
Research Article
Power-Aware Resource Reconfiguration Using Genetic
Algorithm in Cloud Computing

Li Deng,1,2 Yang Li,1,2 Li Yao,1,2 Yu Jin,1,2 and Jinguang Gu1,2

1College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China
2Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan, China

Correspondence should be addressed to Li Deng; dengli@wust.edu.cn

Received 23 September 2016; Accepted 12 December 2016

Academic Editor: Qingchen Zhang

Copyright © 2016 Li Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cloud computing enables scalable computation based on virtualization technology. However, current resource reallocation solution
seldom considers the stability of virtual machine (VM) placement pattern. Varied workloads of applications would lead to frequent
resource reconfiguration requirements due to repeated appearance of hot nodes. In this paper, several algorithms for VMplacement
(multiobjective genetic algorithm (MOGA), power-awaremultiobjective genetic algorithm (pMOGA), and enhanced power-aware
multiobjective genetic algorithm (EpMOGA)) are presented to improve stability of VM placement pattern with less migration
overhead. The energy consumption is also considered. A type-matching controller is designed to improve evolution process.
Nondominated sorting genetic algorithm II (NSGAII) is used to select new generations during evolution process. Our simulation
results demonstrate that these algorithms all provide resource reallocation solutions with long stabilization time of nodes. pMOGA
and EpMOGA also better balance the relationship of stabilization and energy efficiency by adding number of active nodes as one
of optimal objectives. Type-matching controller makes EpMOGA superior to pMOGA.

1. Introduction

Cloud computing [1] provides a huge resource pool shared
by a large number of users. Virtualization technology enables
dynamic resource configuration according to real demands
of applications [2] and live migration of VMs is an important
way to implement resource reallocation in the cloud [3].

Wrasse [4] is designed to handle generalized resource
allocation in the cloud. It uses massive parallelism by
orchestrating a large number of light-weight GPU threads
to explore the search space in parallel. Server consolidation
[5–7] has always been studied for green computing. Con-
straint programming is used to reduce the number of active
physical nodes for energy efficiency while the Service Level
Agreement (SLA) is guaranteed. Efficient VM migration
and placement are also helpful for reducing the number
of active PMs. Furthermore, economic efficiency of cloud
computing has been studied by many researchers [8, 9].
Auction approaches are presented to balance the relationship
between economic efficiency and computational efficiency.

However, current resourcemanagementmethods seldom
consider stability of VM placement globally to improve
resource efficiency [10]. Due to time-varying resource
demands of applications, currentmapping of VMs to physical
nodes may be not suitable for future workloads. New hot
nodes would appear in the near future, which directly results
in another resource reallocation. Resource reallocationwould
subsequently lead to some additional overheads [11], such
as migration time, downtime, and service degradation. The
stability of a VM placement pattern should be considered
during dynamic resource configuration.

Resource allocation problem is a kind of combinatorial
problem, known as NP-hard problem [12]. Evolutionary
computation algorithm can approximate an optimal solu-
tion only taking polynomial time [12]. In this paper, we
present several genetic algorithms for resource allocation in
cloud computing based on our prior works [10]. According
to prediction information of application workloads, these
algorithms all provide resource reconfiguration solutions
with long stabilization time of nodes. Our contributions are

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2016, Article ID 4859862, 9 pages
http://dx.doi.org/10.1155/2016/4859862



2 Mobile Information Systems

listed in the following: (1) we design genetic algorithms to
better balance the relationship between node stabilization
and power efficiency; (2) a type-matching controller is
proposed to accelerate evolution process; (3) we implement
genetic algorithms and a type-matching controller in Java and
compare the performances of these genetic algorithms.

The rest of the paper is organized as follows: Section 2
discusses related work about dynamic resource allocation. In
Section 3, we give the description of problem formulation.
Objectives and constraints of dynamic resource allocation are
formulated. Section 4 introduces the details of several genetic
algorithms. Performance evaluation of several algorithms is
done in Section 5. Finally, we give our summary and future
research directions in Section 6.

