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It is important to recognize the motion of the user and the surrounding environment with multiple sensors. We developed a
guidance system based on mobile device for visually impaired person that helps the user to walk safely to the destination in the
previous study.However, amobile device havingmultiple sensors spendsmore powerwhen the sensors are activated simultaneously
and continuously.We propose amethod for reducing the power consumption of a mobile device by considering themotion context
of the user. We analyze and classify the user’s motion accurately by means of a decision tree and HMM (Hidden Markov Model)
that exploit the data from a triaxial accelerometer sensor and a tilt sensor.We can reduce battery power consumption by controlling
the number of active ultrasonic sensors and the frame rate of the camera used to acquire spatial context around the user.This helps
us to extend the operating time of the device and reduce the weight of the device’s built-in battery.

1. Introduction

Recently, the mobile devices are equipped with a variety of
sensors, such as a GPS receiver, an accelerometer, a gyro
sensor, and a camera, for recognizing the user’s motion
and environment. Efficient utilization of these sensors has
therefore been studied [1–3]. However, one of the difficult
issues is the residual time of battery in themobile devicewhen
it activates several sensors continuously. Some of the sensors
in themobile, such as the camera, spend lots of battery power.
Therefore, the power saving method for effectively using the
sensors is required.

Another issue is the difficulty of extracting precise data
from the sensors in themobile device. Accelerometers and tilt
sensors in particular are used to detect the motion context,
which means relationships between the motions of the user
during a certain period of time. In addition, it involves
motion scale analysis and direction of the user’s motion.
However, detecting the exact motion is not easy because the
data extracted from the sensors can be noisy and determining
the motion features such as deviation and mean is difficult.

We propose the method to detect motion of the user
by extracting more accurate data and to save the power by

activating sensors efficiently. In order to reduce the operating
frequency of the sensors consuming a lot of power, we activate
the sensors only if you need to use sensors by analyzing the
user’s motion accurately. We determine the motion of the
user by analyzing the data gathered from the accelerometer
and the tilt sensor, which are low power consumption and
low price compared to others. This method enables us to
control the operation of other sensors adaptively. We can
thus prolong the operating time of the mobile device and/or
decrease the weight and size of its battery. In order to
verify the availability of our proposed method, we applied
it to a guidance system for visually impaired person that
was developed in our previous studies [4]. It is based on
mobile device and is used of additional sensors to detect the
surroundings. We use a camera to estimate indoor position
of the user and multiple ultrasonic sensors to avoid obstacles
on the path. The device can save the power consumption
about 15% by adjusting the frequency of use of the sensor in
accordance with the user’s motion, as compared with the case
of activating the sensors consistently. In addition, the system
not using the display device can save the power of about 40%
in comparison with the case of activating the display device
continuously.
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Ourmethod utilizes the sensor data processing technique
so as to improve the recognition rate and accuracy despite the
dynamic movement of a user possessing the mobile device.
In addition, the motion recognition accuracy of our method
is higher than that of the previous methods which use the
data acquired from sensors attached to some parts of the
user’s body.Themethod detects user’smotionwith about 90%
accuracy because of using specific features such as vertical
and horizontal components and applying an HMM-based
classifier to improve performance. As a result, the method
could precisely detect motion of the user and effectively
reduce the power consumption of the system.

We summarize related work in Section 2. In Section 3,
we describe our method in detail. In Section 4, we present
the experimental results applying the proposed method. We
conclude our study in Section 5.

2. Related Work

In general, motion context refers to the activity pattern of
a user as analyzed using the data extracted from sensors
attached to some parts of the user’s body. Kern et al. [5],
Krause et al. [6], Ravi et al. [7], Choudhury et al. [8], and
Karantonis et al. [9] researched human activity and context
awareness using several accelerometer sensors.They analyzed
the motion of the user with only data of accelerometer
sensors. Those methods have no orientation problem for
collecting data by attaching a sensor to a specific location
on the body. However, our method reveals the orientation
problem because it collects direction data from a mobile
device. It is necessary to extract orientation-independent
features that reflect the current position of the device,
regardless of the orientation of the mobile device. A solution
to avoid orientation problem is using magnitude of the
accelerometer’s each axis. Mizell [10] has shown that the
average on each axis over a time period can produce an
estimation value of the gravity-related component. We use
a similar approach to estimate the gravity component from
each axis of accelerometer sensor.

