
Research Article
SPRINT-SELF: Social-Based Routing and Selfish Node
Detection in Opportunistic Networks

Radu Ioan Ciobanu,1 Ciprian Dobre,1 Valentin Cristea,1 Florin Pop,1 and Fatos Xhafa2

1Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Romania
2Universitat Politecnica de Catalunya, Barcelona, Spain

Correspondence should be addressed to Ciprian Dobre; ciprian.dobre@cs.pub.ro

Received 2 July 2013; Accepted 22 October 2013

Academic Editor: David Taniar

Copyright © 2015 Radu Ioan Ciobanu et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Since mobile devices nowadays have become ubiquitous, several types of networks formed over such devices have been proposed.
One such approach is represented by opportunistic networking, which is based on a store-carry-and-forward paradigm, where
nodes store data and carry it until they reach a suitable node for forwarding. The problem in such networks is how to decide what
the next hop will be, since nodes do not have a global view of the network. We propose using the social network information of a
node when performing routing, since a node is more likely to encounter members of its own social community than other nodes.
In addition, we approximate a node’s contact as a Poisson distribution and show that we can predict its future behavior based on the
contact history. Furthermore, since opportunistic network nodes may be selfish, we improve our solution by adding a selfish node
detection and avoidance mechanism, which can help reduce the number of unnecessary messages sent in the network, and thus
avoid congestion and decrease battery consumption. We show that our algorithm outperforms existing solutions such as BUBBLE
Rap and Epidemic in terms of delivery cost and hit rate, as well as the rate of congestion introduced in the network, by testing in
various realistic scenarios.

1. Introduction

The ubiquitousness of mobile devices has led to the advent
of opportunistic networks (ONs), which consist mainly of
human-carried mobile devices (e.g., smartphones, tablets,
etc.) that are unaware of any network infrastructure and
interact with each other based on a store-carry-and-forward
paradigm. Nodes communicate opportunistically when they
are within wireless range of each other. A node stores data in
the form of messages which are carried around until a node
with a higher chance of delivering them to the destination is
met. Then, the messages are forwarded to the encountered
node. Routes between nodes are dynamically created, and
nodes can be opportunistically used as a next hop for bringing
each message closer to the destination.

Thenodes of an opportunistic network aremobile devices
usually carried by people, which are organized into commu-
nities according to common professions, workplaces, inter-
ests, and so forth. Generally, members of the same commu-
nity interact with each other more often than with members

of outside communities, so a good opportunistic network
routing algorithm should take community organization into
consideration. We show here that adding knowledge about
social links between ON nodes to routing and dissemination
algorithms greatly improves their effect. We strongly believe
that social network connections are a better approximation
of human relationships than existing community detection
algorithms.However, we show that only using social informa-
tion about the nodes in the network is not enough to obtain
satisfactory results; therefore, we attempt to predict the future
behavior of a node by using the history of encounters and
information about its social community. We approximate a
node’s contact history as a Poisson distribution and use the
result in creating a routing algorithm entitled SPRINT.

However, some nodes in the opportunistic network may
not be willing to participate in the routing process at all times.
Thus, a nodemay be selfish towards another node, for various
reasons (e.g., it might be low on resources such as battery
life, memory, CPU, network, or bandwidth or it might lack
interest in helping nodes outside its own social community).

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2015, Article ID 596204, 12 pages
http://dx.doi.org/10.1155/2015/596204



2 Mobile Information Systems

The existence of such selfish nodes in an ON might lead to
messages having high delays or never being delivered at all,
so these nodesmust be acknowledged and avoidedwhen pos-
sible. Therefore, we propose a gossip-based improvement to
the SPRINT algorithm, entitled SPRINT-SELF, which is able
to detect selfish nodes and avoid forwarding data to them.
The results are compared to existing ON routing solutions in
various realistic scenarios, andwe show that our solution per-
forms better when selfish nodes are populating the network.

Preliminary versions of our work were previously pub-
lished in [1, 2]. This paper proposes an improvement to
the SPRINT algorithm that detects and avoids selfish nodes
and also adds more extensive work, through a new set of
experiments in realistic scenarios where nodes have a limited
contact duration when they are capable of exchanging data,
as well as decreasing battery life.

The rest of the paper is structured as follows. Section 2
presents related work in the field of routing, dissemination,
and selfish node detection in opportunistic networks. In
Section 3 we describe SPRINT and propose an addition that
allows it to detect and avoid selfish nodes. Section 4 describes
the experiments performed and shows the results obtained
when comparing SPRINT to BUBBLE Rap and Epidemic.
Finally, Section 5 concludes the paper.

2. Related Work

2.1. Data Routing and Forwarding. Since opportunistic net-
works have become more and more popular over the past
years, partly due to the ubiquitousness of mobile devices,
several authors have treated this research area in great detail.
A review of opportunistic networking can be found in
[3], where functions such as message forwarding, security,
data dissemination, and mobility models are analyzed. Sev-
eral opportunistic forwarding algorithms are also reviewed,
among them being BUBBLE Rap [4], PROPICMAN [5], or
HIBOp [6]. We propose a taxonomy for data dissemination
algorithms in [7], where we split such algorithms into four
main categories.The first category refers to the infrastructure
of the network; that is, the way the network is organized
into an overlay. The dissemination techniques are also split
according to their node properties, such as state or interac-
tion. The third category of the taxonomy is represented by
content characteristics; that is, the way content is organized
and analyzed, and finally the last category is social awareness.

Several other authors propose dissemination algorithms
for opportunistic networking. For example, the Epidemic
routing protocol [8] is an algorithm where two encountering
nodes exchange all their messages between each other. In
this way, barring data transfer restrictions, the maximum hit
rate of a network can be obtained. The Socio-Aware Overlay
algorithm [9] creates an overlay for an opportunistic net-
work with publish/subscribe communication, composed of
nodes with high values of centrality. Another dissemination
algorithm,Wireless Ad Hoc Podcasting [10], has the purpose
of wireless ad hoc delivery of content among mobile nodes
and enables the distribution of content using opportunistic
contacts whenever podcasting devices are in wireless range.

ContentPlace [11] facilitates data dissemination in resource-
constrained opportunistic networks bymaking content avail-
able in regions where interested users are present. In order
to optimize content availability, it exploits information about
users’ social relationships to decide where to place user data.
Nodes from ContentPlace use a utility function in order for
each node to associate a value to any data object.When a node
encounters a peer, it computes the utility values of all the data
objects stored in the local and in the peer’s cache and then it
selects the set of data objects that maximizes the local utility
of its cache.

