
Research Article
A Distributed TDMA Slot Scheduling Algorithm for
Spatially Correlated Contention in WSNs

Ashutosh Bhatia and R. C. Hansdah

Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India

Correspondence should be addressed to Ashutosh Bhatia; ashutosh.b@csa.iisc.ernet.in

Received 3 July 2013; Accepted 25 February 2014

Academic Editor: David Taniar

Copyright © 2015 A. Bhatia and R. C. Hansdah.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

In WSNs the communication traffic is often time and space correlated, where multiple nodes in a proximity start transmitting
simultaneously. Such a situation is known as spatially correlated contention. The random access method to resolve such contention
suffers from high collision rate, whereas the traditional distributed TDMA scheduling techniques primarily try to improve the
network capacity by reducing the schedule length. Usually, the situation of spatially correlated contention persists only for a short
duration, and therefore generating an optimal or suboptimal schedule is not very useful. Additionally, if an algorithm takes very
long time to schedule, it will not only introduce additional delay in the data transfer but also consume more energy. In this paper,
we present a distributed TDMA slot scheduling (DTSS) algorithm, which considerably reduces the time required to perform
scheduling, while restricting the schedule length to the maximum degree of interference graph. The DTSS algorithm supports
unicast, multicast, and broadcast scheduling, simultaneously without any modification in the protocol. We have analyzed the
protocol for average case performance and also simulated it using Castalia simulator to evaluate its runtime performance. Both
analytical and simulation results show that our protocol is able to considerably reduce the time required for scheduling.

1. Introduction

A wireless sensor network (WSN) is a collection of sensor
nodes distributed over a geographical region to monitor
events of interest in the region. To effectively exchange data
among multiple sensor nodes, WSNs employ the medium
access control (MAC) protocol to coordinate the transmis-
sion over the shared wireless radio channel. Many times in
WSNs, communication traffic is space and time correlated;
that is, all the nodes in the same proximity transmit at the
same time. Such a situation is known as spatially correlated
contention. There exist many applications and protocols in
WSNs, where the situations of spatially correlated contention
can occur. Some of them are as follows.

(i) Event Detection: whenever an event occurs, all the
nodes that sense the event will start transmitting
the details of the event to the base station. Typical
examples of such situations are the detection of earth-
quake and wildfire in WSNs for disaster recovery,
fall-and-posture detection in healthcare WSNs [1],
and intrusion detection [2] in WSNs for military

applications, in which sensor nodes only have data
to send when a specific event occurs. As multiple
nodes that detect the event are quite possibly in close
proximity of each other, they would share the same
transmission medium. Eventually, if all the nodes
report the event at the same time, the situation would
lead to spatially correlated contention.

(ii) Multicast Communication: in WSNs, the applications
should be configured and updated in the sensor nodes
multiple times during the lifetime of the network. An
update by transmitting the content to each individual
sensor node separately would be very inefficient and
would consume a lot of resources such as bandwidth
and energy. In this situation, multicasting provides
an efficient configuration and update of applications
running over sensor nodes by reducing the number
of transmitted packets. Another example of multicast
communication in WSN is on-demand data collec-
tion, where the base station (sink node) sends a
data query to a prespecified group of nodes asking

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2015, Article ID 234143, 16 pages
http://dx.doi.org/10.1155/2015/234143

2 Mobile Information Systems

them to send their sensory data. The WSN is usually
multihop in nature, and therefore direct transmission
of multicast messages from the sink is not possible.
To achieve this, the sensor nodes also work as routers
and forward the received multicast packet to their
one-hop neighbors. This simultaneous forwarding of
the same packet in a proximity by multiple routers
leads to spatially correlated contention. A detailed
discussion on multicast in WSN can be found in [3].

(iii) Routing Protocols: the on-demand routing protocols,
for example, Ad Hoc On-Demand Distance Vector
Routing (AODV) [4], try to find the appropriate path
from source to destination only when the data trans-
fer is required. This process is called route discovery
and it is typically achieved by broadcasting a route
request message in the network and consequently
leads to the collision of request message due to its
simultaneous forwarding by the neighboring nodes.

(iv) Clock Synchronization: clock synchronization proto-
cols, for example [5], typically use message passing
mechanism to share their local time information with
other neighboring nodes. Since, initially, there is no
coordination between the nodes, they may transmit
the protocol message simultaneously with high prob-
ability, and therefore the transmitted messages might
collide. This can considerably delay the process of
synchronization.

(v) Tree Based Convergecasting: convergecast, that is,
gathering of information towards a central node,
is important communication paradigms across all
application domains in WSN. This is mainly accom-
plished by constructing an efficient tree in terms
of delay, energy, and bandwidth. The algorithm for
construction of such a tree typically involves simul-
taneous transmission of protocol messages by the
sensor nodes and hence causes specially correlated
contention.

Thus the above discussion suggests that the MAC pro-
tocols for WSNs should effectively handle the correlated
contention.MACprotocols forWSNs can bemainly classified
into two major categories, namely, random access based and
schedule access based. Random access methods do not use
any topology or clock information and resolve contention
among neighboring nodes for every data transmission.Thus,
it is highly robust to any change in the network. But
its performance under high contention suffers because of
high overhead in resolving contention and collisions [6].
Contention causes message collisions, which are very likely
to occur when traffic is spatially correlated. This, in turn,
degrades the data transmission reliability and wastes the
energy of sensor nodes.

A MAC protocol is contention-free if it does not allow
any collisions. Assuming that the clocks of sensor nodes are
synchronized, data transmissions by the nodes are scheduled
in such a way that no two interfering nodes transmit at
the same time. Early works [7–9] on scheduling are cen-
tralized in nature and normally need complete topology

information, and therefore, they are not scalable. To over-
come the difficulty of obtaining global topology information
in large size networks, many distributed slot assignment
schemes [10–14] have been proposed. The primary objective
of traditional distributed TDMA scheduling techniques is
to improve the network capacity by reducing the schedule
length. It is effective for the kind of applications where a
fixed schedule can be used for a sufficiently longer time. All
the scenarios for correlated contention discussed previously
occur in form of sessions and the nodes require a time slot
to transmit a sequence of data, only during these sessions.
Moreover, the same schedule cannot be reused for multiple
future sessions, because at that time the network topology
might have changed, due to dynamic channel conditions
and occasional sleeping of sensor nodes to conserve their
energy. For example, in [15], a different set of nodes are
selected as routers (to equally distribute the consumption
of energy among sensor nodes) every time the algorithm
for construction of data collection tree is executed, and
therefore this changes the network topology. This suggests
that the scheduling has to be performed for every instance
of correlated contention, and therefore the effective benefit
of reducing schedule length vanishes. If an algorithm takes
too long to perform scheduling, as compared to the duration
of correlated contention, it will not only degrade the QoS
(e.g., delay in detection of event at the base station) but will
also lead to poor bandwidth utilization and higher energy
consumption. The preceding discussion emphasizes that in
order to effectively handle the correlated contention, the
TDMA scheduling algorithms should take very less time to
perform scheduling.

In this paper, we propose a distributed TDMA slot
scheduling (DTSS) algorithm for WSNs. The primary objec-
tive of DTSS algorithm is to reduce the time required to
perform scheduling while restricting the schedule length
to maximum degree of interference graph. The proposed
algorithm is unified in the sense that the same algorithm can
be used to schedule slots for different modes of communica-
tion, namely, unicast, multicast, and broadcast. In addition,
the DTSS algorithm also supports heterogeneous mode of
communication, where simultaneously a few nodes can take
a slot for unicast, while other nodes can take it for multicast
or broadcast purpose. In DTSS algorithm, a node is required
to know only the IDs of its intended receivers, instead of all
its two-hop neighbors. Also, in DTSS algorithm, the nodes
in a neighborhood can take different slots simultaneously, if
the resultant schedule is feasible. This is unlike the class of
greedy algorithms where ordering between the nodes puts a
constraint on the distributed algorithm to run sequentially
and restricts the parallel implementation of the algorithm.
The DTSS algorithm does not make use of any ordering
among the nodes.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 gives the assumptions
we make in the design of our algorithm, introduces some
definitions, and explains the basic idea of our algorithm. In
Section 4, we present a detailed description of the DTSS algo-
rithm. Section 5 gives the proof of correctness of the DTSS

Mobile Information Systems 3

algorithm. Section 6 presents the average case complexity
analysis of the DTSS algorithm. Section 7 discusses the
simulation results and performance comparison of DTSS
algorithm with existing work. Section 8 concludes the paper
with suggestions for future work.

2. Related Work

The broadcast scheduling problem to find optimal solution is
NP-complete [16]. A different, but related, problem to TDMA
node slot assignment is the problem of TDMA edge slot
assignment, in which radio links (or edges) are assigned time
slots, instead of nodes. Finding theminimumnumber of time
slots for a conflict-free edge slot assignment is also an NP-
complete problem [17]. In [18], another specific scheduling
problem for wireless sensor network converge-cast transmis-
sion is considered in which the scheduling problem is to find
a minimum length frame during which all nodes can send
their packets to access point (AP), and it is shown to be NP-
complete. Previous work [7–9, 19] on scheduling algorithms
primarily focuses on decreasing the length of schedules.
They are centralized in nature and normally need complete
topology information and are, therefore, not scalable.

Cluster based TDMA protocols in [20, 21] prove to
be having good scalability. The common feature of these
protocols is to partition the network into some clusters,
in which cluster heads are responsible for scheduling their
members.However, cluster basedTDMAprotocols introduce
intercluster transmission interference because clusters cre-
ated by distributed clustering algorithms are often overlapped
and several cluster heads may cover the same nodes.

