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Promptitude and accuracy of signals’ non-data-aided (NDA) identification is one of the key technology demands in noncooperative
wireless communication network, especially in information monitoring and other electronic warfare. Based on this background,
this paper proposes a new signal classifier for phase shift keying (PSK) signals. The periodicity of signal’s phase is utilized as the
assorted character, with which a fractional function is constituted for phase clustering. Classification and the modulation order of
intercepted signals can be achieved through its Fast Fourier Transform (FFT) of the phase clustering function. Frequency offset is
also considered for practical conditions. The accuracy of frequency offset estimation has a direct impact on its correction. Thus,
a feasible solution is supplied. In this paper, an advanced estimator is proposed for estimating the frequency offset and balancing
estimation accuracy and range under low signal-to-noise ratio (SNR) conditions. The influence on estimation range brought by
the maximum correlation interval is removed through the differential operation of the autocorrelation of the normalized baseband
signal raised to the power of 𝑄. Then, a weighted summation is adopted for an effective frequency estimation. Details of equations
and relevant simulations are subsequently presented. The estimator proposed can reach an estimation accuracy of 10−4 even when
the SNR is as low as −15 dB. Analytical formulas are expressed, and the corresponding simulations illustrate that the classifier
proposed is more efficient than its counterparts even at low SNRs.

1. Introduction

With the development of science and technology, wireless
network has become the main media of information trans-
mission in recent decades, and it plays an important role
in the field of communication, field of military, and other
fields. Satellite wireless network communication technology
meets the requirements of time and place for information
transmission, with its wide coverage, good broadcasting
ability, and the unlimited character of different geographical
conditions at any time or place. In the field of electronic
surveillance and electronic countermeasures, multiple sen-
sors can make each combat unit share their reconnais-
sance information through effective collaborative working
systems and generate an overall situation with high precision
and reliability via information fusion. Thus, the technology
of cooperative reconnaissance network based on multiple

sensors has become a hot issue in the field of electronic
warfare.

As one of the main modulation methods in wireless
communication networks, PSK, including multiple phase-
shift-keyed (MPSK) and other converted forms such as 𝜋/4
differential quadrature phase-shift-keyed ((𝜋/4)DQPSK), is
also one of the most common carrier transmission modes
in wireless digital communications. It has high spectrum
utilization ratio and strong anti-interference ability; more
importantly, it is also relatively simple in circuit imple-
mentations. Because of the remarkable spectrum character
and multiple demodulation methods, (𝜋/4)DQPSK is widely
used in satellite communication networks and mobile com-
munication systems. The nonbalanced quadrature phase-
shift-keyed (UQPSK) is a modulation mode transferring
two different types and rates of binary bit stream data,
which is established by different power distribution of two
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orthogonal components of the carrier. In recent years, it has
been widely used in satellite digital communication networks
or transmission and tracking systems between aircraft and
grounded processing systems.

The present algorithms of PSK signals’ modulation recog-
nition are mostly based on decision theory and statistic
pattern [1–3]. The former [1] is usually analyzed via the
maximum likelihood function. A sufficient statistic for clas-
sification is obtained and simplified, and then a suitable
threshold is chosen for comparing with this statistical param-
eter to achieve the modulation classification. Based on this
general principle, some improved algorithms, such as Quasi-
Log Likelihood Ratio [4, 5] (qLLR), Average Log Likelihood
Function [6] (ALLF), Sequential Probability Ratio Test [7]
(SPRT), and other improvements, were proposed by home
and abroad scholars. However, these methods require a lot
of known parameters, have a sensitive touch of symbols’ syn-
chrony andmodemismatch, and lead to a huge computation,
which limit its own practical application heavily.