The addition of social network information to oppor-
tunistic routing has been studied in [12], where the authors
show that using Facebook information instead of community
detection algorithmsdecreases the delivery cost andproduces
comparable delivery ratio. In [13], an analytical model for the
expected hop count and latency of messages delivered in a
socially aware opportunistic routing algorithm is proposed,
where the forwarding process is modelled as a semi-Markov
process. A socially aware middleware that learns information
about the nodes in the network and then uses it to predict
their future movement is proposed in [14]. The middleware
was integrated with the Haggle architecture and was used for
content sharing, yielding up to 200% improvement in terms
of hit rate and 99% reduction in resource consumption in
terms of traffic in the network.

The problem of predicting the future behavior of nodes
in delay-tolerant networks (DTNs) is also treated in several
papers. In [15], a framework for evaluating routing algorithms
for DTNs is proposed and the performance of several such
algorithms is analyzed in terms of the amount of knowledge
about the network that they require. In [16], the authors
analyze the predictability of human behavior and mobility
on user traces obtained from mobile carriers. In [17], the
behavior of a time series is modelled as a Poisson process
model and then ismodulated using a hiddenMarkov process.
The authors show that using a Poisson model is significantly
more accurate at detecting future behavior and known events
than a traditional threshold-based technique. Since contact
information in an opportunistic network is also a time series,
we believe that it can also be approximated as a Poisson
distribution, which we prove in [18].

2.2. Selfish Node Detection. Although it has been shown that
opportunistic networks are robust towards altruism distribu-
tion [19], detecting and avoiding selfish nodes have the poten-
tial of lowering the unnecessary loss of resources or the delays
that may appear.Therefore, several methods for the detection
of selfish nodes in DTNs have been proposed in the past.

The selfish node detectionmechanism forMobile AdHoc
Networks and DTNs described in [20] uses a collaborative
watchdog approach to detect selfish nodes and spread this
information in the network. In such an approach, if one
node has previously detected a selfish node, it transmits this
information to encountered nodes. However, this method
has the main disadvantage that it assumes that a node
can be either fully altruistic or fully selfish. Therefore, the
perceived state of a node can fluctuate heavily if contradictory
information comes from different sources.



Mobile Information Systems 3

Our approach (described in Section 3.2) uses fuzzy values
for a node’s altruism and computes perceived altruism values
based on both context (social knowledge, battery level) and
content (computations are performed per message). Our
approach is somewhat similar to [21], where gossiping is used
by nodes to spread their interpretation of themonitoring level
in order to have a faster detection of selfish nodes in the
network. Another proposed method [22] splits selfish nodes
into free riders, black holes, and novas and uses message path
analysis to separate them from other nodes.

However, simply detecting selfish nodes may not be
enough to improve the performance of a network. An incen-
tive mechanism may, for example, not accept messages from
nodes considered selfish, thus forcing them to participate
if they want their messages delivered. Such a mechanism
is IRONMAN [23], which uses preexisting social network
information to detect and punish selfish nodes, incentivising
them to participate in the network. Each node stores a
perceived altruism (or trust) value for other nodes, that is,
initialized based on the social network layout: if the nodes
are socially connected, this value is higher than for regular
nodes.When a node𝐴meets a node𝐵, it checks its encounter
history to see if 𝐵 has ever created a message for 𝐴 that has
been relayed to another node 𝐶. If this is the case and 𝐴 has
encountered 𝐶 after 𝐵 had given it the message but 𝐴 did not
receive the message, then𝐶 is considered selfish and𝐴’s trust
in𝐶 is decreased.Whenever a node𝐴 receives amessage from
a node 𝐵which is not the source of the message,𝐴’s trust in 𝐵
is increased. Apart from detecting selfish nodes, IRONMAN
also uses incentives to make nodes behave better. Therefore,
whenever a node𝐵 is considered selfish by𝐴 (its trust score is
below a given threshold), it is notified, and 𝐴 will not send it
any messages. Moreover, it will not accept any messages from
𝐵 either, so a selfish nodemight end up not being able to send
its messages, unless it becomes altruistic.

3. Routing and Selfish Node Detection in ONs

This section presents SPRINT, a socially aware and predic-
tion-based routing algorithm for opportunistic networks, and
shows how its performance can be improved by adding selfish
node detection and avoidance techniques.

3.1. Routing in Opportunistic Networks. The SPRINT (Social
PRedIction-based routing in opportunistic NeTworks) algo-
rithm is based on two important assumptions. First of all,
knowing that most of the nodes in an opportunistic network
are devices carried by people, we proved in [24] that a node
is more likely to interact with its own social community than
with unrelated nodes. As a consequence, the most popular
nodes in terms of social relationships have more contacts
than the other ON participants. We also showed that adding
existing social information (such as Facebook-provided data)
to existing ON routing algorithms, instead of detecting
social communities on-the-fly using algorithms such as 𝑘-
CLIQUE [25], also leads to an increase in performance. The
SPRINT algorithm takes advantage of this social community
knowledge when making routing decisions.

The second main aspect of SPRINT is represented by
node prediction.We proposed in [18] a way to predict a node’s
behavior by analyzing its history in terms of a node’s past
encounters and approximating the time series obtained as a
Poisson distribution. We analyzed the predictability of ON
nodes’ mobility considering contact distribution over time
under several real-world mobility traces, which contain data
collected in environments where we expected to see evidence
that users tend to follow certain patterns. We showed that,
by using contact history, we are able to predict how many
contacts would a node have in a given one-hour interval, by
using a Poisson distribution.

Based on these two assumptions, SPRINT combines
socially aware routing with future node behavior prediction.
Its main goal is to achieve a better hit rate than existing
algorithms do, while reducing bandwidth consumption and
network congestion as well.

SPRINT nodes have a data memory and a cache memory.
The actual messages are stored in the data memory, while the
cache memory is used to store contact history information.
When two nodes are within wireless range of each other, they
exchange information about the messages they carry. This
information includes a hash of the message’s content (which
acts as a unique ID), the source and destination together with
the communities they belong to, the generation time of the
messages, and the number of hops it has traversed so far.
Based on this information, each node computes utilities for
themessages carried by itself, as well as the neighboring node.
It then chooses those with the highest utility values (limited
by the size of the data memory) by sending a request to the
encountered node with hash values of the required messages.
The neighbor sends the messages until the two nodes are no
longer in range or all the required messages have reached
their target.