In the analysis the data of accelerometer sensors,methods
for identifying user motion generally use a classifier, such
as a decision tree and a GMM (Gaussian Mixture Model).
Huynh and Schiele [11] categorized activities such as walking,
writing, or sitting using an SVM (Support Vector Machine),
and Long et al. [12] used a decision tree to classify a variety
of human motions. Husz et al. [13] applied an APM (Action
Primitive Model) that analyzed the motion using supervised
learning, and Nakata [14] classified the activities by means
of an approximate HMM (Hidden Markov Model). Zhu
and Sheng [15] used an HMM for analyzing motion data
extracted from accelerometer sensors attached to the hand
or foot. However, methods using classifiers require additional
processing to improve the accuracy and much training data
to yield correct classification.

Mobility is an important factor formobile devices because
the power is continuously supplied from their battery. The
devicemust be usable for long periods using a battery of small
capacity. To reduce the power consumption of these devices,
several methods have been devised to minimize the use of

the CPU and the display [16–18]. The methods use other
systemic energy optimization techniques so that the overall
battery life of the device is increased [19–21]. However, they
have problems that the response time of the device is delayed
and the performance is degraded.

In this paper, we exploit the accelerometer sensor and
tilt sensor embedded in the mobile device simultaneously
to evaluate motion of the user and apply a decision tree
based on approximation HMM for accurate analysis of the
motion in real time.The proposed method can reduce power
consumption because it minimizes CPU computations by
controlling the frame rate of a camera and the number of
active ultrasonic sensors used for recognizing the context of
the user’s surroundings, without loss of performance such as
the processing speed. In other words, the method can save
the power by adjusting sensors adaptively in a mobile device
based on the motion recognition of the user.

3. Power Consumption Control Method

We propose a method for reducing power consumption by
adjusting the frequency of the use of active sensors applied
for context awareness.The proposedmethod consisted of two
stages, motion analysis and power control. First, the method
takes advantage of the motion context of the user derived
from the accelerometer sensor and the tilt sensor.Themotion
of the user is analyzed in terms of the acceleration data for
𝑋, 𝑌, and 𝑍 axes obtained from a triaxial accelerometer
sensor. In other words, the motion analysis is conducted
with some features such as vertical or horizontal acceleration
components of user’s action. In addition, we use the tilt sensor
to correct errors in the data generated in accordance with
the mounted position of the accelerometer sensor and the
walking style of the user. To analyze accurately the motion
context from both sensors, we apply anHMM-based decision
tree which is a classification technique applying the time
series method.

Depending on the result of this motion analysis, we
determine the frequency of use of active sensors, which
consume a lot of power in the system. It is to determine
the minimum number of ultrasonic sensors required to be
active and the minimum frame rate for the camera. Then,
the recognition accuracy in that case should be similar to
the accuracy in the case when using all sensors. By activating
the necessary sensors only in special situations, rather than
activating all sensors continuously, it is possible to reduce
power consumption and to extend the battery life of the
device.

We present an overview of the proposed method in
Figure 1. It comprises two stages, namely, analyzing the
motion context with the HMM and controlling the power
consumption according to the identified situation, via the
activation of specified sensors only.

3.1. Motion Context Estimation Using Accelerometer Sensor.
We analyze the motion and orientation of the user by means
of mobile device’s built-in triaxial accelerometer and tilt
sensor. However, it is not easy to detect the motion directly
from those sensors’ data. Accurate motion recognition is
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Figure 1: A flowchart of our proposed method.

difficult because some of the data may be lost or may contain
noise [22, 23]. We therefore use probabilistic inference to
construct a Weka Toolkit based decision tree using an HMM
classifier that exploits both current data and previous data
[24, 25]. We can analyze a variety of motions with the
data extracted from the sensors. However, we focus on five
motions such as Standing, Walking, Fast Walking, Ascending
Stairs, and Descending Stairs. In addition, we want to choose
three motions (Standing, Walking, and Fast Walking) based
on the walking speed of the user. Three motions require
significantly different amounts of power to activate sensors
needed for context awareness [26, 27].