Moscibroda and Wattenhofer [11] have proposed a dis-
tributed graph coloring scheme with a time complexity of
𝑂(𝜌 log 𝑛), where 𝜌 is the maximum node degree and 𝑛 is
the number of nodes, in the network. The scheme performs
distance-1 coloring such that adjacent nodes have different
colors. Note that this does not prevent nodes within two
hops of each other from being assigned the same color
potentially causing hidden terminal collisions between such
nodes.TheNAMAprotocol in [10] has proposed a distributed
scheduling scheme based on hash function to determine the
priority among contending neighbors. A major limitation of
this hashing based technique is that even though a node gets
a higher priority in one neighborhood, it may still have a
lower priority in other neighborhoods. Thus the maximum
slot number could be of 𝑂(𝑛). Secondly, since each node
calculates the priority of all of its two-hop neighbors for every
slot, it leads to 𝑂(𝑛2) computational complexity, and hence,
the scheme is not scalable for large network with resource
constraint nodes. SEEDEX [22] uses a similar hashing scheme
as NAMA based on a random seed exchanged in a two-hop
neighborhood. In SEEDEX, at the beginning of each slot, if a
node has a packet ready for transmission, it draws a “lottery”
with probability 𝑝. If it wins, it becomes eligible to transmit.
A node knows the seeds of the random number generators of
its two-hop neighbors, and hence it also knows the number
of nodes (including itself) 𝑛, within two hops which are
also eligible to transmit. It then transmits with probability
1/𝑛. This technique is also called topology independent

scheduling. In this case, collisionsmay still occur if two nodes
select the same slot and decide to transmit.

Another distributed TDMA scheduling scheme, called
DRAND [12], proposes a distributed randomized time
slot scheduling algorithm based on centralized scheduling
scheme RAND [9]. DRAND is also used within a MAC
protocol, called Zebra-MAC [23], to improve performance
in sensor networks by combining the strength of scheduled
access during high loads and randomaccess during low loads.
The runtime complexity of DRAND is 𝑂(𝛿), where 𝛿 is the
maximum size of a two-hop neighborhood in a wireless
network.The simulation results presented by the author show
that the runtime actually becomes 𝑂(𝛿2) due to unbounded
message delays. FPRP [14], Five-Phase Reservation Protocol,
is a distributed heuristic TDMA slot assignment algorithm.
FPRP is designed for dynamic slot assignment, in which
the real time is divided into a series of pairs of reservation
and data transmission phases. For each time slot of the data
transmission phase, FPRP runs a five-phase protocol for a
number of times (cycles) to pick a winner of each slot. In
another distributed slot scheduling algorithm, DD-TDMA
[13], a node 𝑖 decides slot 𝑗 as its own slot if all the nodes with
ID less than the ID of node 𝑖 have already decided their slot,
where 𝑗 is the minimum available slot. The scheduled node
𝑖 broadcasts its slot assignment to one-hop neighbors. Then
the one-hopneighbors of node 𝑖 broadcast this information to
update two-hop neighbors. This process is repeated in every
frame until all nodes are scheduled.

The protocol in [24] proposes a contention-free MAC for
correlated contention, which does not assume global time
reference. The protocol is based on local frame approach
where each node divides time into equal sized frames. Each
frame is further divided into equal sized time slots; a time
slot corresponds to the time duration of sending onemessage.
The basic idea is that each node selects a slot in its own frame
such that selected slots of any two-hop neighbor nodes must
not overlap. The protocol assumes that a node can detect
a collision if two or more nodes (including itself) within
its transmission radius attempt to transmit, which has its
own practical limitations with wireless transceivers. These
scheduling algorithms [12–14] commonly have the following
issues.

(i) All algorithms use greedy approach for graph colour-
ing which is inherently sequential in nature and
put a constraint on distributed algorithm to run
sequentially. This restricts the parallel implementa-
tion of the algorithm. Because of large runtime of
these protocols, they are more suitable for wireless
networks where interference relationship or network
topology does not change for a long period of time.

(ii) They perform two-hop neighbor discovery, which
adds considerable additional cost to runtime to per-
form scheduling. Additionally, the two-hop neigh-
bors are calculated based on transmission range
instead of interference range, which is normally
higher than the transmission range.

4 Mobile Information Systems

(iii) They perform either broadcast (node) scheduling or
unicast (link) scheduling but not both and also do not
consider multicast scheduling separately.

Finally, a classification of different scheduling algorithms
based on problem setting, problem goal, type of inputs, and
solution techniques can be found in [25].

3. Our Approach to TDMA
Scheduling in WSNs

In many applications such as weather monitoring, intrusion
detection, sensor nodes are usually static. In this work also,
we assume them to be static. Also, it is assumed that, for any
task in an application, every node knows its receivers. Before
a task begins its execution, the DTSS algorithm is executed
to generate a TDMA schedule. After the task is finished, the
TDMA schedule is discarded. We assume that each node in
the WSN has a unique identifier. All the nodes in a WSN
have some processing capability along with a radio to enable
communication among them. Each node uses the same radio
frequency.The communication capability is bidirectional and
symmetric. The mode of communication between any two
neighboring nodes is half-duplex; that is, only one node at a
time can transmit. The transmission is omnidirectional; that
is, each message sent by a node 𝑖 is inherently received at all
the nodes determined by its transmission range.

Timeline is divided into fixed size frames and each frame
is further divided into fixed number of time slots, called
schedule length. The nodes are assumed to be synchronized
with respect to slot 0 and are aware of the slot size and the
schedule length. The time of slot 0 is defined by the node
which starts the scheduling process. To better understand the
proposed algorithm, we introduce the following definitions.

Definition 1. The interference set 𝑁
𝑖
of a node 𝑖 is defined

as the set of nodes which are within the interference range
of node 𝑖. That is, we say that a node 𝑘 ∈ 𝑁

𝑖
if it cannot

successfully receive any message transmitted by any other
node, at the same time when node 𝑖 is also transmitting.
Moreover, if only node 𝑖 has transmitted in a slot, then a node
in𝑁
𝑖
may or may not receive the message successfully.

Note that the interference set 𝑁
𝑖
is different from the set

of one-hop neighbors which depends upon the transmission
range of node 𝑖. Usually, the interference range is higher than
the transmission range.

Definition 2. The receiver set 𝑅
𝑖
of a node 𝑖 is defined as the

set of intended receivers of node 𝑖.

The size of the set 𝑅
𝑖
, |𝑅
𝑖
| depends upon the type of

communication, namely, unicast, multicast, or broadcast
transmission. Note that 𝑅

𝑖
⊆ 𝑁

𝑖
. The DTSS algorithm

assumes that only the subset𝑅
𝑖
is known to the node 𝑖 instead

of all its two-hop neighbors.

Definition 3. The sender set 𝑆
𝑖
of a node 𝑖 is defined as the set

of nodes 𝑗 such that 𝑖 ∈ 𝑅
𝑗
.

Ni
Nj

Ri

Rj

i j

Figure 1: Example of nodes 𝑖 and 𝑗 that do not conflict even if they
are in the interference range of each other.

A node need not know the set 𝑆
𝑖
before the start of

the algorithm. It can be populated when the node receives
protocol messages with destination ID as its own ID.

Definition 4. The interference graph 𝐺 = (𝑉, 𝐸) of a WSN is
defined as follows. 𝑉 is the set of nodes in the WSN, and 𝐸
is the set of edges, where edge 𝑒 = (𝑖, 𝑗) exists if and only if
𝑁
𝑖
∩ 𝑅
𝑗

̸= 𝜙 ∨ 𝑁
𝑗
∩ 𝑅
𝑖

̸= 𝜙. The number of edges with which
a node is connected to the other nodes is called the degree of
the node.

Note that 𝑖 ∈ 𝑅
𝑗
or 𝑗 ∈ 𝑅

𝑖
is also possible. We say that

node 𝑖 and node 𝑗 conflict and are adjacent to each other, if
there exists an edge between them. An edge 𝑒 = (𝑖, 𝑗) exists
if and only if node 𝑖 and node 𝑗 cannot take the same slot.
Two nodes cannot take the same slot, if the transmission
of one node interferes at one of the receivers of the other
node. The conflict between nodes depends not only upon
their respective positions and transmission power but also
on the type of communication, namely, unicast, multicast, or
broadcast. Two nodes within the interference range of each
other (𝑖 ∈ 𝑁

𝑗
∨ 𝑗 ∈ 𝑁

𝑖
) can even take the same slot, if

their transmissions do not interfere at each other’s receivers
(Figure 1). Therefore, our definition of interference graph is
free from well known exposed-node problem. This fact is
usually ignored by most of the existing algorithms. On the
other hand, two nodes which are not in the interference
range of each other (𝑖 ∉ 𝑁

𝑗
∧ 𝑗 ∉ 𝑁

𝑖
) cannot transmit

simultaneously, if their transmissions interfere at each other’s
receivers. In this manner, our definition of interference graph
is also free from the hidden-node problem.

A sensor node requires a slot to transmit data packets
such that data can be received successfully at all of its receivers
without any interference.

The following two types of conflict relations can exist,
between a pair of nodes.

Strong-Conflict Relation. Two nodes 𝑖 and 𝑗 have strong-
conflict relation if𝑁

𝑖
∩ 𝑅
𝑗

̸= 𝜙 ∧ 𝑁
𝑗
∩ 𝑅
𝑖
̸= 𝜙.

Weak-Conflict Relation. Two nodes 𝑖 and 𝑗 have weak-conflict
relation if either𝑁

𝑖
∩ 𝑅
𝑗

̸= 𝜙 or𝑁
𝑗
∩ 𝑅
𝑖
̸= 𝜙, but not both.

Mobile Information Systems 5

Ni
Nj

Ri

Rj

i
j

(a) Strong-conflict relation

Ni
Nj

Ri

Rj

i j

(b) Weak-conflict relation

Figure 2: Conflict relationship between nodes.

Figures 2(a) and 2(b) depict the situation when node 𝑖
and node 𝑗 have strong-conflict and weak-conflict relations,
respectively. In case of weak-conflict relation, if𝑁

𝑗
∩ 𝑅
𝑖

̸= 𝜙

but 𝑁
𝑖
∩ 𝑅
𝑗
= 𝜙, we say that node 𝑗 is stronger than node 𝑖

and denote it by 𝑗 → 𝑖.

Definition 5. The interference degree Δ of a WSN is defined
as the maximum of all degrees of nodes in the interference
graph 𝐺 of the WSN.

The DTSS algorithm runs in 𝑂(Δ) time. In case of
broadcast transmission; Δ and 𝛿 are roughly the same, where
𝛿 is the size of two-hop neighborhood set. But for unicast or
multicast transmission Δ ≤ 𝛿.