The main contribution of the SPRINT algorithm is its
utility function, which is based on the prediction of the future
encounters of a node by using its contact history and social
network information. SPRINT computes the utility 𝑢 of a
message𝑀 at node 𝐴 as

𝑢 (𝑀,𝐴) = 𝑤
1
∗ 𝑈
1
(𝑀,𝐴) + 𝑤

2
∗ 𝑈
2
(𝑀,𝐴) . (1)

In the formula,𝑤
1
and𝑤

2
are weight values which follow

the conditions that𝑤
1
+𝑤
2
= 1 and𝑤

1
> 𝑤
2
, while𝑈

1
and𝑈

2

are utility components computed according to the following
formulas:

𝑈
1
(𝑀,𝐴) = freshness (𝑀) + 𝑝 (𝑀,𝐴) ∗ (1 − enc (𝑀,𝐴)

24
) ,

𝑈
2
(𝑀,𝐴) = 𝑐

𝑒
(𝑀,𝐴)

∗
𝑠
𝑛
(𝑀) + hop (𝑀) + pop (𝐴) + time (𝑀,𝐴)

4
.

(2)

For 𝑈
1
, the freshness value can either be 0 if message

𝑀 is old or 0.5 if the message has been generated recently.
We use it in order for newly generated messages to start
traveling through the network faster. This leads to a higher
chance of delivering them to their destinations, since they



4 Mobile Information Systems

reachmore nodes. 𝑝(𝑀,𝐴) is the probability of node𝐴 being
able to deliver message 𝑀. Its computation starts with the
analysis of the cache memory, counting how many times
node 𝐴 encountered each of the other nodes. If a node
has been previously met in the same day of the week or in
the same two-hour interval as the current time, the total
encounters value is increased by 1. For the nodes encountered
in the past that are in the same social community as node
𝐴, the total number of contacts is doubled. The reason 1
is added to the total number of encounters for nodes that
have been met in the same day of the week or in the same
two-hour interval when computing 𝑝(𝑀,𝐴) is that there is a
certain regularity in the activity of nodes in an opportunistic
network. Therefore, there should be a higher probability of
encountering nodes that have been seen in the same intervals.
There is a similar reason for doubling the total number of
contacts when the nodes met in the past are in the same
community as node 𝐴, since a node tends to interact more
with other members of its own social community. Having
the number of encounters for each node, we can compute
the probabilities of encountering them by performing a ratio
between the number of encounters per node and the total
number of encounters.

The next step consists of computing the number of
encounters 𝑁 that node 𝐴 will have for each of the next
24 hours by using the Poisson probabilities and choosing
the value with the highest probability as 𝑁. We pick only
the first 𝑁 nodes as potential future contacts for each of
the next 24 hours (sorted by probability), and for the rest
of them 𝑝(𝑀,𝐴) is set to 0. The second component of the
product uses enc(𝑀,𝐴), which is the hour of the day when
the destination of message 𝑀 will be met according to the
probabilities previously computed. If the destination will not
be encountered, then enc(𝑀,𝐴) is set to 24. We multiply
𝑝(𝑀,𝐴) by 1 − enc(𝑀,𝐴)/24 because the sooner a good
target for a message is met, the sooner the node can delete
the message from its memory and have room for others.

The second component of the utility value is 𝑈
2
. Here,

𝑐
𝑒
(𝑀,𝐴) is set to 1 if node 𝐴 is in the same community

as the destination of message 𝑀 or if node 𝐴 will ever
encounter a node that has a social relationship with𝑀, and
0 otherwise. The information computed for 𝑈

1
is used to

analyze the potential future encounters of a node. The 𝑠
𝑛
(𝑀)

component is 1 if the source and destination of 𝑀 are not
socially connected, because if a message does not have the
source and destination in the same community, the chance of
it being delivered by the source is low since it will mostlymeet
messages in its community.Therefore, themessages should be
given to a different node that has the chance of reaching the
destination community. hop(𝑀) is the normalized number of
nodes that𝑀has visited, pop(𝐴) is the normalized popularity
value of 𝐴 according to its social network information (i.e.,
number of Facebook friends in the opportunistic network),
and finally time(𝑀,𝐴) is the total time spent by node 𝐴 in
contact with 𝑀’s destination. The hop and time values are
used because nodes should travel as little as possible before
reaching their destination.

We have put the condition 𝑤
1
> 𝑤
2
because messages

destined for nodes that will be met in the future are more

important than the others, since we know (with a certain
probability) that they will be delivered eventually. While it
may seem complicated to choose appropriate values for the
two weights, in our experiments and tests we empirically
observed that the best results were obtained when 𝑤

1
= 0.7

and 𝑤
2
= 0.3. However, we are also investigating possible

methods to predict themost suitable weights according to the
behavior of the network.

3.2. Selfish Node Detection and Avoidance. Since opportunis-
tic network nodes are limited by the duration of a contact in
terms of the amount of data they can transfer, reducing the
number of pointless data transfers is paramount to obtaining
good performance. By pointless transfers we refer to data that
is sent to nodes that have no interest in delivering it to the
destination and which may end up dropping it shortly after
receiving it. Therefore, a method of detecting these so-called
“selfish” nodes and avoiding them is needed in order to have
a more efficient algorithm. Thus, we proposed SENSE [2], a
collaborative selfish node detection and incentivemechanism
for opportunistic networks, and in this section we show how
some of its elements can be integrated into SPRINT in order
to improve its performance. We will refer to the SENSE-
improved version of the SPRINT algorithm as SPRINT-SELF
from now on.

Aside from its own unique ID, a SPRINT-SELF node
stores social information, that is, the relationships it has with
other participants in the network, which is also helpful in
designing a selfishness detection algorithm. Furthermore, as
we have shown that nodes tend to be less selfish towards their
own communities, having knowledge about a node’s social
connections might help in deciding whether it was being
selfish or if it could not deliver amessage due to other reasons
(such as insufficient space in the data memory). Therefore,
a node contains information about its own community as a
list of nodes it has social relationships with. For the sake of
simplicity, we do not take into consideration the strength of a
social relationship, so two nodes are either socially connected
or not. The community can either be taken from various
social networks such as Facebook or Google+, but when this
information is not available, we use a distributed community
detection algorithm such as 𝑘-CLIQUE [25]. Also, the battery
level is another contextual information that a node has access
to at an encounter and that it may use in the altruism
computation process.