According to different statistical classification charac-
teristics, the statistic pattern recognition methods can be
divided into a number of branches, which are mainly based
on instant information in time domain or other transforming
domains, spectral correlation [8] (e.g., high order cumulant),
constellations, chaos theory, and fractal theory, and other
properties. Extracted from the instant information of the
received signal in time and frequency domains, several
parameters are adopted in Traditional Digitally Modulated
Signal Recognition Algorithm [3] (DMRA). This method
has a large correct recognition set, which makes it suitable
for real-time data analysis. However, since each threshold
is heavily dependent on SNR, DMRA cannot be effectively
accomplished in practice, especially in the situations with low
SNR. The algorithm derived from wavelet transform [9–11]
can extract the signals’ instant phase accurately. Yet it is only
suitable for pulse shaping signals and deteriorates seriously
for other kinds of signals. Based on spectral correlation,
high order cumulant [12, 13] has a great property of anti-
noise. However, it is limited to its exponentially increasing
computation as the signals’ modulation order is bigger-than-
equal eight and cannot achieve online real-time data analysis,
which limits its practical application heavily. Besides, the
methods based on constellations [14, 15] and fractal theory
[16] and any other methods are restricted to various extents
to apply in practice.

Inspired by data mining and image processing, some
novel algorithms are proposed in the recent one or two years
in noncooperative communication. The approach based on
clustering algorithms is a new trend inAutomaticModulation
Classification (AMC) for digital modulations. An advanced
method derived from 𝐾-means algorithm is proposed by
Weber et al. [17] for Quadrature Amplitude Modulation
(QAM) and PSK signals. In this paper, a novel utility function
which indicates the best fitting constellation diagram is
defined for the AMC decision. Simulations and measure-
ments in a real monitoring environment demonstrate its
effectiveness. Xu et al. [18] proposed a new method for phase
clustering. Originated from mountain cluster algorithm [19],
this technique can achieve multiple peaks in only one
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Figure 1: Receiver model.

calculation process and avoid repeated peak cutting. On
the other hand, it has about seven times computation time
than high order cumulant due to its principle of repeated
searching. Moreover, the author did a fault analysis at the
condition of frequency offset existence. Both the algorithms
above are formulated in the following section as objects for
performance comparison.

In view of these above problems, this paper proposes
an effective classifier. The structure is as follows: In the
second part, one traditional and two novel methods of recent
works on the PSK signal classification are formulated, and
their shortcomings are pointed out, respectively. In the third
part, an improved method is proposed and elaborated for
classification. Furthermore, a robust estimator for frequency
offset is presented and described in detail in the subsequent
part. Necessary comparisons and simulations are performed
and shown in the fifth part, which demonstrate the feasibility
and effectiveness of proposed methods in this paper.

2. Recent Works

AMC is a significant step after signal detection in a radio
monitoring environment and is fatal to the following process
such as signals’ demodulation and other steps.The simplified
block diagram of the receiver is depicted in Figure 1. After
series of preprocessing, the received signal in the receiver
is transformed into a baseband signal. It is identified for
signal modulation recognition, which leads to a more effec-
tive signal processing, such as demodulation and decoding,
subsequently.

From the beginning of requirement in electronic mon-
itoring and countermeasures, lots of researches are studied
by home and aboard scholars. Their proposed algorithms
and methods develop and improve the performance of NDA
AMC of intercepted signals. A traditional algorithm, high
order cumulant, and two novel methods, advanced𝐾-means
algorithm and phase clustering method, are introduced and
elaborated in this section. They are adopted as the compari-
son objections.

2.1. High Order Cumulant. Assume that the signal to be
processed 𝑥(𝑛) is a 𝑘 order stationary random process with
zero mean. According to the basic theory of stochastic
processes, the 𝑘 order cumulant and 𝑘 order moment of 𝑥(𝑛)
are both relative to time delay, yet irrelevant to the 𝑛th time
spot.
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For complex stationary random signal𝑋(𝑡), its high order
moment can be unitedly expressed as

𝑀
𝑝+𝑞,𝑝

= 𝐸 [𝑋
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)
𝑞

] , (1)

where 𝑝 and 𝑞 are the index number of 𝑋 and 𝑋∗, respec-
tively. Several high order cumulants commonly used can be
represented by high order moment as follows:
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In theory, the algorithm of high order accumulation can
completely eliminate the effect of Gaussian noise and be
an ideal tool for signal processing under Gaussian noise.
However, this method is not suitable for online real-time
signal processing due to its amount of calculation. The
higher modulation order the intercepted signal has, the more
computation, which increases exponentially, it costs.