The TDMA slot scheduling problem can be formally
defined as the problem of assignment of a time slot to each
node, such that if any two nodes are in conflict (strong
or weak), they do not take the same time slot. Such an
assignment is called a feasible TDMA schedule. A feasible
TDMA schedule which takes minimum number of slots is
called an optimal TDMA schedule. Our goal in this paper
is to develop an algorithm which can find a feasible but not
necessarily optimal TDMA schedule and to minimize the
time required to perform scheduling.

The basic idea of the DTSS algorithm is as follows. For
each slot 𝑠 in a frame, each node 𝑖 checks whether it can take
the slot 𝑠, by sending a request message to the first receiver
in 𝑅
𝑖
with slot probability 𝑃(𝑠), which depends upon the

remaining number of free slots in the frame (slots which are
not taken by others) known at node 𝑖 at the current time.
If node 𝑖 receives response message from the first receiver,
then it blocks the slot and tries to get the responses from the
remaining receivers in 𝑅

𝑖
using the same slot in subsequent

frames. After receiving the response from all the receivers,
it assigns the time slot 𝑠 to itself; otherwise, it unblocks the
slot, as soon as the response from one of the receivers is
not received, and repeats the above process all over again.
In case of unicast communication, node 𝑖 can directly assign
the slot to itself as soon as it receives the response message
from its receiver 𝑗 instead of blocking the slot.This is because
receiving a response message from node 𝑗 tells that no other
node 𝑘 adjacent to 𝑖 in 𝐺 has also blocked the same slot;
otherwise, the REQ message transmissions of nodes 𝑖 and 𝑘

would have collided at node 𝑗. An adjacent node of a node 𝑖
in a graph is a node that is connected to 𝑖 by an edge.

Once a slot is assigned to a node 𝑖, it continuously
transmits at the same slot in subsequent frames. This would
ensure that a conflicting node 𝑗 in 𝐺 cannot assign the same
slot to itself, because of the collision between the transmission
of node 𝑖 andnode 𝑗 at one of the receivers in𝑅

𝑖
. Furthermore,

the nodes in 𝑅
𝑖
also propagate this information to next hop

through their own transmissions. Note that the receivers of
messages transmitted by the nodes in 𝑅

𝑖
are adjacent to 𝑖 in

𝐺.
When a node 𝑗 hears, from one of the receivers of node 𝑖,

that slot 𝑠 is blocked by node 𝑖, it leaves the slot temporarily
and avoids further collisions to increase the chance of getting
the slot by node 𝑖. Similarly, when node 𝑗 hears, from one
of the receivers of node 𝑖, that slot 𝑠 is assigned to node 𝑖, it
leaves the slot permanently and increases its slot probability
for other free slots.

4. The DTSS Algorithm

In this section, we describe the proposed DTSS algorithm
for TDMA slot scheduling problem as defined in Section 2.
The number of slots, N, in a frame is taken to be at least
Δ. The slots are numbered from 1 to N. Table 1 summarizes
the set of data structures and variables maintained by a node
𝑖, to implement the algorithm. The DTSS algorithm uses
two protocol messages, namely, request (REQ) and response
(RES), for signaling purpose. The RES message is sent by a
node, whenever its ID is the same as the destination ID in the
received REQ message. The REQ/RES messages contain four
fields, namely, source ID, destination ID, 𝐿2, and state. The
value of field 𝐿2 in both REQ and RESmessages is the copy of
corresponding local variable. The value of field state in REQ
message is the same as the value of the local variable 𝑛𝑟 while
its value in RES message contains the value of field state as
received in the corresponding REQ message. The field 𝐿2 in
REQ/RES message is used to inform a node 𝑗 about the slots
which are already taken by other nodes conflicting with node
𝑗, whereas the field state helps the nodes to know the status of
the node fromwhere the REQmessage has been transmitted.
The higher level description of the DTSS algorithm is shown
in the pseudocode given in Algorithm 1. The pseudocode

6 Mobile Information Systems

if i.slot = i.b slot = null and 𝑠 ∉ (𝐿3 or 𝐿1) then
With probability, 𝑃(𝑠) do

send REQ(𝑖, rx ID, 𝐿2, |𝑅
𝑖
|)

rx ID = 𝑅
𝑖
→ 𝑛𝑒𝑥𝑡

End do
end if
if i.slot = 𝑠 or i.b slot = 𝑠 then
send REQ(𝑖, rx ID, 𝐿2, nr)
rx ID = 𝑅

𝑖
→ 𝑛𝑒𝑥𝑡

end if
//perform channel listening
if 𝑖 receives a REQ(𝑗, dest ID, 𝐿2, state) then
if REQ.dest ID = 𝑖 then
add REQ.𝑗 in 𝑆

𝑖
,

send RES(𝑖, 𝑗, 𝐿2, REQ.state)
end if
if 𝑗 ∈ 𝑅

𝑖
and REQ.state = 0 then

slot 𝑠 has been taken by node 𝑗, add 𝑠 to 𝐿1
if 𝑗 ∈ 𝑆

𝑖
add 𝑠 to 𝐿2

end if
end if
if 𝑗 ∈ 𝑆

𝑖
or 𝑗 ∈ 𝑅

𝑖
and REQ.state ̸= 0 then

slot 𝑠 is blocked, add 𝑠 to 𝐿3
end if

end if
if 𝑖 receives a RES(𝑗, dest ID, 𝐿2, state)
if RES.dest ID = 𝑖 then
if nr = |𝑅

𝑖
| then i.b slot = 𝑠

end if
nr = nr − 1
if nr = 0 then i.slot = 𝑠
end if

else
if RES.state = 0 then

slot is taken by RES.dest ID, add s to 𝐿1
if RES.dest ID ∈ 𝑆

𝑖
add 𝑠 to 𝐿2

end if
else

slot 𝑠 is blocked, add 𝑠 to 𝐿3
end if

end if
end if
if i.slot = null and not received the RES for transmitted REQ message then
i.b slot = null, nr = |𝑅

𝑖
|

end if
if 𝑠 ∈ 𝐿3
Remove 𝑠 from 𝐿3 if blocked duration has expired

end if

Algorithm 1: DTSS algorithm.

describes the DTSS algorithm as executed on each node 𝑖 at
the current slot 𝑠.

Each node 𝑖, contending for a time slot, passes through
several states. Figure 3 shows the finite state transition dia-
gram for a node 𝑖. Initially, node 𝑖 enters contention state (CS),
where it sends a REQmessage in the current time slot 𝑠, with
probability 𝑃(𝑠). We call this probability as slot probability
and it is equal to 1/(N − |𝐿1|). On receipt of a REQ message
at a node 𝑗 from node 𝑖, it sends a RES message immediately

in the current slot 𝑠 and also adds the node 𝑖 to 𝑆
𝑗
if its ID is

the same as the destination ID in the received REQ message.
The duration of slot is kept sufficiently large to carry out
the transmission of a pair of REQ and RES messages. The
destination ID 𝑗 of REQmessage transmitted by node 𝑖 in CS
state can be any node from the set 𝑅

𝑖
. If a node 𝑖 receives a

RES message at time slot 𝑠 in response to the REQ message
sent by it and |𝑅

𝑖
| > 1, then it blocks the time slot 𝑠 and enters

the verification state (VS). However, if |𝑅
𝑖
| = 1, it assigns

Mobile Information Systems 7

Table 1: The set of data structures and variables maintained by a
node 𝑖.

Notation Description

𝑅
𝑖

A list of receivers of node 𝑖, maintained as circular
linked list.

𝑆
𝑖

A list of transmitters of node 𝑖, constructed
dynamically on receipt of REQ messages.

𝐿1 A list of slots which are already taken by the nodes
adjacent to 𝑖 in 𝐺.

𝐿2 A list of slots which are already taken by the nodes
in 𝑆
𝑖
. Note that 𝐿2 ⊆ 𝐿1.

𝐿3 A list of slots which are currently blocked by the
nodes adjacent to 𝑖 in 𝐺.

N Number of slots in a frame.
i.slot Slot assigned to node 𝑖.
i.b slot Slot blocked by node 𝑖.
rx ID Current receiver node in 𝑅

𝑖
.

nr Remaining number of receivers from where
responses are required to be obtained by node 𝑖.

𝑃(𝑠)
Probability of transmitting a request message in
slot 𝑠 by node 𝑖, while contending for the slot.

Start

SS

CS

REQ(nr = 0)/RES

REQ
(n
r
=
1)

/R
ES

REQ(nr
=
1)/RES

REQ
(n
r
=
0)

/n
o RES

(Δ
tim

es)

REQ(1 ≤ nr < |Ri|)/noRES

REQ(nr = |Ri|)/noRES

VS

REQ(nr > 1)/RES

REQ(1 < nr < |Ri|)/RES

Figure 3: State transition diagram of a node 𝑖.

the slot to itself and enters the scheduled state (SS) directly. In
VS state, it sends REQ messages one by one to the remaining
nodes in 𝑅

𝑖
at the same time slot 𝑠 in subsequent frames,

by setting the pointer 𝑟𝑥 ID to the next node in the list 𝑅
𝑖
.

Furthermore, it does not transmit in slots other than 𝑠, while
it is in VS state. If the node 𝑖 successfully receives the RES
messages from all of its receivers in 𝑅

𝑖
, it assigns the slot to

itself and enters the scheduled state (SS); otherwise, it goes
back to the CS state and starts the process all over again. In
SS state, the node 𝑖 always transmits REQmessage in slot 𝑠 so
that no other node can take the same slot and also it does not
transmit at slots other than 𝑠.The destination of REQmessage

in SS state is selected in a round robin fashion among the
nodes in𝑅

𝑖
.Moreover, it does not progress to the next receiver

until it receives a RES message from the current receiver. If
a node 𝑖 does not receive RES message consecutively Δ times
from the same receiver node, then it goes back to the CS state.