Aside from information regarding its ID, community,
and battery level, each SPRINT-SELF node has its data and
cache memories split into two sections each. The role of
these sections is to control the number of messages stored
for forwarding, as well as the amount of contact history each
node is aware of. The data memory is therefore split into
messages generated by the node itself (𝐺) and messages that
the node stores, carries, and then finally forwards (or drops,
if the memory is full) for other nodes (𝐶). We decided to split
the data memory in two because messages generated by the
node should be kept for a longer period of time than other
messages, since they are more important from the node’s
standpoint. The cache memory is split into two sections as
well: a list of past forwards (𝑂) and a list of past receives



Mobile Information Systems 5

(𝐼). 𝑂 contains information regarding past message forward
operations performed either by the current node or by other
nodes.Therefore, the following information is stored: ID and
community of both nodes that participated in the forward
(sender and receiver), time of the encounter, encountered
node’s battery level when the contact occurred, and metadata
about the message that has been exchanged between the
sender and the receiver (source and destination node IDs,
priority, etc.). 𝐼 contains information regarding past message
receive operations performed either by the current node or
by other nodes, and the stored data is similar to the one from
𝑂. Both 𝐼 and 𝑂 are updated whenever a new data exchange
takes place (e.g., if node𝐴 sends amessage to node𝐵, an entry
will be added in 𝐴’s 𝑂 and one in 𝐵’s 𝐼).

When two nodes 𝐴 and 𝐵 running SPRINT-SELF meet,
they perform a series of steps. Firstly, each node checks if
its battery level is above a certain threshold, and if it is not,
then that node will not participate in the data exchange.
Secondly, the twonodes exchange the 𝐼 and𝑂 lists of past data
transfers. When a node receives one of these lists, it updates
its own list with the newly received information. In this way,
a node can have a more informed view of the behavior of
various nodes in the network, through gossiping.We consider
this to be an improvement over other existing selfishness
detection solutions, since node𝐴 is not simply told that node
𝐶 has a certain degree of altruism based on the computations
performed by 𝐵, but it is allowed to make the decision itself
based on information gathered from encountered nodes.
Since the sizes of𝑂 and 𝐼 are limited, theremay not be enough
room for the entire history of contacts to be stored; therefore,
a node only keeps the most recent information in its own
contact history memory.

After the nodes finish exchanging knowledge about
past encounters, each of them advertises its own specific
information, such as battery level and metadata about the
messages it carries (which includes source and destination
IDs). After computing utilities for all the messages as shown
in Section 3.1, each node requests the messages with the
highest utilities from the encountered neighbor. However, the
SENSE-based improvement comes into play here, by allowing
a node to refuse forwarding a certain message to another
node. For this purpose, each node computes a perceived
altruism value for every requested message from its own
data memory, with regard to the encountered node. In other
words, it computes how willing the encountered node is to
forward a certain type of message. If this value is within
certain limits, the message is sent. If not, it is skipped and the
algorithm continues with the next message.

The formula for computing perceived altruism values for
a node𝑁 and amessage𝑀 based on the lists of past forwards
(𝑂) and receives (𝐼) is

altruism (𝑁,𝑀) =
𝑁.𝑖𝑑=𝑜.𝑑,𝑁.𝑖𝑑=𝑖.𝑠

∑

𝑜∈𝑂, 𝑖∈𝐼, 𝑜.𝑚=𝑖.𝑚

type (𝑀, 𝑜.𝑚) ∗ thr (𝑜.𝑏) .

(3)

In the previous formula, a past encounter 𝑥 has a field
𝑥.𝑚 which specifies the message that was sent or received,
𝑥.𝑠 is the source of the transfer, 𝑥.𝑑 is the destination, and

𝑥.𝑏 is the battery level of the source. type is a function
that returns 1 if the types of the two messages received as
parameters are the same (in terms of communities, priorities,
etc.), and 0 otherwise, while thr returns 1 if the value received
as parameter is higher than a preset threshold and 0 if it
is not. Basically, the altruism computation function counts
how many messages of the same type as 𝑀 have been
forwarded with the help of node 𝑁, when 𝑁’s battery was
at an acceptable level. In other words, we exclude the cases
in which a node 𝑁 did not forward a message when it had
(e.g.) 2% battery left, since we would not expect it to do that
anyway. The result of the formula is normalized with the
total number of message exchanges, so the final value of the
perceived altruism is between 0 and 1.

4. Experimental Setup and Results

This section presents an analysis of the SPRINT and SPRINT-
SELF algorithms presented in Section 3 in terms of network
performance. We highlight the improvements they bring
compared to existing solutions such as distributed BUBBLE
Rap [4] and Epidemic [8]. We compare with BUBBLE Rap
because it is one of the most efficient opportunistic routing
algorithms in terms of hit rate and delivery latency, and with
Epidemic becausewewant to highlight that it does not behave
as well as expected in realistic scenarios and that using an
algorithm such as SPRINT may yield better results.

4.1. Setup. Our tests were performed on several existing
mobility traces, by analyzing four performance metrics that
highlight the throughput, congestion, and battery consump-
tion of the ON devices.

4.1.1. Mobility Traces. Testing was performed on the
MobEmu emulator [24], which parses humanmobility traces
and then applies an opportunistic routing and/or selfish
node detection algorithm at every encounter between two
nodes. We used four mobility traces, publicly available in the
CRAWDAD archives (http://crawdad.cs.dartmouth.edu/):
UPB 2011 [24], St. Andrews [12], Intel and Cambridge [26].
UPB 2011 is a trace taken in an academic environment at the
University Politehnica of Bucharest, where the participants
were students and teachers carrying Android smartphones.
It includes data collected for a period of 25 days by 22
participants. St. Andrews is a real-world mobility trace taken
on the premises of the University of St. Andrews and its
surroundings. The trace lasted for 79 days and involved
27 participants that used T-mote Invent devices. The main
advantage of these two traces is that they also include social
information about participating nodes, in the form of a
graph of social connections. As shown in Section 3, this
information is necessary to SPRINT. The other two traces
(Intel and Cambridge) belong to a common collection of
traces of Bluetooth sightings by groups of users carrying
iMote devices in various situations [26]. The Intel trace
was recorded for six days in the Intel Research Cambridge
Laboratory, having nine participants: a stationary node and



6 Mobile Information Systems

Table 1: Mobility traces characteristics.