2.2. Advanced K-Means Method. The 𝐾-means algorithm is
an optimal method for hard clustering when the number of
clusters 𝐾 in the input data 𝑥 is known. Equation (3) is the
cost formula, where 𝑖 is the index and 𝑁 is the length of the
input data 𝑥:
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The 𝐾-means algorithm iteratively solves the clustering
problem stated in (4) by alternating between a competitive
and a learning step. In the competitive step, the allocation of
the input symbols 𝑥

𝑖

to the prototypes 𝑃
𝐾

is carried out in
such a way that 𝐽 in (3) is minimised. In the learning step,
the prototype positions are updated by calculating the mean
value of the corresponding input symbols 𝑥

𝑖

.

A novel utility function 𝐹 is proposed byWeber that indi-
cates the best fitting constellation diagram to the calculated
prototypes of the clustering algorithm:
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where 𝐽
𝐶𝑆,𝐾

is the result of the cost function in (3) for a specific
constellation pattern 𝐶

𝑆,𝐾

of the considered modulation pool
𝑀
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. The variable𝐾 represents the number of prototypes or
themodulation order of𝐶
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evaluates if all prototypes are covered by the input samples
and if the variance of the clusters and the EVM can be
minimised. For this reason, this algorithm is named the
highest constellation pattern matching (HCPM) algorithm.

A real monitoring environment is employed for field trial
inWeber’s paper. Eight signals including 4 kinds of QAM and
MPSK signals, respectively, are introduced for identification
capability demonstration. Two-Threshold Sequential Algo-
rithmic Scheme (TTSAS) [20], fuzzy algorithm [20] and the
𝐾-centre algorithm, are adopted for performance compari-
son. Simulations andmeasurements show the effectiveness of
the proposed method than the other three counterparts.

The idea gives a new direction for signal recognition.
What is better, it can be extended to the application of QAM
signal detection and identification. However, the simulation
running time it needed is too long; that is to say, it is
not relatively suitable for real-time signal processing than
some other methods. The simulation time of this method is
displayed in the table in Simulation, which shows that it has
a larger weakness as it compares to its counterparts.

2.3. Phase ClusteringMethod. Anothermethod based on data
mining is phase clustering method proposed by Xu et al. [18].
Inspired by subtractive clustering method, a novel clustering
function is derived for signals’ classification. Because the
method proposed in this paper is an improvement of this
method, the specific process is no longer described here.

The carrier frequency offset is also considered in Xu’s
paper.The premise is that the received signal has been timing
synchronized. When the carrier frequency offset Δ𝑓 satisfies
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Δ𝑓𝑇
𝑏

≤ 0.15, an approximate exact complex sequence can be
obtained from [21], and the phase sequence can be expressed
as

𝜑
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where 𝑇
𝑏

is the symbol period and 𝑘 = 1, . . . , 𝑁 is the sample
spot, where 𝑁 is the sample number of each data package.
𝜑
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In order to eliminate the influence of frequency offset as
much as possible, a new sequence can be obtained by making
difference to 𝜑

𝑥

(𝑘); that is,
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where

𝜑
󸀠

𝑥

(𝑘) ∈ {
2𝜋𝑚

𝑀
+ 2𝜋Δ𝑓𝑇

𝑏

, 𝑚 = 0, 1, . . . ,𝑀 − 1} . (9)

The major idea of Xu’s method for reducing the influence
of frequency offset is to employ the difference of phase of the
baseband signal 𝜑󸀠

𝑟

(𝑘) as the signal to be processed, the same
as the condition without frequency offset to get the correct
signal modulation order. A significant premise mentioned
in his paper is that 𝜑󸀠

𝑥

(𝑘) is a uniform distribution object.
However, in this case, the effective part (9) is no longer subject
to uniform distribution, which directly leads to the phase
clustering algorithm invalid.

Four commonMPSK signals are introduced for classifica-
tion performance in XU’s paper. The correction classification
probability is adopted as the measure index.

In order to enhance the recognition efficiency, this paper
proposes an improved method for phase clustering, which
can effectively reduce the signal processing time without
degrading the classification performance. In addition, in view
of the carrier frequency offset, this paper also gives a feasible
solution for its estimation and correction.

3. Proposed Method

In order to achieve a better NDA classification performance
for signals, an improved phase clusteringmethod is proposed
in this paper. Then, a robust estimation method is proposed
for frequency offset correction.