We acquire acceleration data for the device in the𝑋-axis,
𝑌-axis, and 𝑍-axis directions from the triaxial accelerometer
sensor. However, the data are erroneous because of jittering
noise, even if the device has been placed on a table. To reduce
the jittering noise, we scale down the acceleration data by
applying an MAF (Moving Average Filter), as given by (1).
Here, 𝑥

1
, 𝑦
1
, and 𝑧

1
are the raw data and 𝑥

2
, 𝑦
2
, and 𝑧

2
are

the scaled-down data. The factor 𝑘 defines the number of
data according to the sampling time interval, and 𝑆 indicates
the span value for smoothing. This smoothing technique for
noise reduction can be applied to both mobile and stationary
devices

(𝑥
2
, 𝑦
2
, 𝑧
2
) = MAF(round[

(𝑥
1
, 𝑦
1
, 𝑧
1
)

𝑘
] , 𝑆) . (1)

Orientation problems may occur, because every per-
son has a different gait and the mounted position of the
accelerometer sensor is variable [7, 13]. To solve this problem,
we use the magnitude values from the sensor as well as
the orientation-independent features such as the standard
deviation and the mean.These are obtained from the vertical
and horizontal components of accelerometer sensor. At this
stage, we have determined the sampling period for calculating
each value via repeated experiments. Let the acceleration
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a scalar value being the inner product of 𝑉acc and 𝑉𝑛

𝑉hor = 𝑉acc − 𝑉ver, (2)

where

𝑝
𝑖
= ⟨𝑉acc, 𝑉𝑛⟩ ,

𝑉ver = 𝑝𝑖 ⋅ 𝑉𝑛.
(3)

We evaluate the horizontal and vertical components
by means of estimating horizontal and vertical vectors. A
horizontal magnitude defines |𝑉hor| and a vertical magnitude
uses 𝑉ver. To determine the parameters used in the classifier,
we estimate features such as mean, standard deviation, 75%
percentile range, and zero crossing rate, computed from the
waveform of magnitude. To gather sufficient training data,
acceleration data are collected from test users over about four
hours. Each person carries out the three motions (Standing,
Walking, and Fast Walking). We use a C4.5 decision tree that
is known to increase the recognition accuracy by increasing
the number of samples [28]. The tree classifier involves the
features of the motion, as the mean and standard deviation of
the vertical and horizontal components of the acceleration.
We define meanV and stdV as the vertical features and
meanH and stdH as the horizontal features. We generate a
well-pruned decision tree (shown in Figure 2) based on 𝑘-
means clustering for matching similar motions. However,
there is a limit to recognize two motions (Walking and Fast
Walking) if using only decision tree because the motions
show various changes of complicated patterns according
to the time. Therefore, in order to improve the motion
classification accuracy, we create sequence data by collecting
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Figure 2: An example of generating a decision tree based on approximation HMM.

classification results of predetermined length obtained from
a decision tree. Then, we use approximation HMM which is
a classification technique applying the time series method. In
other words, we employ the Viterbi algorithm based on an
HMM to maximize the utilization of the correlation between
continuous motions [29, 30].

3.2. Adaptive Power Control via Motion Context. To verify
the effectiveness of the proposed method, we implemented
a prototype system that acquired the user’s spatial context
using a variety of sensors. To reduce power consumption, we
controlled the frame rate and the number of active sensors
based on the motion context. The prototype system could
detect an obstacle in the user’s path via six ultrasonic sensors.
To recognize objects in front of the user, it is important
to arrange the sensors efficiently to cover the maximum
range with the minimum number of sensors based on each
sensor’s physical characteristics, such as its coverage and
the detection range. In addition, the sensors should detect
obstacles quickly and precisely. Therefore, we estimate the
geometric information for all sensors and determine their
optimal placement via repeated experimentation [31]. As
depicted in Figure 3, we simplify the spatial structure in front
of the user by classifying it as one of several predefined
patterns. We then determine an avoidance direction by
evaluating the pattern tominimize the probability of collision
with the obstacle. As shown in Figure 4, we set each sensor’s
direction and coverage to overlap as little as possible with
those of neighboring sensors, by considering the walking
speed of the user and the sensing rate of the sensor [32].