2. Related Work

Being completely different from traditional static resource
configuration, cloud computing enables dynamic resource
allocation based on time-varying workloads of applications.
Resource efficiency is thus improved significantly. Many
researchers have studied resource reallocation problems.

Dynamic resource allocation usually has the following
objectives.

(i) Green Computing. Energy consumption is themost critical
problem in cloud computing [13]. It becomes more serious
especially in multicore era [14]. Server consolidation [5,
6, 15] is used to decrease the number of active physical
nodes. Power efficiency is greatly improved. Constraints
programming [5] and genetic algorithm [15] are, respectively,
employed to find a solution using the minimum number
of active nodes for green computing. An energy-efficient
resource allocation framework [7] is proposed to mini-
mize physical node overload occurrences for overcommitted
clouds by predicting future resource utilizations of scheduled
VMs.

(ii) Resource Fairness. Resource in the cloud is shared among a
large number of tenants. Resource fairness among numerous
users is then studied [16, 17]. A multiresource allocation
mechanism (called DRFH) [16] is presented to ensure fair
usage of resource among cloud users using heuristics.

(iii) Resource Efficiency. Resource efficiency becomes very
important in large-scale datacenters with tens of thousands
of servers [18, 19]. Some approaches are designed to improve
computing resource utilization, such asmemory [20] and I/O
[21]. There are some methods presented to improve SLAs of
applications [22]. Also, some resourcemanagement solutions
are proposed for special applications: stream processing [23,
24] and business process [25].

(iv) Economic Efficiency. Resource in the cloud is usually
rent in a pay-as-you-go model. Economic efficiency of cloud
computing has been studied by many researchers [8, 9].
Trading mechanisms for the demand response are designed
to achieve the maximum social welfare with arbitrarily high
probability.

In this paper, our work mainly focuses on the stability
of VM placement pattern. Because workloads of applications
are time-varying especially in mobile cloud computing, the
stability becomes more important.

3. Problem Formulation

Due to dynamic workloads, resource demands of applica-
tions vary with time. Some nodes have frequent resource
contention and become busy whenworkloads increase.These
nodes are called hot nodes. Hot nodes should be alleviated by
decreasing their workloads to ensure service level objectives
(SLAs) of applications.

Livemigration of virtualmachine is an importantmethod
to alleviate hot nodes. It redistributes VMs on a pool of
nodes. When remapping VMs to nodes, we should consider
future trends of application workloads to avoid “thrashing,”
much more hot nodes arising in the future. So, stability is an
important metric to choose new VM distribution on nodes.
The stability of VM distribution mainly depends on the total
workloads of each node.

Abbreviations lists the definition of some symbols used in
our discussion.

We have the following equations:

𝑦𝑖 =
{{{{{
{{{{{
{

0, if
N

∑
𝑗=1

𝑥𝑖𝑗 = 0,

1, if
N

∑
𝑗=1

𝑥𝑖𝑗 ̸= 0,
𝑖 = 1, . . . ,M,

𝑚𝑗 =
{
{
{

0, if 𝑥𝑖𝑗 = 𝑥󸀠𝑖󸀠𝑗 = 1, 𝑖 = 𝑖󸀠, 𝑖, 𝑖󸀠 = 1, . . . ,M,
1, if 𝑥𝑖𝑗 = 𝑥󸀠𝑖󸀠𝑗 = 1, 𝑖 ̸= 𝑖󸀠, 𝑖, 𝑖󸀠 = 1, . . . ,M,

𝑗 = 1, . . . ,N.

(1)

Variable 𝑥𝑖𝑗 denotes node 𝑖 hosting VM 𝑗 in old VM
placement patternD, while 𝑥󸀠𝑖󸀠𝑗 means that VM 𝑗 resides on
node 𝑖󸀠 in new VM placement patternD󸀠.

Some definitions are given in Abbreviations.

Definition 1. A placement pattern D𝑘 is the mode in which
a group of applications (VMs) are distributed on physical
nodes.