Trace Participants Duration Contacts Cont. duration
UPB 2011 22 25 days 339 1,174 s
St. Andrews 27 79 days 112,264 3 s
Intel 9 6 days 1,364 658 s
Cambridge 19 6 days 4,229 308 s

eight iMotes. The Cambridge trace was also taken for six
days, at the Computer Lab of the University of Cambridge,
having as participants 19 graduate students from the System
Research Group. The main characteristics of the four traces
are shown in Table 1. It can be seen that the traces we used
vary in terms of number of participants, duration, total
number of contacts, and average contact duration, since they
were chosen to highlight the capabilities of our solution in
various different scenarios.

4.1.2. Performance Metrics. As stated before, there are four
metrics that we use for analyzing the simulation data. The
hit rate is the ratio between successfully delivered messages
and the total number of generated messages and signifies the
efficiency of the ON algorithm, together with the delivery
latency, which is defined as the time passed between the
generation of a message and its eventual delivery to the
destination. The delivery cost, defined as the ratio between
the total number of messages exchanged and the number of
generated messages, shows the congestion of the network.
The hop count is the number of nodes that carried a message
until it reached the destination on the shortest path and
should also be as low as possible in order to avoid node
congestion. Improving the last two metrics may also lead to
a decrease in battery consumption, since the number of data
transfers would be reduced.

4.1.3. Testing Parameters. When testing, we assumed we were
in an environment with devices that have limited resources;
therefore, the data memory of a node was limited. We
tested with multiple values, ranging from 20 to 4500. The
data memory size applies not only to SPRINT but also
to BUBBLE Rap and signifies the number of messages a
node can carry. For Epidemic, it is assumed that the data
memory is unlimited.The cache size represents the amount of
encountered nodes that the algorithm remembers, and after
empirical testing we decided to set this value to 100 for each
of the two sections (𝐼 and 𝑂, as described in Section 3).

For all experiments, we tried to model the generation
of messages so as to resemble a real-life environment.
Thus, every weekday, each node from the trace generates
30 messages with destinations chosen based on its social
relationships using a Zipf distribution with an exponent
of 1. Therefore, a node has a higher chance of sending a
message to another member of its community than to other
nodes. Inside the community, the destinations are chosen
randomly. The time of the day when the messages are sent is
randomly chosen inside the two-hour interval when themost

contacts occur for each trace. We chose a Zipf distribution
of messages because it has been shown that data requests
and sends follow power law distributions [27]. For the UPB
2011 and St. Andrews traces, we used the social networking
information available in the trace files as input to SPRINT.
However, for Cambridge and Intel, where such information
was not available, 𝑘-CLIQUE was employed in order to
dynamically detect social communities on the fly.The contact
and community thresholds for 𝑘-CLIQUE were thus set to
1200 seconds and 6, respectively.

For the battery-aware scenarios we simulated (presented
in Section 4.2), we assumed that each node starts the simu-
lation with a random amount of battery left, which decreases
every second and lasts a maximum of 24 hours, after which
the node has to recharge its battery, making it unable to
participate in the network for one hour. When the battery
level is under 20%, a node does not accept to receivemessages
from other nodes (but it still forwards its own messages).
The SPRINT-SELF battery threshold (under which it does
not consider a node as being selfish) was chosen to be 25%.

In real life, ON nodes are limited not only by battery
when applying a routing algorithm but also by the contact
duration. A node will not necessarily have time to deliver
all its intended messages to another node, so this is why we
added this limitation to our simulations as well.Therefore, we
assumed that a node is able to deliver a message in 3 seconds.

4.2. Results. We present here several scenarios that we tested
with, which highlight the benefits of SPRINT and SPRINT-
SELF.

4.2.1. Influence of Battery Usage and Transfer Speed on Hit
Rate. The first scenario we performed has the role of high-
lighting the influence of choosing realistic testing parameters
on the outcome of the tests. Generally, when routing or
dissemination in ONs is analyzed, it is assumed that devices
can transfer any amount of data to each other instantly and
that the participating nodes have unlimited battery power,
thus being available for communication at any point in time.
However, in real life, we are far from this ideal situation.
Devices have batteries that drain in time and even more
so when communication is performed. Furthermore, the
number of messages two nodes can exchange when they are
in contact is limited by the encounter duration, so a nodemay
only receive a small part of the data it wants.

This is why we show in Figure 1 the way that hit rate
decreases when the two limitations are applied on the UPB
2011 trace, where nodes have a data memory of 4500. First
of all, it can be seen that, for the unrestricted run, the
hit rate is around 47% for all three algorithms we tested
(BUBBLE Rap, SPRINT, and Epidemic). In such a situation,
the Epidemic algorithm yields the best possible hit rate, since
nodes exchange all themessages in their datamemories when
they are in contact. The fact that BUBBLE Rap and SPRINT
achieve a hit rate very close to the maximum possible one
shows that the algorithms behave well for the unrestricted
scenario.



Mobile Information Systems 7

0.1

0.3

0.5

0.7

None Speed Battery Both

H
it 

ra
te

Restriction

BUBBLE Rap
SPRINT
Epidemic

Figure 1: Influence of battery usage and transfer speed on hit rate.

However, when limiting the amount of data nodes can
transfer per time unit (as shown in Section 4.1), the hit rate
drops for all three algorithms.The drop is higher for BUBBLE
Rap than for Epidemic and SPRINT, which means that it
does not behave so well in such situations. Epidemic’s hit rate
decreases because the algorithm transfers messages from a
node to another one in a given order. If contact durations
are low, then it may never have enough time to transfer a
certain message if it is located at the end of the data memory.
SPRINT’s performance is worse because it does not take
into consideration the history of a node’s transfers when
deciding what messages should be exchanged, which may
lead to transferring the wrong messages and then not having
any more time to transfer the correct ones as well. The same
conclusions can be drawn when looking at the influence of
draining battery life on the three algorithms.