If a node 𝑖 in CS state receives a REQ message from node
𝑗 at slot 𝑠 with state > 0 and 𝑗 ∈ 𝑆

𝑖
or 𝑗 ∈ 𝑅

𝑖
, then it adds

the slot 𝑠 in the list 𝐿3. If a node 𝑖 in CS state receives a REQ
message from node 𝑗 at slot 𝑠with state = 0 and 𝑗 ∈ 𝑅

𝑖
it adds

the slot 𝑠 in the list 𝐿1 and also updates the slot probability of
other slots not in 𝐿1 as 1/(N − |𝐿1|). Additionally, if 𝑗 ∈ 𝑆

𝑖
,

then it also adds the slot 𝑠 in the list 𝐿2.
If a node 𝑖 in CS state receives a RES message in response

to REQ message from itself and 𝑛𝑟 = |𝑅
𝑖
|, then it blocks

the slot. Then it decreases 𝑛𝑟 by 1, and if 𝑛𝑟 becomes zero,
it assigns the slot to itself. If a node 𝑖 in CS state receives a
RES message from node 𝑗 in response to REQ message from
node 𝑘 at slot 𝑠 with state > 0, then it adds the slot 𝑠 in
the list 𝐿3. A node does not transmit its own REQ messages
in the slots belonging to 𝐿3 for the number of subsequent
frames specified in the state field of the received RESmessage.
This allows node 𝑘 in VS state to successfully transmit its
remaining REQmessages and subsequently move to SS state.
If a node 𝑖 in CS state receives a RES message from node
𝑗 in response to REQ message from node 𝑘 at slot 𝑠 with
state = 0, it adds the slot 𝑠 in the list 𝐿1 and also updates the
slot probability of other slots not in 𝐿1 as 1/(N−|𝐿1|). Node 𝑖
permanently leaves the slots in 𝐿1 and does not transmit any
further REQ messages in these slots. Additionally, if 𝑘 ∈ 𝑆

𝑖
,

then it adds the slot 𝑠 in the list 𝐿2.
It could be possible that a node 𝑗 does not receive the

transmission of a REQ message from node 𝑖 or RES message
in response to the REQmessage from node 𝑖 in slot 𝑠 because
REQ/RES messages could get lost. In this situation, node 𝑗
would not come to know that the slot 𝑠 is either blocked or
taken by node 𝑖 until the transmissions of REQ/RES message
at the same slot in the next frame. To avoid this delay, the
nodes in𝑅

𝑖
convey the same information through the field 𝐿2

of their own REQ messages transmitted in slots other than 𝑠.
In this case, while a node is trying to take a slot, it is helping
others to know the slots which are already taken by other
conflicting nodes.

Finally, a node 𝑗, with 𝑗 → 𝑖, can enter into state SS, while
node 𝑖 is already in state SS. This is because the transmission
of REQmessages from node 𝑖 in slot 𝑠 cannot interfere at any
of the nodes in 𝑅

𝑗
, and therefore, node 𝑗 will receive the RES

messages from all of its receivers andmove to state SS. On the
other hand, the REQ messages sent by node 𝑖 in SS state will
collide at one ormore receivers in𝑅

𝑖
due to transmission from

node 𝑗 and therefore node 𝑖will not receive the corresponding
RES messages. The above situation is shown in Figure 2(b).
However, this can only happen if node 𝑗 is not aware that the
slot is already taken by node 𝑖. To avoid this, if the RES is not
received by node 𝑖 for consecutiveΔ times, it leaves the slot by
adding it to the list 𝐿1 and comes back to the CS state. If node
𝑗 is not in SS state, it cannot collide with the transmission of
node 𝑖 in the same slot consecutively Δ times. This ensures
that node 𝑖 will only leave the slot 𝑠, if 𝑗 → 𝑖 and 𝑗 is in SS
state.

8 Mobile Information Systems

VS VS VS

VSVSCSCS

CS SS

FrameVS
i − 1 FrameVS

i FrameVS
i + 1 FrameVS

i + 2 FrameSS
i − 1 FrameSS

i FrameSS
i + 1

Node i

Node j

FrameVS
j − 2

Node j can not enter SS state in
this duration, since node i is
transmitting all the time

FrameVS
j − 1 FrameVS

j

Figure 4: Node 𝑗 cannot enter SS state since node 𝑖 is continuously transmitting REQ messages from frame index frameVS
𝑖
.

5. Correctness of the DTSS Algorithm

In this section, we prove that the schedule created by the
DTSS algorithm is a feasible TDMA schedule. In a feasible
schedule, two conflicting nodes will not transmit in the
same time slot. That is, two conflicting nodes will not be
assigned the same time slot by the DTSS algorithm. This
happens because after the execution of the DTSS algorithm
is completed, only one node (among the conflicting nodes)
will remain in the SS state for a particular time slot. In the
following, we prove this fact as Theorems 6 and 7 for strong-
conflict and weak-conflict relationship, respectively.

Theorem 6. If two nodes 𝑖 and 𝑗 have strong-conflict relation-
ship, then they cannot be in SS state for the same time slot, at
any time during the execution of DTSS algorithm.

Proof. Let frameVS
𝑖

and frameSS
𝑖

be the frame indexes when
node 𝑖 enters VS and SS state, respectively, for a time slot 𝑘. It
is possible that frameVS

𝑖
= frameSS

𝑖
if |𝑅
𝑖
| = 1. Furthermore,

let frameVS
𝑗

and frameSS
𝑗
be the corresponding frame indexes

for node 𝑗 for the same time slot 𝑘. We can assume that once
a node enters VS state from CS state, it remains in VS state
until it enters SS state. If it is not so, then it goes back to CS
state, and the argument can be repeated. It is to be noted that
both cannot enter SS state at the same frame index without at
least one of them going into VS state first. Now the following
three cases arise.

Case 1 (frameVS
𝑖

< frameVS
𝑗
). In this case, only node 𝑖 can enter

SS state provided it has got response fromall nodes 𝑘 ∈ 𝑁
𝑗
∩𝑅
𝑖

prior to frameVS
𝑗
. There is no way node 𝑗 can enter SS state

since node 𝑖will be continuously transmitting REQmessages
from frame index frameVS

𝑖
, and node 𝑗 cannot get response

from any node in𝑁
𝑖
∩ 𝑅
𝑗
(Figure 4). Hence, in this case only

node 𝑖 will be able to enter SS state.

Case 2 (frameVS
𝑖

= frameVS
𝑗
). In this case, both node 𝑖 and

node 𝑗 will be transmitting REQ messages from frame index
frameVS

𝑖
onwards. Therefore, node 𝑖 will not be able to get

response from any node in𝑁
𝑗
∩ 𝑅
𝑖
. Similarly, node 𝑗 will not

get response from any node in 𝑁
𝑖
∩ 𝑅
𝑗
. So, the node which

does not receive the response first will go back to CS state. As

a result neither node 𝑖 nor node 𝑗will be able to enter SS state
as Case 2.
Case 3 (frameVS

𝑖
> frameVS

𝑗
). This case is similar to Case 1

except that now node 𝑗 can enter SS state provided it satisfies
the corresponding condition.

From the above argument, it is clear that only one of
nodes 𝑖 or 𝑗 will be in SS state for the same time slot during
the execution of the DTSS algorithm. Hence, the theorem is
proved.

In case of weak-conflict relationship, it could be possible
that while a node 𝑖 is already in SS state, another node 𝑗
(stronger than node 𝑖) can enter SS state for the same time
slot, during the execution of DTSS algorithm. Therefore,
Theorem 6 does not sufficiently prove the correctness of
DTSS algorithm when weak-conflict relationship also exists
between the nodes.

Theorem 7. If two nodes 𝑖 and 𝑗 have weak-conflict relation-
ship, then eventually only one of nodes 𝑖 and 𝑗 will remain in
SS state for the same time slot after the execution of the DTSS
algorithm is completed.

Proof. Let frameVS
𝑖
, frameSS

𝑖
, frameVS

𝑗
, and frameSS

𝑗
be frames

indexes of nodes 𝑖 and 𝑗 as in Theorem 6. Also, without loss
of generality assume that𝑁

𝑖
∩ 𝑅
𝑗

̸= 𝜙 and𝑁
𝑗
∩ 𝑅
𝑖
= 𝜙. That

is, node 𝑖 is stronger than node 𝑗. As in Theorem 6, we also
assume that, after entering VS state, both remain there until
they enter SS state. It is to be noted that both cannot enter SS
state at the same frame index directly from CS state, without
at least one of them going into VS state first. In this case also,
the following three cases arise.

Case 1 (frameVS
𝑖

< frameVS
𝑗
). This case is similar to Case 1 of

Theorem 6, and only node 𝑖 will be able to enter SS state, and
node 𝑗 will not be able to enter SS state.

Case 2 (frameVS
𝑖

= frameVS
𝑗
). In this case also, only node 𝑖will

be able to enter SS state, and node 𝑗 will not be able to enter
SS state.

Case 3 (frameVS
𝑖

> frameVS
𝑗
). In this case, node 𝑖 can enter SS

state anyway. However node 𝑗 can also enter SS state provided
it has got response from all the nodes in 𝑁

𝑖
∩ 𝑅
𝑗
before

Mobile Information Systems 9

Table 2: The set of notations used in Section 6.

Notation Description
𝑋
𝑖

The time slot at which 𝑖th node enters SS state.
𝑌
𝑖

Number of time slots between times𝑋
𝑖
and𝑋

𝑖−1

𝑃succ

The probability that only one node transmits a
REQ message in a slot after and the message is
received successfully.

𝑞
𝑖

The probability of a node 𝑖 entering SS state, in a
round (frame).

𝑞

The probability of a node with ID 1 entering SS
state, in a round (the subscript 1 omitted from
sake of clarity).

𝑞min Minimum value of 𝑞.

𝑞(𝑘)
The probability of node with ID 1 entering SS state
at slot 𝑘 in a round.

𝑞sum ∑
N

𝑘=1
𝑞(𝑘).

𝛽
𝑖

The number of 1’s in row 𝑖 of matrix 𝐵.

𝛼
𝑗

The number of 1’s in column 𝑗 of matrix 𝐵,
excluding first row.

𝜋
𝑖,𝑗

The transition probability from state 𝑖 to state 𝑗 of
DTMC, presented in Section 6.