Definition 2. The node 𝑖 is stable if and only if the node
has enough resources for applications (VMs) residing on it
during a certain period of time, nomatter how the workloads
of applications vary.

Definition 3. Theplacement patternD𝑘 is stable if and only if
each node in the placement pattern is stable during a period
of time.

Definition 4. Stabilization time 𝑇 means the longest period
in which a node or a placement pattern stays stable from a
certain time. It is a straight-forward metric to measure the
stability of a node or a placement pattern. The stabilization



Mobile Information Systems 3

time of a placement pattern depends on that of each node in
it, as shown in the following formula:

𝑇D𝑘 = min {𝑇node1 , 𝑇node2 , . . . , 𝑇nodeM} . (2)

Then, the problem of dynamic resource allocation is
formulated as follows: having known dynamic workloads of
VMs (including predicted future workloads), given a set of
nodes, the objective of dynamic resource allocation is to find
a placement solution of VMs on physical nodes with longest
stabilization time, minimal number of VM migration, and
minimal number of active nodes:

Objectives: max 𝑇D𝑘 ;

min
N

∑
𝑗=1

𝑚𝑗;

min
M

∑
𝑖=1

𝑦𝑖

(3)

Subject To:
M

∑
𝑖=1

𝑥𝑖𝑗 = 1, 𝑗 = 1, . . . ,N (4)

C𝑖 ≥
N

∑
𝑗=1

𝑥𝑖𝑗C󸀠𝑗, 𝑖 = 1, . . . ,M (5)

𝑀𝑒𝑚𝑖 ≥
N

∑
𝑗=1

𝑥𝑖𝑗𝑀𝑒𝑚󸀠𝑗, 𝑖 = 1, . . . ,M (6)

𝑥𝑖𝑗, 𝑚𝑗, 𝑦𝑖 ∈ {0, 1} ,

𝑖 = 1, . . . ,M, 𝑗 = 1, . . . ,N.
(7)

We have three objectives: one is to make the new dis-
tribution of VMs with longest stabilization time (max𝑇D𝑘);
one is to only migrate the minimal number of VMs from
current status to new status (min∑N

𝑗=1𝑚𝑗); the last one is to
use the smallest number of physical nodes.The first objective
means that hot nodes would not appear in the new mapping
in a short time. The second objective requests that migration
overhead of VMs from old status to new status is minimal.
The third objective is to make the number of active physical
nodes as small as possible for energy efficiency.

In the above formulae, formula (4) indicates that each
VM only resides on one physical node. Formula (5) means
that the total amount of CPU resource requested by VMs
residing on the same node is not larger than the amount of
resource supplied by the node. Formula (6) denotes that the
total amount of memory requested by VMs is not larger than
the amount of memory supplied by the node. Formula (7)
explains that 𝑥𝑖𝑗,𝑚𝑗, and 𝑦𝑖 are binary variables.

4. Resource Reconfiguration Approach

As dynamic resource allocation problem is a kind of NP-
complete problem, it is hard to find the optimal solution
in polynomial time. Using evolution theory of biosphere,

Crossover

Selection

Mutation

Encoding

Optimal chromosome

generation
Initial population

of applications
information
Prediction

Operator

Figure 1: Flow chart of genetic algorithm.

2 5 8 1 4 9 3 67

B A E

Chromosome: BEA (B{2, 5, 7, 8}, E{1, 4}, A{9, 3, 6})

Figure 2: Examples of group encoding scheme.

genetic algorithm can find an approximately optimal solution
to resource allocation problem through simulating biologic
evolution process.

We propose three algorithms: multiobjective genetic
algorithm (MOGA), power-aware multiobjective genetic
algorithm (pMOGA), and enhanced power-aware multiob-
jective genetic algorithm (EpMOGA). MOGA only aims at
two objectives: long stability time of VM distribution and
minimal number of VM migration. Different from MOGA,
pMOGA adds a new objective to be optimized for energy
efficiency, shown as formula (3). EpMOGA introduces a type-
matching controller based on pMOGA. The type-matching
controller is designed to speed up evolution process by
matching the type of genes.