3.1. Advanced Phase ClusteringMethod. The received wave of
modulated PSK signal can be generally expressed as

𝑟 (𝑡) = ∑
𝑛

𝑎
𝑛
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where 𝑎
𝑛

∈ {exp(−𝑗(2𝜋𝑚/𝑀)), 𝑚 = 0, 1, . . . ,𝑀 − 1} is the
symbol sequence, 𝑀 is the modulation order, 𝑔(𝑡) is the

shaping pulse of shaping filter, 𝑇
𝑠

is the sample period, 𝑓
𝑐

is
the carrier frequency, and 𝜃

0

is the carrier phase (Figure 3).
𝑛(𝑡) is the white Gaussian noise with zero mean and 𝑁

0

variance.
Root Raised Cosine (RRC) filter is generally adopted for

signal shaping in wireless communication networks. It is also
considered in this paper. Under the premise of carrier and
timing synchronization, the output baseband signal’s phase
after matching filter can be written as

𝜑
𝑟

(𝑘) = 𝜑
𝑥

(𝑘) + 𝜃
0

+ 𝜑
𝑛

(𝑘) , 𝑘 = 1, 2, . . . , 𝑁, (11)

where 𝜑
𝑥

(𝑘) denotes the phase sequence of transmitted
signal, 𝜑

𝑛

(𝑘) denotes the phase sequence of noise, and 𝑁 is
the sample number of each data package. For PSK signal,
its phase 𝜑

𝑥

(𝑘), expressed as follows, commonly obeys to
uniform distribution, which means that there are 𝑀/𝑁
sample spots intensely around each constellation point if𝑀-
order modulated signal is sampled at𝑁 points:

𝜑
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(𝑘) ∈ {
2𝜋𝑚

𝑀
, 𝑚 = 0, 1, . . . ,𝑀 − 1} . (12)

In order tomeasure the radian distance between the phase
of sampled point and reference phase, a distance function
𝐷(𝜀) is defined with independent variable 𝜀 ∈ [0, 2𝜋), here,

𝐷 (𝜀) =
{

{

{

|𝜀| |𝜀| ≤ 𝜋

2𝜋 − |𝜀| |𝜀| > 𝜋.
(13)

An advanced clustering function is proposed for phase
clustering and expressed as fractional form, which has a
remarkable reduction on computation as comparing to the
index form, as

V
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∑
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1 + (𝑁/𝜋)𝐷 (𝜑
𝑟

(𝑘) − 𝜃)
, (14)

where 𝜃 ∈ [0, 2𝜋) denotes the phase variable as the reference
phase.

A division set of 𝜃 is installed as the reference phase
for phase clustering. As is shown in formula (14), all the
phase to be processed need to measure the distance to each
reference phase 𝜃 before clustering. In fact, the clustering
process is similar to a repeated search process. Just because of
this, the computational quantity of phase clustering is totally
determined by the division set of 𝜃. A suitable division can
not only reduce the calculation amount of this method, but
also enhance the correction rate of clustering. The uniform
distance from 0 to 2𝜋 is a commonmethod of reference phase
segmentation.

For simplicity, an approximation is used to reduce calcu-
lation amount. When𝐷(𝜑

𝑟

(𝑘) − 𝜃) ≥ 9𝜋/𝑁,

1
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≤ 0.1. (15)

And it can be regarded as

1

1 + (𝑁/𝜋)𝐷 (𝜑
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(𝑘) − 𝜃)
≈ 0. (16)
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When a baseband PSK signal is to be processed, the advanced
phase clustering (APC) function can be expressed as

V
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Assume that 𝜑
𝑥

(𝑘) is distributed independently and has
an equal occurrence probability. Since 𝜑

𝑛

(𝑘) is a stationary
Gaussian phase noise, formula (17) can transform into
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(18)

Note that the necessary condition of the upper equation
is the uniform distribution of the transmitted signal phase
without noise. In the ideal constellation, there are approxi-
mate𝑁/𝑀 sample points distributed on the location of each
constellation, if the sample number of the received signal,
which has𝑀 modulation order, is 𝑁. Otherwise, the above
equation is not established anymore.