𝜏
𝑖

The number of rounds required to reach state “𝑛”
in DTMC, starting from state “𝑖.”

frame index frameVS
𝑖
. Let us assume that node 𝑗 satisfies this

condition. Now nodes 𝑖 and 𝑗 can enter SS state in any order.
Assume that both nodes 𝑖 and 𝑗 are in SS state; then node 𝑗
would not be able to get response continuously Δ times from
a node in𝑁

𝑖
∩ 𝑅
𝑗
. As a result, node 𝑗 would move back to CS

state, and it would not be able to enter SS state again.

6. Complexity Analysis of DTSS Algorithm

In this section, we evaluate the expected runtime of DTSS
algorithm, that is, the time when all nodes in the network
reach SS state. Table 2 summarizes the set of notations used
in this section. First, we consider the situation, when all
nodes in the network interfere with each other’s transmission;
that is, the interference graph 𝐺 is complete. This situation
mainly occurs in single-hopWSNs. In this case, only a single
transmission of REQ message in a slot can be successful, and
therefore, nodes can enter SS state one at a time in each slot, as
shown in Figure 5. Furthermore, we assume that |𝑅

𝑖
| = 1, for

each node 𝑖. In this case nodes directly enter SS state without
entering theVS state.The analysis can be further extended for
the case when |𝑅

𝑖
| > 1. Initially, every node transmits REQ

message with probability 1/N in every slot.
Let the time slot at which 𝑖th node enters SS state be 𝑋

𝑖
.

Note that𝑋
𝑖
is a random variable. Clearly,𝑋

𝑛
is the time slot

when last node enters SS state, which is exactly the desired
runtime of DTSS algorithm. Let 𝑌

𝑖
= 𝑋
𝑖
− 𝑋
𝑖−1

. In this case,

𝑋
𝑖
= 𝑋
𝑖−1

+ 𝑌
𝑖
,

𝐸𝑋
𝑖
= 𝐸𝑋
𝑖−1

+ 𝐸𝑌
𝑖
=

𝑖

∑

𝑗=1

𝐸𝑌
𝑗
.

(1)

1st 2nd i − 1st

Xi

n − 1st
Yi

ith nth

Figure 5: Sequence of slot assignment in a single-hop WSN. The
nodes cannot enter state simultaneously in a slot.

Theorem 8. 𝐸𝑋
𝑛
is 𝑂(𝑛) for single-hop WSNs.

Proof. At time slot 𝑋
𝑖−1

, exactly 𝑖 − 1 nodes are in SS state
and for the remaining 𝑛 − 𝑖 + 1 nodes which are not in
SS state, set their slot probability to 1/(𝑛 − 𝑖 + 1), for
unoccupied slots. Let 𝑃succ be the probability that only one
node transmits a REQ message in a slot after time slot 𝑋

𝑖−1

and the message is received successfully at the intended
receiver. Note that the REQ message could be lost not only
due to collisions but also because of channel impairment.
Therefore, a successful packet transmission also depends
upon packer error rate (PER). 𝑌

𝑖
is a geometric random

variablewith success probability𝑃succ and expectation 1/𝑃succ.
The upper bound of 𝐸𝑌

𝑛
(runtime) can be calculated as

follows:

𝑃succ = (
𝑛 − 𝑖 + 1

1
) ∗

1

𝑛 − 𝑖 + 1

∗ (
𝑛 − 𝑖

𝑛 − 𝑖 + 1
)

𝑛−𝑖

∗ (1 − PER)

= (
𝑛 − 𝑖

𝑛 − 𝑖 + 1
)

𝑛−𝑖

∗ (1 − PER) ,

𝐸𝑌
𝑖
=

1

𝑃succ
= (

𝑛 − 𝑖 + 1

𝑛 − 𝑖
)

𝑛−𝑖

∗
1

(1 − PER)

= (1 +
1

𝑛 − 𝑖
)

𝑛−𝑖

∗
1

(1 − PER)
,

𝐸𝑌
𝑖
≤

𝑒

(1 − PER)
,

∵ {(1 +
1

𝑛 − 𝑖
)

𝑛−𝑖

} ,

is monotonically increasing and converges to 𝑒

𝐸𝑋
𝑛
=

𝑛

∑

𝑗=1

𝐸𝑌
𝑗
≤

1

1 − PER

𝑛

∑

𝑗=1

𝑒 =
𝑛𝑒

1 − PER
= 𝑂 (𝑛) .

(2)

Now, we will consider a more generalized situation when
not all nodes in the network interfere with each other’s trans-
mission; that is, the interference graph 𝐺 is not necessarily
complete. Again we assume that |𝑅

𝑖
| = 1. The above situation

mainly occurs in multihop WSNs. Further, we assume that
the graph 𝐺 is regular with degree N − 1. Note that N
is always taken to be greater than Δ, the maximum degree

10 Mobile Information Systems

of interference graph. Therefore, assuming the graph to be
regularwith degreeN−1will give theworst case analysis; that
is, the expected runtime of DTSS algorithm for a nonregular
interference graph with Δ = N − 1 will always be less than or
equal to the expected runtime for a regular interference graph
of degreeN − 1.

We will first find out for an arbitrary node 𝑖 what the
minimum value is that 𝑞

𝑖
can take, irrespective of the slot

probabilities of other nodes in the network. This will help us
to set an upper bound on the expected time, required by any
node, to reach SS state.

Let us rearrange the IDs of the nodes in the following
manner.

(i) The ID of node 𝑖 is changed to 1.
(ii) The IDs of nodes adjacent to node 𝑖 in 𝐺 would be

changed from 2 to N. The ordering among these
nodes could be arbitrary.

(iii) The IDs of all other nodes would becomeN + 1 to 𝑛.
The ordering among these nodes could be arbitrary.

Note that, the above rearrangement will not change the
probability of node 𝑖 entering SS state in a round. Our task
is to find out 𝑞

1
instead of 𝑞

𝑖
. Further, we can also omit the

subscript 1 from 𝑞
1
for sake of clarity.

Let the probability of node with ID 1 (after rearrange-
ment) entering SS state at slot 𝑘 in a round be 𝑞(𝑘). The value
of 𝑞(𝑘) depends upon the transmission probability of node
1 in slot 𝑘 and the transmission probabilities of its adjacent
nodes in the same slot. Consider

𝑞 (𝑘) = 𝑝
1
(𝑘) ∗

N

∏

𝑗=2

(1 − 𝑝
𝑗
(𝑘)) . (3)

The probability that node 1 can enter SS state in a round is
equal to the probability that it can enter SS state in at least
one slot of the round. Therefore, 𝑞 can be written in terms of
𝑞(𝑘) as

𝑞 = 1 −

N

∏

𝑘=1

(1 − 𝑞 (𝑘)) . (4)

In order to find the minimum value of 𝑞, we define
another term 𝑞sum as a function of 𝑞(𝑘)’s as follows:

𝑞sum =

N

∑

𝑘=1

𝑞 (𝑘) . (5)

We know that, for a constant sum, the product can
be maximized when the sum is partitioned equally [26].
Therefore, for a constant value of 𝑞sum, 𝑞 can achieve its
minimumvalue 𝑞min, if 𝑞(𝑙) = 𝑞(𝑚), 1 ≤ 𝑙,𝑚 ≤ N. Obviously,
𝑞min is a function of 𝑞sum.

Theorem 9. Let 𝑞min = F(𝑞sum). Then F is a monotonically
increasing function.

Proof. Let 𝑥 and 𝑦 be the two values of 𝑞sum, such that 𝑥 > 𝑦.
We know that 𝑞min is achieved when 𝑞(𝑙) = 𝑞(𝑚), 1 ≤ 𝑙, 𝑚 ≤

N. Let 𝑐1 and 𝑐2 be the corresponding values of 𝑞(𝑘), for all

𝑘 with respect to 𝑥 and 𝑦. In this case, the value ofF(𝑥) and
F(𝑦) would be 1 − (1 − 𝑐1)N and 1 − (1 − 𝑐2)N, respectively
(4). Therefore,

𝑥 > 𝑦 󳨐⇒ N𝑐1 > N𝑐2 󳨐⇒ 𝑐1 > 𝑐2

󳨐⇒ (1 − 𝑐1) < (1 − 𝑐2) 󳨐⇒ (1 − 𝑐1)
N
< (1 − 𝑐2)

N

󳨐⇒ 1 − (1 − 𝑐1)
N
> 1 − (1 − 𝑐2)

N

󳨐⇒ F (𝑥) > F (𝑦) .

(6)

It is clear from Theorem 9 that, to find 𝑞min, we need to
first minimize the 𝑞sum. Let us define a binary square matrix,
𝐵, of sizeN, in the following manner:

𝑏
𝑖,𝑗
=
{

{

{

1, if 𝑝
𝑖
(𝑗) > 0

0, otherwise.
(7)

The matrices 𝑃 and 𝐵 show an example of probability
matrix and its corresponding binary transformation forN =

3. Consider

𝑃 =(

(

1

3

1

3

1

3

1

2

1

2
0

1

2
0

1

2

)

)

, 𝐵 = (

1 1 1

1 1 0

1 0 1

) . (8)

Let 𝛽
𝑖
= ∑

N
𝑗=1

𝑏
𝑖,𝑗

(number of 1’s in row 𝑖 of matrix 𝐵)
and 𝛼

𝑗
= ∑

N
𝑖=2

𝑏
𝑖,𝑗

(number of 1’s in column 𝑗 of matrix 𝐵,
excluding first row).The 𝑞(𝑘) can be rewritten in terms of 𝑏

𝑗,𝑘

and 𝛽
𝑗
, 1 ≤ 𝑗 ≤ N, as follows:

𝑞 (𝑘) =
𝑏
1,𝑘

𝛽
1

N

∏

𝑗=2

(1 −
𝑏
𝑗,𝑘

𝛽
𝑗

) . (9)

Let 𝐵min be the matrix for which the value of 𝑞sum is
minimum. To find out the properties of 𝐵min, we start with
the hypothesis that 𝑞would beminimum, if none of the nodes
adjacent to node 1 is in SS state. This implies that node 1 is
still transmitting in all the slots with probability 1/N; that is,
𝑏
1,𝑘

= 1, for all 𝑘, 1 ≤ 𝑘 ≤ N. Now, we will present two
lemmas based on the above hypothesis; this hypothesis will be
used to find out the properties of 𝐵min in Theorem 12, where
we also explain the need for it.