4.1. Key Parts of Genetic Algorithm. There are several key
parts in genetic algorithm: encoding, initial population gen-
eration, main operators (crossover, mutation, and selection),
and termination condition, as shown in Figure 1. MOGA,
pMOGA, and EpMOGA have the same encoding, the same
initial population generation, and the same termination
condition.

Encoding. Encoding is to express chromosomes, genes with
elements of resource allocation problem. There are three
methods to express bin packing problems in genetic algo-
rithm: one gene per object, one gene per bin, and one gene
per group (bin and objects in it) [26]. The encoding scheme
based on group is employed because it can exactly express the
relationship between VMs and physical nodes.

Figure 2 lists examples of encoding scheme using group.
In Figure 2, nine VMs are deployed on three nodes. Accord-
ingly, there are three genes in the form of chromosome. Each



4 Mobile Information Systems

gene includes one physical node and several VMs residing
on it. A chromosome or an individual signifies a possible
solution, a mapping between virtual machines and physical
nodes.

Initial Population Generation. A population is a set of chro-
mosomes. Let the population size be 𝑝𝑜𝑝𝑆𝐼𝑍𝐸. Genetic
algorithm usually starts from an initial population which is
often generated randomly. Random generation provides wide
search space to find a solution, but it takesmuch time to get an
optimal global solution. First-fit heuristic is used to generate
the first population. Note that each individual should meet
the constraints discussed in Section 3.

Termination Condition.We set value of themaximumgenera-
tion (𝑀𝐴𝑋 𝐺𝐸𝑁). Iterationswould stopwhen themaximum
generation (𝑀𝐴𝑋 𝐺𝐸𝑁) is reached.

The difference of the three algorithms mainly lies in
operator crossover, mutation, and selection. The difference is
discussed below.

4.2. Multiobjective Genetic Algorithm (MOGA). Multiobjec-
tive genetic algorithm only has two objectives: long stability
time of VM placement and small number of VMmigration.

Threemain operators (crossover,mutation, and selection)
in genetic algorithm are discussed in the following.

Crossover. Crossover is for two parents to produce offspring
so that children can inherit much of meaningful information
from parents. Using group encoding scheme, chromosomes
may have different length. Crossover should be done on
chromosomes with varied length.

There are mainly four steps in operator crossover:

(1) Two chromosomes are randomly selected as parents
and crossing sites on each parent are chosen at
random in both parents.
For example, chromosome 𝐵𝐸𝐴(𝐵{2, 5, 7, 8}, 𝐸{1, 4},
𝐴{9, 3, 6}) and 𝐶𝐵𝐸𝐷(𝐶{5, 9}, 𝐵{2}, 𝐸{1, 6, 7}, 𝐷{4, 3,
8}) are selected as parents. Genes 𝐴{9, 3, 6} and 𝐵{2}
are, respectively, crossing sites.

(2) Two parent chromosomes exchange genes at crossing
sites.
After exchanging genes, the above two chromo-
somes become 𝐵𝐸𝐵(𝐵{2, 5, 7, 8}, 𝐸{1, 4}, 𝐵{2}) and
𝐶𝐴𝐸𝐷(𝐶{5, 9}, 𝐴{9, 3, 6}, 𝐸{1, 6, 7}, 𝐷{4, 3, 8}).

(3) Some genes with repeated nodes or VMs should
be removed. So, the above chromosomes change to
𝐸𝐵(𝐸{1, 4}, 𝐵{2}) and 𝐴(𝐴{9, 3, 6}).

(4) Some missing VMs are reinserted into genes using
first fit decreasing (FFD) heuristic.
In the above example, the missing VMs of the first
chromosome include VMs 3, 5, 6, 7, 8, and 9. These
VMs should be located on active nodes again. If active
nodes do not have enough resource to host these
missing VMs, idle nodes are activated.