Finally, when adding both variable battery life and limited
transfer speed to the UPB 2011 trace, all three algorithms
obtain hit rates that are up to 40% lower than on the unre-
stricted scenario, so having more realistic testing parameters
heavily influences the outcome of a routing algorithm. This
is why all the scenarios performed in the remainder of this
section assume an approachwhere a node’s battery lasts for 24
hours and takes one hour to recharge, and a node can transfer
a message in 3 seconds.

4.2.2. UPB 2011. The following subsections (including this
one) present the results of running BUBBLE Rap, SPRINT,
Epidemic, and SPRINT-SELF on each of the four traces
described in Section 4.1.

Figure 2(a) presents the hit rate of BUBBLERap, SPRINT,
SPRINT-SELF, andEpidemic for theUPB2011 trace, when the
data memory size ranges from 20 to 4500 messages. It can be
seen that, regardless of the size of the data memory, BUBBLE
Rap performs the worst out of all four algorithms.The reason
for this behavior is that BUBBLE Rap relies on nodes with
high-centrality values to carry the load of routing a large part
of the total messages, which leads to two potential issues.
Firstly, the high-centrality nodes can easily get congested this
way and start getting buffer overflows, which in turn leads to

them having to drop older messages. If other copies of said
messages do not exist in the network anymore, they never
get to reach their intended destinations. Secondly, since high-
centrality nodes have to perform many data transmissions,
naturally their battery gets depleted quicker and they become
inactive (for charging) more often.While being inactive, they
may miss contacts with some nodes they carry messages for,
and which theymay never encounter again for the remainder
of the trace.

As shown in the previous scenario, SPRINT yields similar
results to Epidemic in terms of hit rate, especially for higher
data memory sizes. When the data memory can contain
fewer messages, the routing algorithm has to discard some of
them whenever there is a buffer overflow. In addition to this,
Epidemic assumes that it has unlimited data memory, so it
is not limited by space, only by the duration of the contact.
Figure 2(a) also shows that, for high enough data memory
sizes, SPRINT-SELF outperforms even Epidemic in terms of
hit rate.This happens mainly because of a severe limitation of
Epidemic, namely, that when a contact between a node𝐴 and
a node𝐵 occurs, it transfers all messages from𝐴 to𝐵 in order.
Thus, when there are only short contacts between 𝐴 and 𝐵,
some messages located at the far end of their data memories
may never have the chance of being successfully delivered.
The advantage of SPRINT-SELF over SPRINT is that it does
not forward messages to selfish nodes, so it maximizes the
duration of a contact by only transferring messages that the
receiving node has a high chance of successfully delivering.

Figure 2(b) presents the delivery latencies for the four
algorithms. Again, SPRINT-SELF performs best, regardless
of the data memory size. The latency is reduced with up to
10%, even when SPRINT-SELF’s hit rate is higher. So our
algorithmnot only delivers data tomore nodes in the network
but also does it quicker. Although opportunistic networks are
DTNs, increasing the delivery latency leads to a better user
experience for the participants in the network.

Aside from improving hit rate and delivery cost, the
SPRINT algorithms also decrease the overall node and
network congestion, thus performing fewer transfers and
saving battery power in the process. This is shown in



8 Mobile Information Systems

0.1

0.2

0.3

0.4

20 100 500 4500

H
it 

ra
te

Data memory size

BUBBLE Rap
SPRINT

SPRINT-SELF
Epidemic

(a) Hit rate

0

90

180

270

20 100 500 4500

D
eli

ve
ry

 la
te

nc
y 

(s
)

Data memory size

BUBBLE Rap
SPRINT

SPRINT-SELF
Epidemic

(b) Delivery latency

0

1

2

3

20 100 500 4500

D
eli

ve
ry

 co
st

Data memory size

BUBBLE Rap
SPRINT

SPRINT-SELF
Epidemic

(c) Delivery cost

0

2

4

6

20 100 500 4500

Av
er

ag
e h

op
 co

un
t

Data memory size

BUBBLE Rap
SPRINT

SPRINT-SELF
Epidemic

(d) Average hop count

Figure 2: ON routing results for the UPB 2011 trace.

Figures 2(c) and 2(d). A lower delivery cost means that fewer
messages are sent in the network, and this value is improved
by SPRINT and SPRINT-SELF by up to 70% for some
situations (i.e., 70% less messages are exchanged by nodes
in the ON, although the hit rate and delivery latency are
improved). Finally, the average hop count is reduced by
almost 50% for our algorithms, which shows that nodes travel
to 50% less other nodes before eventually reaching their
destinations. For both these situations, SPRINT and SPRINT-
SELF perform the best, with the selfish node detection
mechanism helping SPRINT-SELF achieve the best results
out of all four algorithms we tested with.

Since we have shown that SPRINT-SELF performs better
than SPRINT regardless of the metric, in the following
sections we only show results obtained for BUBBLE Rap,
Epidemic, and SPRINT-SELF.

4.2.3. St. Andrews. Themaindifference between theUPB2011
trace and St. Andrews is that the latter is taken not only in
an enclosed academic environment but also in and around
the town of St. Andrews. This leads, as seen in Table 1, to a
much larger number of contacts (about 300 times more than

for UPB 2011) and to a smaller average contact duration (3
seconds as opposed to 1,174).

The hit rates obtained by BUBBLE Rap, SPRINT-SELF,
and Epidemic on the St. Andrews trace are shown in
Figure 3(a).The results show that, this time, Epidemic obtains
the best results out of all the routing algorithms tested. The
reason it outperforms SPRINT-SELF and BUBBLE Rap is
that, since there are much more contacts here that in the
previous trace, a larger data memory would be required
in order to store useful messages from all the encountered
nodes. As stated before, Epidemic assumes that a node’s data
memory is unlimited, so it has enough room for an infinite
amount of messages. However, SPRINT-SELF still performs
up to 10% better than BUBBLE Rap. Increasing SPRINT-
SELF’s data memory size leads to it eventually performing
better than Epidemic.

Regarding delivery latency (seen in Figure 3(b)), the
situation is opposite to hit rates: BUBBLE Rap has the best
latencies, whereas Epidemic performs the worst. However,
the results shown here should be corroborated with the ones
in Figure 3(a): the algorithm with the highest hit rate has the
lowest latency and vice versa. This is natural, since Epidemic
is able to reach a greater number of nodes in the ON, but



Mobile Information Systems 9

0

0.2

0.4

0.6

20 100 500 4500

H
it 

ra
te

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(a) Hit rate

0

200

400

600

20 100 500 4500

D
eli

ve
ry

 la
te

nc
y 

(s
)

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(b) Delivery latency

0

3

6

9

20 100 500 4500

D
eli

ve
ry

 co
st

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(c) Delivery cost

1

3

5

7

20 100 500 4500

Av
er

ag
e h

op
 co

un
t

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(d) Average hop count

Figure 3: ON routing results for the St. Andrews trace.

some of these nodes may have very few contacts and may be
met after a long time, which affects the average delay of the
algorithm.