We consider the range data extracted from four ultrasonic
sensors and represent the spatial information in terms of

2nd

1st

3rd

1st 2nd
Column

Figure 3: Layout of the ultrasonic sensors.

patterns in front of the user.The range data are classified into
four cases: danger (less than 100 cm), warning (100∼130 cm),
adequate (130∼200 cm), and unconcern (more than 200 cm).
We can identify 256 (= 44) cases and can generate the
corresponding range data from the four sensors in each case.
All cases are stored in a table (see Table 1). Each number
denotes one of the four cases, namely, 0 (danger), 1 (warning),
2 (adequate), and 3 (unconcern). The avoidance instructions
are classified into some cases, namely, turn-left, turn-right,
and forward. The avoidance direction for the obstacle can
therefore be determined by referring to the table.

As shown in Figure 5(a), if the motion is recognized
as Walking or the user proceeds straight ahead, we can
deactivate the two sensors that sense spatial information to
the left and the right of the user. This is because four sensors
for detecting frontal space can detect obstacles placed to the
left and the right of the user if the walking speed is average.
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Table 1: A decision table for determining the obstacle avoidance
direction.

Case Obstacle detection Avoidance
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It is therefore possible to reduce power consumption by
selectively activating the sensors that are arranged in the same
direction as the walking direction of the user. As shown in
Figure 5(b), when the motion is perceived as Fast Walking or
an obstacle is detected, we have to acquire spatial information
to the left and the right of the user to avoid obstacles. In
addition, it is necessary to analyze the frontal space precisely
for Fast Walking. We therefore have to activate all ultrasonic
sensors. This will enable us to detect an obstacle accurately
even if the user walks fast.

In addition, we attached identifyingmarkers to the ceiling
at regular intervals to enable tracking of the position of the
user via camera recognition of the markers. We increase
the camera’s frame rate for accurate recognition of the
markers when the motion is recognized as Fast Walking
and minimize the frame rate when the motion is perceived
as Walking, as shown in Figure 6. The method can reduce
the required battery power by decreasing the frame rate,
while maintaining the detection accuracy, when the motion
is recognized asWalking.

4. Experimental Results

4.1. Motion Patterns Analysis. It is very important to cor-
rectly classify the various human motions. We conducted

Table 2: Accuracy of motion recognition according to the classifier.

Classifier Standing Walking Fast
Walking

Ascending
Stairs

Descending
Stairs

DT 100 95.12 92.27 85.39 93.06
NB 99.14 77.59 82.37 85.25 87.93
𝑘NN 89.93 63.33 72.36 61.38 50.23
LR 95.81 71.28 84.53 79.11 84.78

experiments to compare the accuracy of several classifiers
to detect specific motion from the input data, such as
mean and standard deviation of the horizontal and vertical
components obtained from the accelerometer sensor. We
compare and analyze four classifiers: decision tree (DT),
näıve Bayesian (NB), 𝑘-nearest neighbor (𝑘NN), and logistic
regression (LR) based on probabilistic inference techniques.
A window size of the classifiers is set as 100 samples collected
in the same duration for five motions: Standing, Walking,
Fast Walking, Ascending Stairs, andDescending Stairs. Table 2
shows the accuracy of classification applying each classifier.
As shown in the results, all the classifiers well sorted standing
motion, but they showed lower accuracy for ascending stair
motion in comparison to the other motions. A decision tree
well classified all the motions compared to other classifiers.
Therefore, we determine to use a decision tree as a motion
classifier.

We construct a C4.5 decision tree, generated by the
Weka Toolkit, which is known to be a relatively accurate
method even with a small number of training samples
[28]. We perform the training and execution phases of
a process that detects motion. In the training phase, we
collect users’ motion. We calculate the mean and standard
deviation of the horizontal and vertical components of the
acceleration values continuously over a predefined period.
We then generate the decision tree using 𝑁

𝑠
samples and

𝑁
𝑎
test data [4]. The accuracy of recognition increases with

increasing𝑁
𝑎
and𝑁

𝑠
; however, in our experiments, we have

obtained high accuracy even with small sample spaces. We
identify three motions depending on the walking speed of
the user: “Standing (0 km/h),” “Walking (less than 3 km/h),”
and “Fast Walking (less than 5 km/h).” Also, the experiment
includes results of Ascending Stairs and Descending Stairs. In
the execution phase, the current motion is determined by
exploring the decision tree. We can achieve accurate motion
classification by periodically checking the horizontal and
vertical components and by transferring only accurate values
to the decision tree.