Crossover operator is done by rate 𝑞𝑐. A population
generation produces offsprings with the same size as parents.

Mutation. Mutation may make an individual in the popula-
tion different from his parents. It adds new information in an
arbitrary way to widen search space and avoids being trapped
at local optima.

Given a small mutation rate 𝑞𝑚, some chromosomes in
the population are selected randomly to execute operator
mutation. Mutation is to delete some genes at random in
chromosomes.Themissing VMs should be relocated to other
nodes using FFD.

Selection. Operator selection is to select the new population
generation from the old generation and their offsprings. A
fast multiobjective genetic algorithm (NSGA-II) [27] is used
for operator selection. NSGA-II suits well for constrained
multiobjective optimization in any evolutionary algorithm
[27].

Each chromosome 𝑙 has two attributes: nondomination
rank (𝑙rank) and crowding distance (𝑙distance) [27]. The smaller
the nondomination rank is, the closer the chromosome is to
the optimal solution. In the same nondomination rank, the
bigger the crowding distance is, the better the chromosome
is.

MOGA aims at a resource reconfiguration solution with
long stability time of VM placement and small number of
VM migrations. Relationship 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 between two chro-
mosomes (𝑙, 𝑘) is defined as follows:

𝑙 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑘, iff T𝑙 > T𝑘, 𝑌𝑙 < 𝑌𝑘. (8)

T𝑙, T𝑘 means the stability time of chromosome 𝑙, 𝑘 and
𝑌𝑙, 𝑌𝑘 denotes the number of VM migration, respectively.
Then, we have the following equations (𝑆 denotes the set of
chromosomes):

𝑙rank = 1, if ¬ (∃𝑘 ∈ 𝑆 ∧ 𝑘 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑙) .

𝑙rank=𝑘rank+1, if ((∃𝑘 ∈ 𝑆 ∧ 𝑘 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑙) , for (∀𝑢 ∈ 𝑆 ∧ 𝑢 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑙) , having 𝑘rank ≤ 𝑢rank) .
(9)

The crowding distance is computed as the sum of each
normalized objective function [27]. A partial order≺ between
two chromosomes 𝑙 and 𝑘 is defined. Let 𝑙 ≺ 𝑘, if (𝑙rank <
𝑘rank or ((𝑙rank = 𝑘rank) and (𝑙distance > 𝑘distance))). Apparently,
poset (𝑆, ≺) (𝑆 denotes a set of chromosomes in a population

generation) is also a well-ordered set. 𝑆 is a totally ordered set.
Chromosomes in set 𝑆 can be ordered into a chain according
to total order ≺.

When 𝑝𝑜𝑝𝑆𝐼𝑍𝐸 parent chromosomes produce 𝑝𝑜𝑝𝑆𝐼𝑍𝐸
offsprings, all these chromosomes form a big set 𝑆󸀠 with



Mobile Information Systems 5

(2 ∗ 𝑝𝑜𝑝𝑆𝐼𝑍𝐸) elements together. Then, selection operator
chooses the first 𝑝𝑜𝑝𝑆𝐼𝑍𝐸 chromosomes as a new generation
from set 𝑆󸀠 based on total order ≺.

4.3. Power-Aware Multiobjective Genetic Algorithm
(pMOGA). Power-aware multiobjective genetic algorithm
takes power efficiency into consideration based on MOGA.
Optimized objectives are listed in formula (3).

Operator crossover and mutation in pMOGA are the
same as those in MOGA. Operator selection is discussed
below.

Operator selection is still based on NSGA-II. Each chro-
mosome 𝑙 has two attributes: nondomination rank (𝑙rank)
and crowding distance (𝑙distance). The computation of two
attributes is like the computation in MOGA. Only crowding
distance is computed as the sumof three normalized objective
functions in pMOGA, while it is figured out based on two
normalized objective functions in MOGA.