Lemma 10. For a given instance of matrix 𝐵, let 𝑏
1,𝑘

= 1, for
all 𝑘, 1 ≤ 𝑘 ≤ N, and for a slot 𝑗, 𝑞(𝑗) ≤ 𝑞(𝑘), for all 𝑘 ̸= 𝑗.
Then, for any row 𝑖, 𝑞

𝑠𝑢𝑚
reduces or remains the same, if 𝑏

𝑖,𝑗
is

changed from 1 to 0.

Proof. Let 𝑞oldsum and 𝑞
new
sum be the respective sums before and

after the conversion of 𝑏
𝑖,𝑗

= 1 to 0. We need to show that
𝑞
old
sum ≥ 𝑞

new
sum. Similarly, 𝑞old(𝑗) and 𝑞

new
(𝑗) can be defined.

Mobile Information Systems 11

Since 𝑏
1,𝑘

= 1, for all 𝑘, 1 ≤ 𝑘 ≤ N, the 𝑞old(𝑗) can be written
as

𝑞
old
(𝑗) =

1

N

N

∏

𝑘=2

(1 −
𝑏
𝑘,𝑗

𝛽
𝑘

)

=
1

N
(

N

∏

𝑘=2,𝑘 ̸=𝑖

(1 −
𝑏
𝑘,𝑗

𝛽
𝑘

)) ∗ (1 −
1

𝛽
𝑖

)

(10)

and since 𝑏
𝑖,𝑗
becomes 0, after the conversion, 𝑞new(𝑗) would

be

𝑞
new

(𝑗) =
1

N
(

N

∏

𝑘=2,𝑘 ̸=𝑖

(1 −
𝑏
𝑘,𝑗

𝛽
𝑘

)) . (11)

Therefore, from (10) and (11), we get

𝑞
new

(𝑗) − 𝑞
old
(𝑗) =

𝑞
old
(𝑗)

𝛽
𝑖
− 1

. (12)

Similarly, for all other slots 𝑘 ̸= 𝑗 and 𝑏
𝑖,𝑘
= 1,

𝑞
new

(𝑘) − 𝑞
old
(𝑘) = −

𝑞
old
(𝑘)

(𝛽
𝑖
− 1)
2
. (13)

To show that 𝑞oldsum ≥ 𝑞
new
sum, we calculate 𝑞

new
sum − 𝑞

old
sum as follows:

𝑞
new
sum − 𝑞

old
sum

=

N

∑

𝑘=1

𝑞
new

(𝑘) −

N

∑

𝑘=1

𝑞
old
(𝑘)

=

N

∑

𝑘=1

(𝑞
new

(𝑘) − 𝑞
old
(𝑘))

= (∑

𝑘 ̸=𝑗,𝑏𝑖,𝑘=1

𝑞
new

(𝑘) − 𝑞
old
(𝑘)) + (𝑞

new
(𝑗) − 𝑞

old
(𝑗))

= (∑

𝑘 ̸=𝑗,𝑏𝑖,𝑘=1

−
𝑞
old
(𝑘)

(𝛽
𝑖
− 1)
2
) +

𝑞
old
(𝑗)

𝛽
𝑖
− 1

= (∑

𝑘 ̸=𝑗,𝑏𝑖,𝑘=1

− 𝑞
old
(𝑗) + (𝑞

old
(𝑗) − 𝑞

old
(𝑘))

(𝛽
𝑖
− 1)
2

) +
𝑞
old
(𝑗)

𝛽
𝑖
− 1

= (∑

𝑘 ̸=𝑗,𝑏𝑖,𝑘=1

− 𝑞
old
(𝑗)

(𝛽
𝑖
− 1)
2
)

+ (∑

𝑘 ̸=𝑗,𝑏𝑖,𝑘=1

(𝑞
old
(𝑗) − 𝑞

old
(𝑘))

(𝛽
𝑖
− 1)
2

) +
𝑞
old
(𝑗)

𝛽
𝑖
− 1

.

(14)

Since the number of 1’s in row 𝑖 is 𝛽
𝑖
, the number of terms

in the first summation of above equation would be exactly
𝛽
𝑖
− 1. Therefore,

𝑞
new
sum − 𝑞

old
sum = ∑

𝑘 ̸=𝑗,𝑏𝑖,𝑘=1

𝑞
old
(𝑗) − 𝑞

old
(𝑘)

(𝛽
𝑖
− 1)
2

≤ 0,

∵ 𝑞 (𝑗) ≤ 𝑞 (𝑘) , ∀𝑘 ̸= 𝑗.

(15)

Lemma 11. For a given instance of matrix 𝐵, let 𝑏
1,𝑘

= 1, for
all 𝑘, 1 ≤ 𝑘 ≤ N, and 𝛽

𝑖
= 2, for all 𝑖, 2 ≤ 𝑖 ≤ N. Then the

following holds. For any two columns 𝑗 and 𝑘 and, for any row
𝑖, such that 𝛼

𝑗
> 𝛼
𝑘
, 𝑏
𝑖,𝑗
= 1 and 𝑏

𝑖,𝑘
= 0, 𝑞

𝑠𝑢𝑚
either reduces or

remains the same if the values of 𝑏
𝑖,𝑗
and 𝑏
𝑖,𝑘
are interchanged.

Proof. Consider 𝑞oldsum, 𝑞
new
sum, 𝑞

old
(𝑗), and 𝑞new(𝑗) as defined in

Lemma 10. We need to show that 𝑞oldsum ≥ 𝑞
new
sum. Here, 𝑞

old
(𝑗) =

(1/N) ∗ 1/2
𝛼𝑗 , 𝑞old(𝑘) = (1/N) ∗ 1/2

𝛼𝑘 , 𝑞new(𝑗) = (1/N) ∗

1/2
𝛼𝑗−1, and 𝑞new(𝑘) = (1/N) ∗ 1/2

𝛼𝑘+1. Therefore,

𝑞
new
sum − 𝑞

old
sum = (𝑞

new
(𝑗) + 𝑞

new
(𝑘)) − (𝑞

old
(𝑗) + 𝑞

old
(𝑘))

= (𝑞
new

(𝑗) − 𝑞
old
(𝑗)) + (𝑞

new
(𝑘) + 𝑞

old
(𝑘))

= (
1

2
𝛼𝑗−1

−
1

2
𝛼𝑗
) + (

1

2𝛼𝑘+1
−

1

2𝛼𝑘
)

=
1

2
𝛼𝑗
−

1

2𝛼𝑘+1
≤ 0 ∵ 𝛼

𝑗
> 𝛼
𝑘
.

(16)

Now we will try to prove that 𝐵min should satisfy a few
constraints, in terms of 𝛼

𝑖
and 𝛽

𝑖
, 1 ≤ 𝑖 ≤ N, with the help of

Lemmas 10 and 11.

Theorem 12. 𝐵min has the following properties:

(1) 𝛽
𝑖
= 2, for all 𝑖, 2 ≤ 𝑖 ≤ N;

(2) for exactly two columns 𝑗1 and 𝑗2, 𝛼
𝑗1
= 𝛼
𝑗2
= 1 and

for all other columns 𝑘 ̸= 𝑗1, 𝑗2, 𝛼
𝑘
= 2.

Proof. We prove both the properties for two different cases:
𝛽
1
= N and 𝛽

1
̸= N.

Case 1 (𝛽
1
= N). The property (1) can be proved by contra-

diction. First, we show that 𝛽
𝑖
≥ 2, 2 ≤ 𝑖 ≤ N. If 𝛽

𝑖
= 1 with

𝑏
𝑖,𝑗
= 1, for some row 𝑖, then node 𝑖 is in SS state. Therefore,

node 1 should have stopped transmitting in slot 𝑗, that is,
𝑏
1,𝑘

= 0, which contradicts our assumption that 𝛽
1
= N.

Now, we show that 𝛽
𝑖
≤ 2, 2 ≤ 𝑖 ≤ N. Let ∃𝑖 : 𝛽

𝑖
> 2 andA

the set of column indexes 𝑘 for which 𝑏
𝑖,𝑘
= 1; then ∃𝑗 ∈ A,

such that 𝑞(𝑗) ≤ 𝑞(𝑘), for all 𝑘 ∈ 𝐴, 𝑗 ̸= 𝑘. Therefore, by the
virtue of Lemma 10, 𝑞sum reduces or remains the same, if 𝑏

𝑖,𝑘

is changed from 1 to 0. The same process can be repeated till
𝛽
𝑖
= 2.

12 Mobile Information Systems

0 i j n

(qmin)
n

(1 − qmin)
n

(1 − qmin)
n−j

(1 − qmin)
n−i

(qmin)
n−i

(n

j
)(qmin)

j(1 − qmin)
n−j

(n − i

j − i
)(qmin)

j−i(1 − qmin)
n−j

1

Figure 6: Discrete time Markov chain (DTMC) with number of nodes in SS state as random variable, assuming the probability of entering
SS state, as 𝑞min, for each node in the network.

The property (2) can also be proved by contradiction. We
know that 𝛽

1
= N and 𝛽

𝑖
= 2, 2 ≤ 𝑖 ≤ N. Therefore,

∑
N
𝑗=1

𝛼
𝑗
= 2(N − 1). First, we show that 𝛼

𝑗
≤ 2, 1 ≤ 𝑗 ≤ N.

For a column 𝑗, 𝛼
𝑗
> 2 ⇒ ∃𝑘 : 𝛼

𝑘
< 2; otherwise ∑N

𝑗=1
𝛼
𝑗

would become less than 2(N − 1). In this case, for any row 𝑖,
such that 𝑏

{𝑖,𝑗}
= 1 and 𝑏

{𝑖,𝑘}
= 0, the value of 𝑏

{𝑖,𝑗}
and 𝑏
{𝑖,𝑘}

can be interchanged by virtue of Lemma 11. This proves that
𝛼
𝑗
could be either 0, 1 or 2, 1 ≤ 𝑗 ≤ N. Since, any column can

have at most two 1’s, this implies that at most one column of
type 𝛼

𝑖
= 0 can exist and that also can be increased to 1 by

virtue of Lemma 11. Furthermore, the number of columns of
type 𝛼

𝑖
= 1 cannot be one, since 2(N − 1) is even. Finally, we

can say that number of columns of type 𝛼
𝑖
= 1 is exactly 2;

otherwise, the total sum will be less than 2(N − 1).