Due to the particularity of the distance function, 𝐷(𝜀)
has a periodicity of 2𝜋. On the other hand, the independent
variable 𝜃 in the clustering function (14) is only related to the
distance function, which leads to the fact that the clustering
function also has the periodicity of 2𝜋.

The character of periodicity of formula (14) is given in
detail. When 𝜃 + 2𝜋/𝑀 < 2𝜋, the periodicity of clustering
function is formulated and elaborated in formula (19). It also
can be proved as the sameway that V
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(𝜃+2𝜋/𝑀−2𝜋) = V
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= V

𝑟

(𝜃) .

(19)

The expression of clustering function V
𝑟

(𝜃) is a periodical
function with

𝑇V =
2𝜋

𝑀
. (20)

Since the periodic signal has special spectral properties
in frequency domain, the period of clustering function
can be extracted easily through Fast Fourier Transform
(FFT), 𝑉

𝜃

(𝜔) = FFT[V
𝑟

(𝜃)]. The certain frequency which
is corresponding to the place of maximum value of its
Fourier transform result indicates 𝑇V. Modulation order 𝑀
can be calculated through the above equation; then signals’
classification is achieved. More favorably, carrier phase 𝜃

0

is irrelevant to this method for 𝑇V, which means that this
proposed method is also robust to signal’s constellation
rotation.

If deep recognition requirements are needed for PSK
signals with the same modulation order, lots of statistics
parameters can be chosen and employed. For example,
there are two sets of data: 4PSK and OQPSK, 8PSK and
(𝜋/4)DQPSK. Envelope entropy of differential phase of the
baseband signals can be introduced to distinguish them,
respectively. The recognition performance is certainly deter-
mined by the introduced statistics parameters, yet regardless
of the APC method.

The APC method has several advantages:

(1) Since it is derived from the coding characters rather
than statistical properties, the direct influence of SNR
is reduced.

(2) As an optimization algorithm of multiple peaks
searching, it achieves all the peaks in one calculation
process and avoids repeated peak cuttings.

(3) Fraction is used instead of exponential function in
the clustering function, so that the calculation process
is simplified, which leads to a much lower computa-
tional quantity.

3.2. Frequency Offset Correction. In the digital communica-
tion system, the carrier frequency offset is often introduced
by the difference between the receiver and the transmitter
oscillator and also caused by the Doppler frequency shift,
which is brought by the channel nonlinearity and phase noise.
In the wireless network, especially the electronic monitor-
ing and other noncooperative communication systems, the
accuracy of frequency offset estimation directly affects the
performance of the receiver.
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In Xu’s method mentioned in last section, phase cluster-
ing algorithm is directly adopted with the difference phase of
received signal. However, the difference phase of the effective
part of signal which carries messages is no longer uniform
distribution. Only frequency offset estimation and correction
can be considered in this case to eliminate the impact of
frequency offset as much as possible.

The frequency offset estimations of the Fitz and L&R
algorithms are directly achieved via the weighted summation
of the autocorrelation of the signal. This means that these
two algorithms, and the improvedmethods based upon them,
are all heavily affected by the correlation interval on the
estimated range, unless the correlation interval achieves its
maximum value of sampled number 𝑁. However, in this
case the calculation amount increases dramatically, especially
when 𝑁 is large. For this particular reason, most of the
improved methods are derived from Kay’s algorithm. The
autocorrelation function of the processing signal is used in
the M&M algorithm used in Kay’s and L&W’s algorithms
for weakening the influence brought on by phase noise.
However, the addition operation of the autocorrelation’s
phase introduces the phase folding problem. An objection
phase of the baseband signal, which has a real value near −𝜋
or𝜋,may be changed to a completely different value under the
influence of noise, and this leads to an error in the frequency
offset estimation result. The WNALP algorithm is derived
from the M&M algorithm, which solves the phase folding
problem and broadens the estimation range remarkably.
However, the signal in real noncooperative environments
is usually intercepted under a low SNR due to its special
condition, which causes great difficulties in subsequent signal
processing.

In order to reduce the thresholds’ effect and improve
the unbalance between estimation accuracy and estimation
range of frequency offset under low SNR, an advanced
NDA estimator based on the weighted summation of the
differential phase of the autocorrelation is proposed in this
paper.