Finally, Figures 3(c) and 3(d) show the delivery cost
and average hop count. For most of the situations, SPRINT-
SELF exhibits the best values, which means a reduction of
network and node congestion. Furthermore, fewer messages
exchanged in theON lead to a lower overall battery consump-
tion. Although Epidemic has a better hit rate and delivery
latency than SPRINT-SELF, our algorithm still behaves better
in terms of delivery cost and average hop count. Another very
important conclusion that can be drawn from Figures 3(c)
and 3(d) is that BUBBLE Rap has a very poor performance
regarding these two metrics analyzed here. The charts have
been scaled down in order to see the values for SPRINT-SELF
and Epidemic, but (except for a data memory of 500), the
delivery cost and hop count of BUBBLE Rap are very high.
This means that BUBBLE Rap has a tendency of passing a
message from a node to another back and forth, when the two
nodes have very close centrality values and the highest one
varies from one node to the other. SPRINT-SELF does not

exhibit this problem because it also analyzes a node’s social
connections, in addition to performing a prediction of its
future encounters.

4.2.4. Intel. The Intel trace results (in Figure 4) show that
SPRINT-SELF performs the best out of the three algorithms
tested for all four metrics analyzed. The hit rate is much
higher than BUBBLE Rap’s (an improvement of up to 7%)
and also better than the one obtained by Epidemic, whereas
the latency is lower than for the other algorithms for higher
data memory sizes. Not only is SPRINT-SELF’s network per-
formance better, but it also offers lower congestion and better
overall battery saving.The delivery cost for our solution is the
lowest out of all three algorithms for a datamemory of 20, and
lower than Epidemic but higher than BUBBLE Rap for the
rest of the experiments. However, BUBBLE Rap has a better
delivery cost because it delivers messages to a lower number
of nodes. The situation is similar for the average hop count,
where, for high enough data memory sizes (500 and 4500),
SPRINT-SELF has the best values out of all three algorithms.



10 Mobile Information Systems

0.4

0.5

0.6

0.7

20 100 500 4500

H
it 

ra
te

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(a) Hit rate

0

10

20

30

20 100 500 4500

D
eli

ve
ry

 la
te

nc
y 

(s
)

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(b) Delivery latency

0

6

12

18

20 100 500 4500

D
eli

ve
ry

 co
st

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(c) Delivery cost

0

4

8

12

20 100 500 4500

Av
er

ag
e h

op
 co

un
t

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(d) Average hop count

Figure 4: ON routing results for the Intel trace.

4.2.5. Cambridge. Finally, the Cambridge trace shows similar
results to Intel (see Figure 5). The hit rate at SPRINT-SELF
is higher than BUBBLE Rap’s and, for higher data memory
sizes, very close to Epidemic’s results. In the meantime, the
delivery latency values obtained by our algorithm are the
lowest (and thus the best) out of all three solutions tested.
The delivery cost and average hop count are also better for
SPRINT-SELF than for Epidemic but worse than for BUBBLE
Rap. However, as stated before, BUBBLE Rap manages to
deliver data to fewer nodes, so it does not have to exchange as
many messages as SPRINT-SELF of Epidemic.

5. Conclusion

We have presented in this paper an algorithm entitled
SPRINT that makes use of information about the social
relationships between owners of the mobile devices from
an opportunistic network when routing data. Moreover,
SPRINT can correctly predict the number of contacts a node
will have in a given time interval. We also added a selfish
node detection and avoidance mechanism and created an
improved version of SPRINT entitled SPRINT-SELF, which

is able to outperform existing solutions such as BUBBLE Rap
and Epidemic on realistic scenarios where the transfer speed
of a node is limited and the battery level decreases in time.
Our solution behaves better in terms of network performance
(hit rate and delivery latency) as well as node and network
congestion (delivery cost and hop count).Moreover, reducing
the latter two metrics helps decrease the overall battery
consumption in the ON, since nodes have to perform fewer
data transfers. The experiments that prove our algorithm’s
effectiveness were performed on existing mobility traces in
various real-life situations.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially supported by the project “ERRIC,
Empowering Romanian Research on Intelligent Information



Mobile Information Systems 11

0.1

0.3

0.5

0.7

20 100 500 4500

H
it 

ra
te

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(a) Hit rate

10

20

30

40

20 100 500 4500

D
eli

ve
ry

 la
te

nc
y 

(s
)

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(b) Delivery latency

0

5

10

15

20 100 500 4500

D
eli

ve
ry

 co
st

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(c) Delivery cost

1

3

5

7

20 100 500 4500

Av
er

ag
e h

op
 co

un
t

Data memory size

BUBBLE Rap
SPRINT-SELF
Epidemic

(d) Average hop count

Figure 5: ON routing results for the Cambridge trace.

Technologies/FP7-REGPOT-2010-1,” ID: 264207. The work
has been cofounded by the Sectoral Operational Programme
Human Resources Development 2007–2013 of the Romanian
Ministry of Labour, Family and Social Protection through the
Financial Agreement POSDRU/89/1.5/S/62557.

References

[1] R. I. Ciobanu, C. Dobre, and V. Cristea, “Reducing congestion
for routing algorithms in opportunistic networks with socially-
Aware node behavior prediction,” in Proceedings of the 27th
IEEE International Conference on Advanced Information Net-
working and Applications (AINA ’13), pp. 554–561, March 2013.

[2] R.-I. Ciobanu, C. Dobre, M. Dascalu, S. Trausan-Matu, and V.
Cristea, “Collaborative selfish node detection with an incen-
tive mechanism for opportunistic networks,” in Proceedings of
the IFIP/IEEE International Symposium on Integrated Network
Management, pp. 1161–1166, May 2013.

[3] M. Conti, S. Giordano, M. May, and A. Passarella, “From
opportunistic networks to opportunistic computing,” IEEE
Communications Magazine, vol. 48, no. 9, pp. 126–139, 2010.