The size of the sample space is an important factor
required for the decision tree. To determine a suitable value,
we carried out experiments that measured the accuracy
of the motion classification and the tree search time for
various factor values. We collected a training data set and
generated a decision tree having 3000𝑁

𝑠
[33]. Table 3 reports

the accuracy of motion detection and the tree search time
for various values of 𝑁

𝑎
. The accuracy increases as the size

of the 𝑁
𝑎
increases, but the classification computation time

increases. In otherwords, the classification computation takes
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Table 3: Motion detection accuracy and tree lookup time against𝑁
𝑎
values.

𝑁
𝑎

Standing Walking Fast Walking Ascending Stairs Descending Stairs
Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)

20 84.33 0.10 74.25 0.09 37.75 0.09 21.74 0.08 29.12 0.09
30 89.21 0.18 80.75 0.16 63.33 0.13 50.58 0.14 50.29 0.17
50 99.50 0.25 87.58 0.23 83.50 0.23 74.39 0.25 87.71 0.27
80 99.89 0.40 92.76 0.37 90.28 0.35 83.26 0.39 91.58 0.38
100 100 0.53 95.12 0.48 92.27 0.46 85.39 0.47 93.06 0.49

Activating ultrasonic sensor
Nonactivating ultrasonic sensor
Active state
Idle state

(a)

Activating ultrasonic sensor
Nonactivating ultrasonic sensor
Active state
Idle state

(b)

Figure 5: Detection range according to the status of sensors. (a) The motion is recognized asWalking or the user proceeds straight. (b) The
motion is recognized as Fast Walking or the system detects obstacles.

Screen refresh

Maximum frame rate

Minimum frame rate

Figure 6: Change of the frame rate according to recognizedmotion.

more time if 𝑁
𝑎
is larger. In addition, the search time for

recognizing the motion is proportional to 𝑁
𝑎
. Therefore,

we design the tree by considering the trade-off between the
accuracy of motion detection and the motion recognition
time. From these experiments, we determined that𝑁

𝑎
should

be 50, because the results show that the detection accuracy of
all motions is high and the computation is completed in 0.25
seconds, that is, the motion detected sufficiently accurately at
the lowest cost.

We consider the number of active ultrasonic sensors and
the sampling rate of the camera, which can be controlled

according to three motions (Standing, Walking, and Fast
Walking) requiring significantly different amounts of power.
In case of the Standing state, we do not supply power to
the ultrasonic sensor and the camera. When the motion
is recognized as Walking, we activate only four ultrasonic
sensors to detect obstacles in front of the user, and we
capture the image as a frame rate of about 3 fps. When the
motion is perceived as FastWalking, we activate all ultrasonic
sensors and operate the camera at its maximum frame rate
(5 fps).Through a number of experiments, we determined the
optimal number of active sensors and the sampling rate for
the camera depending on the situation, aiming to maximize
the accuracy of the motion detection and minimize power
consumption. We constructed a confusion matrix from a
decision tree using 10,000 samples. We present the results in
Figure 7. We confirmed that the number of sensors and the
frame rate of the camera changed adaptively according to the
motion of the user, as shown in Figure 7.

4.2. Accuracy Measurement. We evaluated the performance
with five randomly selected students aged between 20 and
40 and four visually impaired persons. The users were
not familiar with the experiment and the students were
blindfolded.The obstacle placed on the path was a box (about
20 cm wide). We determined the optimal marker size as 12 ×
12 cm, considering the distance from the ceiling to the ground
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Figure 7: The change in the number of active ultrasonic sensors
(right vertical axis) and frame rate of the camera (left vertical axis)
according to the identified motion.

Table 4: Detection rate for the obstacle according to the number of
ultrasonic sensors.

Case
Detection rate (%)

Standing
(0 km/h)

Walking
(≤3 km/h)

Fast Walking
(≤5 km/h)

4 sensors 100 94 52
6 sensors 100 97 86

and the camera viewing angle. If the obstacle was detected,
the user was required to walk until hearing the message
“Stop.”A scan using the six sensors required about 125ms and
the latency was set to 400ms (the time between detecting an
obstacle and providing feedback to the user). We determined
that this latency offered sufficient time to react to any motion
change by the user, via repeated experiments.

