normal messages. In the
proposed algorithm, k -bit ClI is piggybacked on normal messages. In the present study, we have taken
k = 3. Concurrent executions of the algorithm are allowed in [5]. W. Ni et al. [23] have shown that this
algorithm [5] may lead to inconsistencies during concurrent executions.

5. Conclusion

We have designed a coordinated checkpointing algorithm which is a hybrid of minimum-process
and all-process algorithms. The number of processes that take checkpoints is minimized to avoid
awakening of MHs in doze mode of operation and thrashing of MHs with checkpointing activity.
Further, it saves limited battery life of MHs and low bandwidth of wireless channels. Moreover, to
avoid greater loss of computation in case of a recovery after a fault, an all-process checkpoint is taken
after executing minimum-process checkpointing for a fixed number of times, which, in fact, can be fine
tuned. Checkpointing overhead in the proposed scheme is slightly greater than the minimum-process
checkpointing but is far less than the all-process coordinated checkpointing. We have introduced the
k-bit sequence numbers instead of ever increasing integer csn that is piggybacked on normal messages.
This also leads to reduction in the communication overhead. We have also reduced the blocking of
processes during checkpointing.
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