Case 2 (𝛽
1

̸= N). Let 𝑞case 1sum and 𝑞case 2sum be the corresponding
summation for Cases 1 and 2, respectively. The value of 𝑞case 1sum
would be (N + 2)/4N. We will prove that 𝑞case 1sum < 𝑞

case 2
sum by

showing that any perturbation in thematrix corresponding to
Case 1 will increase the value of 𝑞sum.We have already proved,
in Case 1, that any modification in any of the rows from 2 to
rowN and leaving row 1 unchanged will increase 𝑞sum. Now,
let us change a single entry 𝑏

1,𝑘
= 1 to 0; that is, node 1 has

decided not to transmit in slot 𝑘. This only happens when at
least one adjacent node 𝑖 in 𝐺 has gone to SS state for slot 𝑘,
which implies that 𝑏

𝑖,𝑘
= 1 and 𝑏

𝑖,𝑗
= 0, for all 𝑗 ̸= 𝑘. Let us

interchange the row 𝑖with rowN and column 𝑘with column
N. In this case, 𝑏

1,N = 0, 𝑏
1,𝑗

= 1, for all 𝑗 ̸= N, and 𝑏N,N = 1

and 𝑏N,𝑗 = 0, for all 𝑗 ̸= N. Consider the submatrix of size
N − 1 times N − 1. The minimum value of 𝑞sum which can
be achieved by this submatrix would be (N + 1)/4(N − 1).
Moreover, 𝑞(N) = 0, because 𝑏

1,N = 0. Therefore, 𝑞case 2sum =

(N + 1)/4(N − 1) > (N + 2)/4N = 𝑞
case 1
sum .

FromTheorem 9, we know that the 𝑞min can be achieved
when 𝑞sum is minimum and 𝐵min should satisfy the properties
as given inTheorem 12. Therefore,

𝑞min = 1 − (
4 ∗N − 1

4 ∗N
)

(N−2)

∗ (
2 ∗N − 1

2 ∗N
)

2

. (17)

The following matrix shows one of such 𝐵min matrix for
N = 4:

𝐵min =(

1 1 1 1

0 0 1 1

0 1 1 0

1 1 0 0

). (18)

To calculate the expected runtime of DTSS algorithm,
we model the behavior of the system using a discrete time
Markov chain (DTMC), with the number of nodes in SS state,
𝑋
𝑡
, at the beginning of round 𝑡, as a random variable. The

transition probabilities, 𝜋
𝑖,𝑗
, are defined as follows:

𝜋
𝑖,𝑗
=

{{{{{{

{{{{{{

{

(

𝑛 − 𝑖

𝑗 − 𝑖

) (𝑞min)
𝑗−𝑖

(1 − 𝑞min)
𝑛−𝑗

, 𝑗 ≥ 𝑖

1, 𝑖 = 𝑗 = 𝑛

0, otherwise.

(19)

In thisDTMC (see Figure 6), all states are transient except
state “𝑛” which is an absorbing state. The probability of
leaving a transient state “𝑖” is always greater than 0; that is,
1 − ∑

𝑗>𝑖
𝜋
𝑖,𝑗

> 0. A transient state cannot be visited again,
once it is left. This shows that the DTSS algorithm converges
in a finite time. Let 𝜏

𝑖
be the number of rounds required to

reach state “𝑛” starting from state “𝑖.” Our goal is to find
𝐸[𝜏
0
], which can be calculated using the following recurrence

relation:

𝐸 [𝜏
𝑖
] =

{{

{{

{

1 +

𝑛

∑

𝑗=0

𝜋
𝑖,𝑗
𝐸 [𝜏
𝑗
] , 1 ≤ 𝑖 ≤ 𝑛 − 1

0, 𝑖 = 𝑛.

(20)

Note that the above DTMC is the approximation of actual
stochastic process, where the transition probabilities not only
dependupon the number of nodes in SS state, but also depend
on exact nodes belonging to SS state.

We show that the value of 𝐸[𝜏
𝑖
] is greater than actual

expected time required to reach state “𝑛” starting from state
“𝑖” in DTMC, by proving that the transition probability of

Mobile Information Systems 13

E[𝜏0]

1/qmin ∗ log(n)

20

18

16

14

12

10

8

6

4

2

0
0

10 20 30 40 50 60 70 80 90 100

Ex
pe

ct
ed

 n
um

be
r o

f r
ou

nd
s

Number of nodes in network (n)

Figure 7: Runtime performance of DTSS algorithm in terms of
number of rounds (frames) with respect to number of nodes in the
network and its comparison with the function, log 𝑛/𝑞min.

moving from 𝑖 nodes in SS state to 𝑗 nodes in SS state, in
an actual stochastic process, is always greater than 𝜋

𝑖,𝑗
. We

know that the probability of each node moving from CS state
to SS state in a round is always greater than 𝑞min(17) and
therefore the probability that, out of 𝑛 − 𝑖 nodes in CS state,
exactly 𝑗 − 𝑖 nodes enter into the SS state is greater than
(𝑛−𝑖𝑗−𝑖)(𝑞min)

𝑗−𝑖
(1 − 𝑞min)

𝑛−𝑗
= 𝜋
𝑖,𝑗
.

Figure 7 shows the graph for 𝐸[𝜏
0
] along with function

log 𝑛/𝑞min. The graph shows that 𝐸[𝜏
0
] is upper bounded

by log 𝑛/𝑞min, and therefore, for a fixed frame size, 𝐸[𝜏
𝑛
] is

𝑂(log 𝑛). We know from (17) that 𝑞min depends only uponN,
which is a measure of two-hop network density (𝛿).

Another method to analyze the expected runtime of
DTSS algorithm is to calculate the expectation of maximum
of all 𝑋

𝑖
’s, where 𝑋

𝑖
is the time taken by node 𝑖 to reach SS

state. Consider

𝐸 [𝑋max] = 𝐸 [max (𝑋
1
, 𝑋
2
, 𝑋
3
, . . . , 𝑋

𝑛
)] . (21)

The𝑋
𝑖
s can be assumed as i.i.d (independent and identically

distributed) geometric random variable with parameter 𝑞min.
In this case the 𝐸[𝑋

𝑖
] would be higher than the actual

expected time to enter SS state, by node 𝑖. The value of
𝐸[𝑋max] can be calculated as

𝐸 [𝑋max] = ∑

𝑘≥0

𝑃 ([𝑋max > 𝑘])

= ∑

𝑘≥0

(1 − 𝑃 (𝑋max ≤ 𝑘))

= ∑

𝑘≥0

(1 − 𝑃 (𝑋
𝑖
≤ 𝑘)
𝑛

)

= ∑

𝑘≥0

(1 − (1 − (1 − 𝑞min)
𝑘

)
𝑛

) ,

(22)

where 𝑞min = 1 − 𝑞min. By considering the above infinite sum
as right and left hand Riemann sum approximations [29] of
the corresponding integral, we obtain

∫

∞

0

(1 − (1 − 𝑞min
𝑘
)
𝑛

) ≤ 𝐸 [𝑋max]

≤ 1 + ∫

∞

0

(1 − (1 − 𝑞min
𝑘
)
𝑛

) .

(23)

With the change of variable 𝑢 = 1 − 𝑞min
𝑘, we have

𝐸 [𝑋max] ≤ 1+ 1

log 𝑞min
∫

1

0

1 − 𝑢
𝑛

1 − 𝑢
𝑑𝑢

= 1 +
1

log 𝑞min
∫

1

0

(1 + 𝑢 + ⋅ ⋅ ⋅ + 𝑢
𝑛−1

) 𝑑𝑢

= 1 +
1

log 𝑞min
(1 +

1

2
+ ⋅ ⋅ ⋅ +

1

𝑛
)

≈ 1 +
log 𝑛

log 𝑞min
.

(24)

From (24), we can conclude that 𝐸[𝑋max] is the 𝑂(log 𝑛),
for a fixed neighborhood density, 𝛿. We know from (17) that
𝑞min depends only uponN, which is a measure of 𝛿. A more
rigorous analysis on expectation of the maximum of IID
geometric random variables can be found in [30].

7. Simulation Results

We have used Castalia simulator [27] to study the perfor-
mance of DTSS algorithm. A multihop network, based on
TelosB node hardware platform that uses CC2420 transceiver
[28] for communication, is used in the simulation. The
transceivers run at 250 kbps data rate and dbm transmission
power which approximately gives 40m of transmission range
in the absence of interference. All nodes are distributed
randomly within 250m × 250m area. Note that, at 250 kbps,
it takes about 0.5ms to transmit a packet of size 128 bits (80
bits for theMACheader, and 48 bits for 𝐿2 and state payload).
Hence, we set TDMA time slots to a period of 1ms, which is
sufficiently long for the transmission of REQ/RES messages.
The performance of protocol has been averaged over 100
simulation runs. The neighborhood size of the network is
changed by varying the number of nodes from 50 to 300.
This setup produces topologies with different neighborhood
density, 𝛿, values varying between 5 and 50.

Figure 8 shows the average number of slots taken by all
the nodes to decide their slot in case of broadcast scheduling
for frame sizes 𝛿 and 1.3𝛿, respectively. The error bars
denote 95% confidence intervals. Figure 8 shows that runtime
increases linearly with neighborhood density, 𝛿. Given slot
size as 1ms, the total runtime for very high density network
with 𝛿 = N = 50 is approximately 7 s. Furthermore, if we
take more slots per frame, then runtime decreases and also
confidence interval improves.

Figure 9 shows the average of the number of slots taken
by all the nodes to decide their slot in case of broadcast

14 Mobile Information Systems

0

1000

2000

3000

4000

5000

6000

7000

8000

5 10 15 20 25 30 35 40 45 50

Ru
nt

im
e (

nu
m

be
r o

f s
lo

ts)

Network density (𝛿)

𝒩 = 𝛿

𝒩 = 1.3 ∗ 𝛿

Figure 8: Runtime performance of DTSS algorithm with respect to
network network density, 𝛿, and the effect of taking the number of
slots more than 𝛿.