As shown in Table 4, we measured the detection rate
for the obstacle for various numbers of sensors. When the
motion was recognized as Walking, the detection rates were
94% and 97% for four and six active ultrasonic sensors,
respectively. The experimental results were similar for both
cases. However, for the case of Fast Walking at speed 67%
faster thanWalking, the detection rate for four active sensors
is reduced by about 40% compared with six sensors. We
therefore need to activate only four sensors (to reduce power
consumption) during Walking. However, we should operate
all sensors during Fast Walking, if we aim to maintain similar
accuracy in both cases.

Figure 8 shows the rate of detection of the markers for
different camera frame rates. We measured frame rates from
1 fps to 7 fps. However, we focused on three frame rates (2,
3, and 5 fps) that showed high accuracy and saved substantial
power over repeated experimentation.The accuracy at 3 fps is
similar to that at 5 fps if the motion is recognized asWalking.

2 3 5
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Walking
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Figure 8: Detection rate of markers according to the frame rate of
the camera.

However, the detection rate at 3 fps is substantially higher
than that for the other frame rates. We therefore use 3 fps
duringWalking because it requires less power than the other
frame rates, while offering similar accuracy.

4.3. Power Consumption Measurement. We measured the
relative power consumption by setting a time slot (10,000
samples) and considering three patterns (activating six
ultrasonic sensors, four sensors, and no sensors). Figure 9
shows the power consumption for various numbers of active
ultrasonic sensors. We evaluated the power consumption
from the current and voltage of the battery. The power
consumed is equal to the product of voltage and current.
Therefore, the power consumption is affected by the number
of active sensors because of the sensor current. From the
experimental results, about 450mAwas required if therewere
six active sensors, compared with 350mA when none were
activated. We can therefore reduce power consumption by
controlling the number of active sensors based on themotion
while maintaining the accuracy level required for obstacle
detection.

Figure 10 shows the power consumed for various camera
frame rates. We evaluated the relative power consumption
by setting a time slot (10,000 samples) and considering three
cases (sampling at 2 fps, 3 fps, and 5 fps). When sampling at
5 fps, about 17% more battery power is required than when
sampling at 3 fps. As shown in the figure, the frame rate of
the camera affects the current it requires and hence its power
consumption. We can control the frame rate of the camera
adaptively according to the user’s motion to reduce power
consumption while maintaining detection accuracy.

We measured the amount of power consumption in two
cases: when and when not applying the motion context.
The case applying the motion context is defined as SAS
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Figure 9: Relative power consumption for three cases: activating six
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Figure 10: Relative power consumption for three cases: sampling at
2, 3, and 5 fps.

(Selectively Activating Sensor) and the case not using the
motion context is defined as FAS (Fully Activating Sensor).
Each experiment was carried out in a simple path including
obstacles and in a congested path having long walking dis-
tance. As shown in Figure 11, when the motion is recognized
asWalking in a simple path, the system consumed less power
about 15% than when it was recognized as Fast Walking. In
addition, it showed a power reduction of about 18% compared
to the case of FAS not using motion context. In a congested
path, when the motion was perceived asWalking, the system
spent less power about 12% than when it was recognized
as Fast Walking. Furthermore, there was a power reduction
effect of about 20% compared to the case of applied FAS.
Therefore, we could verify the availability of the proposed
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Figure 11: Comparison of power consumption of SAS and FAS
system in accordance with two different road conditions.

method through experiments showing that there is a relative
power saving of approximately 15% ormore compared to that
without using motion context.

5. Conclusions

In this paper, we analyzed the motion context of a user of a
mobile device using data from its triaxial accelerometer and
tilt sensor. We found that we could reduce the device’s power
consumption by controlling the number of active sensors
and the frame rate of the camera used to acquire data about
the spatial context, based on the user’s identified motion.
This enables the use of the device for an extended time and
a reduction of the weight and size of the device, because
it should be possible to reduce the capacity of the battery
without excessively compromising performance. As future
work, we are working on applying the proposed method in
the smartwatch as one of the mobile devices. The proposed
method can be applied in various mobile devices with 3-axis
acceleration sensor and save the power by controlling the
activation of sensors embedded on the mobile device.
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