[4] P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE rap: social-based
forwarding in delay tolerant networks,” in Proceedings of the 9th
ACM International Symposium on Mobile Ad Hoc Networking

and Computing (MobiHoc ’08), pp. 241–250, ACM, Hong Kong,
May 2008.

[5] H. A. Nguyen, S. Giordano, and A. Puiatti, “Probabilistic rout-
ing protocol for intermittently connected mobile ad hoc net-
work (PROPICMAN),” in Proceedings of the IEEE International
Symposium on a World of Wireless, Mobile and Multimedia
Networks (WOWMOM ’07), pp. 1–6, IEEE, Espoo, Finland, June
2007.

[6] C. Boldrini, M. Conti, I. Iacopini, and A. Passarella, “HiBOp:
a history based routing protocol for opportunistic networks,”
in Proceedings of the IEEE International Symposium on a World
ofWireless, Mobile andMultimedia Networks (WOWMOM ’07),
pp. 1–12, IEEE, Espoo, Finland, June 2007.

[7] R. Ciobanu andC. Dobre, “Data dissemination in opportunistic
networks,” in Proceedings of the 18th International Conference on
Control Systems and Computer Science (CSCS '11), pp. 529–536,
2011.

[8] A. Vahdat and D. Becker, Epidemic Routing for Partially Con-
nected Ad Hoc Networks, 2000.

[9] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft, “A Socio-Aware
Overlay for publish/subscribe communication in delay tolerant
networks,” in Proceedings of the 10th ACM Symposium on
Modeling, Analysis, and Simulation of Wireless and Mobile



12 Mobile Information Systems

Systems (MSWiM ’07), pp. 225–234, ACM, New York, NY, USA,
October 2007.

[10] V. Lenders, M. May, G. Karlsson, and C. Wacha, “Wireless ad
hoc podcasting,” SIGMOBILE Mobile Computing and Commu-
nications Review, vol. 12, pp. 65–67, 2008.

[11] C. Boldrini, M. Conti, and A. Passarella, “Exploiting users’
social relations to forward data in opportunistic networks: the
HiBOp solution,” Pervasive andMobile Computing, vol. 4, no. 5,
pp. 633–657, 2008.

[12] G. Bigwood, D. Rehunathan, M. Bateman, T. Henderson, and
S. Bhatti, “Exploiting self-reported social networks for routing
in ubiquitous computing environments,” in Proceedings of the
IEEE International Conference onWireless &Mobile Computing,
Networking & Communications (WIMOB ’08), pp. 484–489,
IEEE Computer Society, Washington, DC, USA, October 2008.

[13] D.Karamshuk,C. Boldrini,M.Conti, andA. Passarella, “Human
mobility models for opportunistic networks,” IEEE Communi-
cations Magazine, vol. 49, no. 12, pp. 157–165, 2011.

[14] C. Boldrini,M.Conti, F.Delmastro, andA. Passarella, “Context-
and social-awaremiddleware for opportunistic networks,” Jour-
nal of Network and Computer Applications, vol. 33, no. 5, pp.
525–541, 2010.

[15] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant
network,” ACM SIGCOMM Computer Communication Review,
vol. 34, no. 4, pp. 145–158, 2004.

[16] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of
predictability in humanmobility,” Science, vol. 327, no. 5968, pp.
1018–1021, 2010.

[17] A. Ihler, J. Hutchins, and P. Smyth, “Learning to detect events
withMarkov-modulated poisson processes,”ACMTransactions
on Knowledge Discovery from Data, vol. 1, no. 3, article 13, 2007.

[18] R. I. Ciobanu and C. Dobre, “Predicting encounters in oppor-
tunistic networks,” in Proceedings of the 1st ACM Workshop
on High Performance Mobile Opportunistic Systems (HP-MOSys
’12), pp. 9–14, ACM, Paphos, Cyprus, October 2012.

[19] P. Hui, K. Xu, V. O. K. Li, J. Crowcroft, V. Latora, and P. Lio,
“Selfishness, altruism and message spreading in mobile social
networks,” inProceedings of the IEEE INFOCOMWorkshops, pp.
1–6, IEEE, April 2009.

[20] E. Hernández-Orallo, M. D. S. Olmos, J.-C. Cano, C. T.
Calafate, and P. Manzoni, “Evaluation of collaborative selfish
node detection in MANETs and DTNs,” in Proceedings of the
15th ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM ’12), pp.
159–166, ACM, October 2012.

[21] A. Lavinia, C. Dobre, F. Pop, and V. Cristea, “A failure detection
system for large scale distributed systems,” in Proceedings of
the 4th International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS ’10), pp. 482–489, February
2010.

[22] Q. Zhou, J. Ying, and M. Wu, “A detection method for unco-
operative nodes in opportunistic networks,” in Proceedings of
the 2nd IEEE International Conference onNetwork Infrastructure
and Digital Content (IC-NIDC ’10), pp. 835–838, September
2010.

[23] G. Bigwood and T. Henderson, “IRONMAN: using social
networks to add incentives and reputation to opportunistic
networks,” in Proceedings of the IEEE International Conference
on Privacy, Security, Risk and Trust (PASSAT ’11) and IEEE
International Conference on Social Computing (SocialCom ’11),
pp. 65–72, October 2011.

[24] R. I. Ciobanu, C. Dobre, V. Cristea, and D. Al-Jumeily, “Social
aspects for opportunistic communication,” in Proceedings of
the 11th International Symposium on Parallel and Distributed
Computing (ISPDC ’12), pp. 251–258, June 2012.

[25] P. Hui, E. Yoneki, S. Y. Chan, and J. Crowcroft, “Distributed
community detection in delay tolerant networks,” inProceedings
of the 2nd ACM/IEEE InternationalWorkshop onMobility in the
Evolving Internet Architecture (MobiArch ’07), pp. 7:1–7:8, ACM,
New York, NY, USA, August 2007.

[26] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, andA. Chaintreau,
“CRAWDADdata set Cambridge/Haggle (v. 2009-05-29),”May
2009, http://crawdad.cs.dartmouth.edu/cambridge/haggle.

[27] L. A. Adamic, B. A. Huberman, A.-L. Barabási, R. Albert, H.
Jeong, and G. Bianconi, “Power-law distribution of the world
wide web,” Science, vol. 287, no. 5461, p. 2115, 2000.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