Assume that timing synchronization is accomplished.
The baseband signal sequence with frequency offset 𝑥(𝑘) is
expressed as

𝑥 (𝑘) = 𝑐
𝑘

exp𝑗(2𝜋𝑓Δ𝑘𝑇𝑠+𝜃) + 𝑛 (𝑘) , (21)

where 𝑐
𝑘

(𝑘 = 1, 2, . . . , 𝑁) is the modulated symbol sequence
from the transmitting end, 𝑁 is the number of sampling
points of the selected signal segment in the receiving end,
𝑓
Δ

is the unknown frequency offset to be estimated, 𝑇
𝑠

is
the sample period, and 𝜃 is a random initial carrier phase,
which follows the uniformdistribution in the range of [0, 2𝜋).
Usually, the channel noise of the communication system
𝑛(𝑘) is considered to be random complex additive Gaussian
noise, with zeromean and bilateral spectral density𝑁

0

/2. We
normalize its amplitude as

𝑥̃ (𝑘) =
𝑥 (𝑘)

|𝑥 (𝑘)|
, 𝑘 = 1, 2, . . . , 𝑁. (22)

Then, under the hypothesis of 𝑛(𝑘) ≫ 1 for a large enough
SNR,

𝑥̃ (𝑘) ≃ 𝑒
𝑗(2𝜋𝑘𝑓Δ𝑇𝑠+𝜃+

̃

𝛽(𝑘))

, (23)

where 𝛽̃(𝑘) is also a Gaussian process with zero mean.
The autocorrelation is defined as

𝑅
0

(𝑚) =

𝑁

∑

𝑘=𝑚+1

𝑧̃ (𝑘) 𝑧̃
∗

(𝑘 − 𝑚) , 𝑚 = 1, 2, . . . , 𝐿
𝑟

, (24)

where 𝑧̃(𝑘) = 𝑥̃
𝑄

(𝑘) is the normalized baseband signal
raised to the power of 𝑄 and 𝐿

𝑟

is the set maximum
correlation interval. Using the same principle as above, the
autocorrelation function can be continuously transformed as

𝑅
0

(𝑚) ≃ 𝑒
𝑗(2𝜋𝑚𝑓Δ𝑇𝑠+𝜖̃(𝑚)), (25)

where 𝜖̃(𝑚) is also a Gaussian process with zeromean.We see
that

∠𝑅
0

(𝑚) 𝑅
∗

0

(𝑚 − 1) = 2𝜋𝑓
Δ

𝑇
𝑠

+ 𝜖̃ (𝑚) + 𝜖̃ (𝑚 − 1) ,

2 ≤ 𝑚 ≤ 𝐿
𝑟

.
(26)

We define Δ𝜑
0𝑅(𝑚)

≜ ∠𝑅
0

(𝑚)𝑅
∗

0

(𝑚− 1). According to the
principle of Kay’s algorithm, an objective function can be set
as

J
0

= (Δ𝜑0 − 2𝜋𝑓Δ𝑇𝑠e)
𝑇C−1 (Δ𝜑0 − 2𝜋𝑓Δ𝑇𝑠e) , (27)

where Δ𝜑0 = [Δ𝜑0𝑅(1), Δ𝜑0𝑅(2), . . . , Δ𝜑0𝑅(𝐿𝑟)]
𝑇. The estimated

value of the frequency offset 𝑓̂
Δ

is obtained when the
objective function J

0

obtains its minimum value. So, the
normalized weighted correlation linear estimator proposed
can be expressed as

𝑓̂
Δ

=
1

2𝜋𝑄𝑇
𝑠

⋅

𝐿𝑟

∑
𝑚=2

𝜔
0

(𝑚) ⋅ arg [𝑅
0

(𝑚) 𝑅
∗

0

(𝑚 − 1)] , (28)

where 𝜔
0

is the weight of the differential phase:

𝜔
0

(𝑚) =
3 [(𝑁 − 𝑚) (𝑁 − 𝑚 + 1) − 𝐿

𝑟

(𝑁 − 𝐿
𝑟

)]

𝐿
𝑟

(4𝐿2
𝑟

− 6𝐿
𝑟

𝑁 + 3𝑁2 − 1)
. (29)