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

20 30 40 50 60 70 80 90 100
Number of slots in a frame

Ru
nt

im
e (

nu
m

be
r o

f s
lo

ts)

Figure 9: Runtime performance of DTSS algorithm with respect to
number of slots in frame,N.

scheduling for varying N values starting from 𝛿. Figure 9
shows that the runtime reduces rapidly with small increase
in N and further increase in Δ does not have much impact
on runtime. This fact can be utilized as a tradeoff between
runtime and frame length.

Figure 10 shows the average of the number of slots taken
by all the nodes to decide their slot for varying the number of
receivers (unicast to broadcast) with 𝛿 = N = 40. Figure 10
suggests that unicast or link scheduling can be performed in
less than one second for a network with fairly high network
density.

We now compare DTSS with DRAND [12] and DD-
TDMA [13]. Figure 11 shows the performance results of DTSS
along with DRAND and DD-TDMA with respect to runtime
of each algorithm. The comparison is based on broadcast
transmission because both DRAND and DD-TDMA only
implement this mode of transmission. The primary reason

1000

2000

3000

4000

5000

6000

7000

0
0 2 4 6 8 10 12 14 16 18 20

Ru
nt

im
e (

nu
m

be
r o

f s
lo

ts)

Number of receivers (Ri)

Figure 10: Runtime statistics of DTSS algorithm to show the per-
formance with respect to unicast (𝑅

𝑖
= 1), multicast, and broadcast

(𝑅
𝑖
> 1) mode of transmissions.

DTSS
DRAND
DD-TDMA

120

100

80

60

40

20

0
10 20 30 40 50

Ru
nt

im
e (

s)

Network density (𝛿)

Figure 11:The runtimeperformance comparison ofDTSS algorithm
against DRAND and DD-TDMA, with respect to network density,
𝛿.

of getting less runtime is because the DTSS generates a
feasible schedulewhen the number of available slots is already
fixed, whereas other algorithms try to generate a suboptimal
schedule by using greedy approach, which is inherently
sequential. In case of unicast and multicast scheduling, the
DTSS even takes lesser time to compute the schedule as
compared to broadcast transmission. The number of slots
taken by DTSS is always 𝛿 as shown in Figure 12, whereas the
number of time slots taken by DRAND and DD-TDMA can
be less than 𝛿.

8. Conclusions and Future Work

For many applications in WSNs, efficiently handling the
spatially correlated contention is an important requirement.
The DTSS takes very less time to perform the scheduling

Mobile Information Systems 15

DTSS
DRAND
DD-TDMA

10 20 30 40 50

Network density (𝛿)

60

50

40

30

20

10

0

N
um

be
r o

f s
lo

ts
in

 a
fr

am
e

Figure 12: A comparison on frame size of DTSS algorithm against
DRAND and DD-TDMA, with respect to network density, 𝛿.

as compared to other existing distributed scheduling algo-
rithms. We have shown that the runtime of DTSS algorithm
is 𝑂(𝑛) and 𝑂(log(𝑛)) for single-hop and multihop WSNs,
respectively, and therefore it is scalable for WSNs with large
number of nodes. The interference model used by DTSS
is more realistic than conventional protocol interference
model. Additionally, the DTSS has a unique feature of unified
scheduling in which simultaneously a few nodes can take a
slot for unicast, while other nodes can take it for multicast
or broadcast purpose. Although the number of slots taken
by DTSS is bounded by Δ, further efforts can be applied to
reduce the number of slots. In future, we plan to work on the
variation of DTSS algorithm, for the situation, when nodes
are not assumed to be synchronized before performing the
slot scheduling.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] H. Alemdar and C. Ersoy, “Wireless sensor networks for
healthcare: a survey,” Computer Networks, vol. 54, no. 15, pp.
2688–2710, 2010.

[2] M. A. Maarof, M. A. Rassam, and A. Zainal.
[3] J. Silva, T. Camilo, A. Rodrigues, M. Silva, F. Gaudêncio, and F.

Boavida, “Multicast in wireless sensor networks the next step,”
in Proceedings of the 2nd International Symposium on Wireless
Pervasive Computing (ISWPC ’07), pp. 185–190, February 2007.

[4] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance
vector routing,” in Proceedings of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA ’99), pp.
90–100, New Orleans, La, USA, February 1999.

[5] A. R. Swain and R. C. Hansdah, “A weighted average-based
external clock synchronisation protocol for wireless sensor

networks,” International Journal of Sensor Networks, vol. 12, no.
2, pp. 89–105, 2012.

[6] B. Hull, K. Jamieson, and H. Balakrishnan, “Mitigating con-
gestion in wireless sensor networks,” in Proceedings of the
2nd International Conference on Embedded Networked Sensor
Systems (SenSys ’04), pp. 134–147, ACM, Baltimore, Md, USA,
November 2004.

[7] G. Chakraborty, “Genetic algorithm to solve optimum TDMA
transmission schedule in broadcast packet radio networks,”
IEEE Transactions on Communications, vol. 52, no. 5, pp. 765–
777, 2004.

[8] C. Y. Ngo and V. O. K. Li, “Centralized broadcast scheduling
in packet radio networks via genetic-fix algorithms,” IEEE
Transactions on Communications, vol. 51, no. 9, pp. 1439–1441,
2003.

[9] S. Ramanathan andE. L. Lloyd, “Scheduling algorithms formul-
tihop radio networks,” IEEE/ACM Transactions on Networking,
vol. 1, no. 2, pp. 166–177, 1993.

[10] L. Bao and J. J. Garcia-Luna-Aceves, “Anew approach to channel
access scheduling for Ad Hoc networks,” in Proceedings of the
7th Annual International Conference on Mobile Computing and
Networking (MobiCom ’01), pp. 210–221, ACM, 2001.

[11] T. Moscibroda and R. Wattenhofer, “Coloring unstructured
radio networks,” in Proceedings of the 17th Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA ’05),
pp. 39–48, ACM, July 2005.

[12] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: distributed
randomized TDMA scheduling for wireless ad-hoc networks,”
in Proceedings of the 7th ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc ’06), pp.
190–201, ACM, May 2006.

[13] Y. Wang and I. Henning, “A deterministic distributed TDMA
scheduling algorithm for wireless sensor networks,” in Proceed-
ings of the International Conference on Wireless Communica-
tions, Networking and Mobile Computing (WiCOM ’07), pp.
2759–2762, Shanghai, China, September 2007.

[14] C. Zhu and M. S. Corson, “A five-phase reservation protocol
(FPRP) for mobile ad hoc networks,” in Proceedings of the
IEEE 17th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM ’98), vol. 1, pp. 322–331,
IEEE, San Francisco, Calif, USA, March–April 1998.

[15] A. R. Swain, R. C. Hansdah, and V. K. Chouhan, “An energy
aware routing protocol with sleep scheduling for wireless sensor
networks,” in Proceedings of the 24th IEEE International Con-
ference on Advanced Information Networking and Applications
(AINA ’10), pp. 933–940, IEEE, Perth, Australia, April 2010.

[16] E. Arikan, “Some complexity results about packet radio net-
works,” IEEE Transactions on Information Theory, vol. 30, no.
4, pp. 681–685, 1984.

[17] S. Ramanathan, “A unified framework and algorithm for
(T/F/C)DMA channel assignment in wireless networks,” Pro-
ceedings the 16th IEEE Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ’97), vol.
2, pp. 900–907, 1997.

[18] S. C. Ergen and P. Varaiya, “TDMA scheduling algorithms for
wireless sensor networks,” Wireless Networks, vol. 16, no. 4, pp.
985–997, 2010.

[19] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G.
Boggia, “Traffic aware scheduling algorithm for reliable low-
power multi-hop IEEE 802.15.4e networks,” in Proceedings of
the IEEE 23rd International Symposium on Personal, Indoor

16 Mobile Information Systems

and Mobile Radio Communications (PIMRC ’12), pp. 327–332,
September 2012.

[20] S. Waharte and R. Boutaba, “Performance comparison of dis-
tributed frequency assignment algorithms for wireless sensor
networks,” inNetwork Control and Engineering for QoS, Security
and Mobility, III, vol. 165, pp. 151–162, Springer, New York, NY,
USA, 2005.

[21] O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient,
distributed clustering approach for ad hoc sensor networks,”
IEEE Transactions on Mobile Computing, vol. 3, no. 4, pp. 366–
379, 2004.

[22] R. Rozovsky and P. R. Kumar, “SEEDEX: aMAC protocol for ad
hoc networks,” in Proceedings of the ACM International Sympo-
sium on Mobile Ad Hoc Networking and Computing (MobiHoc
’01), pp. 67–75, October 2001.

[23] I. Rhee, A.Warrier, M. Aia, J. Min, andM. L. Sichitiu, “Z-MAC:
a hybrid MAC for wireless sensor networks,” IEEE/ACM Trans-
actions on Networking, vol. 16, no. 3, pp. 511–524, 2008.

[24] C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener,
“Contention-free MAC protocols for wireless sensor networks,”
in Distributed Computing: Proceedings of the 18th International
Conference, DISC 2004, Amsterdam, The Netherlands, October
4–7, 2004, vol. 3274 of Lecture Notes in Computer Science, pp.
245–259, Springer, Berlin, Germany, 2004.

[25] V. Gabale, B. Raman, P. Dutta, and S. Kalyanraman, “A classi-
fication framework for scheduling algorithms in wireless mesh
networks,” IEEE Communications Surveys and Tutorials, vol. 15,
no. 1, pp. 199–222, 2013.

[26] I. M. Niven,Maxima andMinima without Calculus, Mathemat-
ical Association of America, Washington, DC, USA, 1981.

[27] Castalia: A simulator forWireless Sensor Networks, https://cas-
talia.forge.nicta.com.au/index.php/en/documentation.html.

[28] CC2420 Data Sheet, http://www.stanford.edu/class/cs244e/
papers/cc2420.pdf.

[29] Riemann sum, http://en.wikipedia.org/wiki/Riemannsum.
[30] B. Eisenberg, “On the expectation of the maximum of IID

geometric random variables,” Statistics & Probability Letters,
vol. 78, no. 2, pp. 135–143, 2008.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