The normalized baseband signal is considered to be
the signal to be processed, which effectively weakens the
performance loss resulting from the nonlinear operation of
raising to a power of 𝑄. The weighted summation of the
differential phase of the autocorrelation also decreases the
influence of noise effectively compared to the method of
argument operation after weighting the conjugate difference
of the autocorrelation. Thus it provides a better estimation
accuracy and is described in Kay’s paper [5].The difference of
autocorrelation is a great improvement, which can make the
estimation range independent of the maximum correlation
interval 𝐿

𝑟

and solve the phase folding problem compared
to Fitz’s and the L&R algorithm and the improved methods
based upon them. Meanwhile, the proposed method in this
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Table 1: Simulation time for order classification.

Simulation time (s)
HOMmethod 0.0158
AKMCmethod 0.4523
PC method 0.0720
APC method 0.0345

paper has the same estimation range as its counterpart
WNALP algorithm. Importantly, the large estimation vari-
ance of the WNALP algorithm under low SNR conditions
is improved, which effectively balances the trade-off between
estimation accuracy and estimation range under low SNR in
the process of frequency offset estimation.

4. Simulation

Computer simulations are performed to test the performance
of the methods proposed in this paper. Considering the
background of electronic monitoring and countermeasure
in satellite communication and wireless communication net-
works, the simulation set contains six common modulation
types of PSK signals: BPSK, QPSK, 8PSK, 16PSK, OQPSK,
(𝜋/4)DQPSK, and UQPSK. Each simulation result is the
average of 1000 independent runs. Because of the special
environment we assumed, no a priori knowledge of inter-
cepted signal is assumed for all the experiments.

Regular communication equipment and environment are
adopted for these simulations. The signals are shaped by
raised root cosine filter with its roll-off factor 𝛼 = 0.22. The
received intercepted signal is sampled 𝑁 = 512 points for
test with Sample frequency 𝑓

𝑠

= 20MHz. We suppose that
the symbol rate𝑁

𝑠

has been estimated accurately by a certain
algorithm and the sample number in per symbol period is
𝑁
𝑏

= 𝑁
𝑠

∗ 𝑁/𝑓
𝑠

= 32. Additive white Gaussian noise is
considered in this situation.Moreover, channel effects such as
fading andmultipath propagation are ignored andwe assume
that perfect time and frequency synchronization have been
achieved.The SNR in this paper is defined as𝐸

𝑠

/𝑁
0

, where𝐸
𝑠

is the energy per symbol and𝑁
0

is the power spectral density
of the Gaussian noise.

A common method based on four-order cumulant
(HOC) and two new ways derived from data mining,
advanced 𝐾-means clustering (AKMC) and phase clustering
(PC), are adopted for performance comparison of signal
classification. Classification capabilities and simulation times
in a single run of the subroutines are shown in Figure 2 and
Table 1, respectively.

The same set of signal data to be processed are introduced
in four subroutines, respectively, for classification perfor-
mance and simulation time comparison. Except for four-
order cumulant, the other three methods present obvious
correct classification rate trends and a large SNR tolerance
for all the involved signals. The 16PSK signal can be correctly
classified from approximate 2 dB, and the other six signals
have larger SNR tolerances less than −5 dB. Even so, they are
distinguished clearly via simulation time table. It is shown in
Table 1 that PC method and AKMCmethod both cost two or

more times simulation time than APC method proposed in
this paper. If the modulation order of signal to be processed
is 16, the order needs to be chosen as 16 for accumulation in
HOC algorithm. However, the computation amount of this
algorithm increases exponentially. It is a predictable result
that its simulation time could be bigger than or equal to
the time of APC method. Due to the instability of the APC
algorithm at the low SNRs, few wrong judgements of the
signal’s modulation order appear. That is the reason why the
order of 16PSK signal gets 17 during 1∼2 dB.

In summary, APC method proposed in this paper has
a better classification capability than its counterparts and
gives a new guidance for practical signal processing. Order
classification result and correct classification rate by APC
method are separately displayed in Figures 4-5.

Frequency offset directly impacts on the performance of
signal classification. In order to verify the effectiveness of
the proposed NWALPmethod, theWNALP algorithm, from
which the proposed method in this paper is derived, was
selected for comparison in this paper.

Let us assume that the signal to be processed is a QPSK
signal with additive Gaussian noise. The number of sample
points is set as 𝑁 = 256, and the sampling frequency is
normalized to the unit as 𝑓

𝑠

= 1. The correlation interval
of autocorrelation is set as 𝐿

𝑟

= 𝑁/2. Each simulation of
estimation accuracy and estimation range for the frequency
offset was run at least 100 times. The estimation variance
is adopted as the measure of estimation accuracy. The
MCRLB [22] is also calculated as an absolute measure of the
theoretical optimal valuation:

MCRLB = 3

2𝜋2𝑁(𝑁2 − 1)
⋅
1

𝐸
𝑠

/𝑁
0

. (30)

The performance of the proposed method compared to
the abovementioned methods is shown in Figure 5 under a
normalized frequency offset 𝑓

Δ

= 0.001, as the SNR changes
within the range of−15∼20 dB by 1 dB steps. It can be seen that
even when the frequency offset is set at a smaller value, the
WNALPalgorithm still shows a poor estimation performance
of about 10−2 under low SNRs. This means that when the
frequency offset is small, the error of the algorithm may be
of the same order of magnitude as the frequency offset itself.
Such a large estimation error leads to a complete failure of
the algorithm. However, it can be obviously seen that the
estimation accuracy of the proposed method remains steady
in the vicinity of 10−4 under low SNR conditions and has
an improved estimation accuracy of at least two orders of
magnitude compared to the original WNALP algorithm. On
the other hand, the estimation error of the proposed method
rapidly decreases to a magnitude near the MCRLB. Even as
the SNR increases, it remains steady at approximately 10−7
due to the SNR threshold effect.

The estimation range of the carrier frequency offset is
usually observed under large SNRs in order to obtain wider
and more accurate bounds. When SNR = 15 dB, the esti-
mated ranges of the chosen algorithms were simulated as
shown in Figure 6. As can be seen, the proposed NWALP
method can achieve the same frequency offset estimation
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Figure 2: Comparison of correct order recognition rate.

range asWNALP, which has proved to be a better choice for a
large estimation range than other algorithms.This estimation
range cannot be increased even if the SNR increases. It can
be seen that the proposed method in this paper can achieve a
large frequency offset estimation range.

Figure 7 vividly shows the difference of constellation
changes before and after frequency offset correction by
two distinct colors. Signal with frequency offset make its
constellation is displayed as a blue ring, which cannot catch
any constellation point. However, the approximate original
appearance is displayed after frequency offset correction with
red. It can be seen that the proposedmethod in this paper has
a remarkable effectiveness under 0 dB.

5. Conclusion

This paper presents a robust classifier for NDA recognition in
noncooperative wireless environment. Nonsupervised clus-
tering of the signal phase is achieved bymeasuring the radian

distance between each signal phase and the reference phase.
This method proposed optimizes the clustering function
and reduces the computation sharply. Moreover, frequency
offset is considered and an advanced method is proposed
for frequency offset estimation and correction. First, a nor-
malization of the baseband signal is performed. After the
nonlinear operation of raising the signal to a power of 𝑄, the
estimate of frequency offset is obtained via the weighted sum-
mation of the differential phase of the signal’s autocorrelation.
This method balances estimation accuracy and range under
low SNR conditions, which sharply improves the estimation
accuracy without shrinking the maximum estimation range,
even if the SNR is as low as −15 dB. Seven common PSK
signals are adopted for simulation experiments. The classi-
fication performance and the estimation and correlation for
frequency offset are displayed and demonstrated with several
simulation result figures, which illustrate their feasibility and
practice.
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Figure 3: Order classification by advanced phase clustering.

Correct order recognition rate by advanced phase clustering
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Figure 4: Correct order recognition rate by advanced phase cluster-
ing.

Generally, this classifier, which is derived from data
mining and image processing, has a guiding value for signal
processing in electronic surveillance and electronic counter-
measure of communication networks. Further work, such as
the initial optimization of clustering centers 𝜃 and multipath
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Figure 5: Comparison of estimation variance of frequency offset.
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and Rayleigh channel and other practical problems, is con-
sidered for applications.
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