In pMOGA, relationship𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 between two chromo-
somes (𝑙, 𝑘) is defined in the following:

𝑙 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑘, iff T𝑙 > T𝑘, 𝑌𝑙 < 𝑌𝑘, 𝐴 𝑙 < 𝐴𝑘. (10)

T𝑙, T𝑘 means the stability time of chromosome 𝑙, 𝑘 and
𝑌𝑙, 𝑌𝑘 denotes the number of VM migration, respectively.
Variables 𝐴 𝑙 and 𝐴𝑘 express the number of active physical
nodes in chromosome 𝑙, 𝑘.

4.4. Enhanced Power-Aware Multiobjective Genetic Algorithm
(EpMOGA). Enhanced power-aware multiobjective genetic
algorithm (EpMOGA) is designed to add a type-matching
controller to pMOGA. The controller is mainly used in
operator crossover and mutation. EpMOGA and pMOGA
have the same operator selection.

As shown in Figures 3 and 4, when placing missing VMs,
pMOGA uses FFD and EpMOGA employs a type-matching
controller, which is the only difference between pMOGA and
EpMOGA.

In cloud computing, the workloads of various applica-
tions aremultiattribute in terms of different types of resources
(CPU, memory, etc.) [28]. A type-matching controller is
thus designed to classify applications and nodes into several
categories and match them effectively. According to work-
loads of applications, VMs are classified into CPU-intensive
(CI), memory-intensive (MI), both of CPU-intensive and
memory-intensive (CMI), none of CPU-intensive and
memory-intensive (Non). The type of a VM usually keeps
unchanged during their whole lifetime. Also, active physical
nodes are sorted into the same four classes. But the type of
an active node would vary when it hosts different VMs.

In our experiments, we find that when the same VM
migrates to different types of nodes, these nodes have diverse
stabilization time. So, we define closeness degree of each type
of active nodes for every class of VMs, which is listed in
Table 1. As shown in Table 1, the smaller the value of type
closeness degree is, the longer the stabilization time of nodes
hosting VMs is. When selecting a destination node for a VM,
the type-matching controller first tries to match VM to nodes
with low type closeness degree. Only when there is not any

Table 1: Type closeness degree of active nodes to VMs.

Type of VMs Type of active nodes
CI MI CMI Non

CI 4 1 3 2
MI 1 4 3 2
CMI 3 2 4 1
Non 2 3 1 4

node with low type closeness degree available are nodes with
high closeness degree considered as candidates.

When placing missing VMs, type-matching controller
tries to map VMs to nodes with appropriate type. It can
avoid resource contention and improve resource utilization
effectively at the same time to place a CPU-intensive VM
on a memory-intensive node. For a CPU-intensive VM, if
there is not anymemory-intensive active node available, type-
matching controller would try to find a node with type Non.
If there is not any node with type Non available, a CPU-
intensive node is then sought.

5. Performance Evaluation

In this section, we evaluate the performance of MOGA,
pMOGA, and EpMOGA. All the above algorithms are coded
in Java and CloudSim [29] is used to simulate a cloud com-
puting infrastructure. Our tests are done on a ASUS K46CM
with Intel Core i5 CPU, 4GB RAM, and 1TB hard drive.

We simulate 58 physical nodes and 174 VMs. Resource
requests (only CPU andmemory) of these VMs are randomly
generated as prediction information. Population size is set
as 32 (𝑝𝑜𝑝𝑆𝐼𝑍𝐸 = 32). The value of constant 𝑀𝐴𝑋 𝐺𝐸𝑁,
the maximum generation to produce in genetic algorithms,
is set as 40 (𝑀𝐴𝑋 𝐺𝐸𝑁 = 40). Crossover rate (𝑞𝑐) is 0.7 and
mutation rate (𝑞𝑚) is 0.05.

5.1. Evolutionary Process of EpMOGA. Convergence and
stability of algorithms are first checked. We observe the
evolution process of EpMOGA from the 8th population to
the maximum generation.

Figure 5 depicts the evolutional process of EpMOGA.
𝑥-axis expresses number of VM migrations of each chro-
mosome. 𝑦-axis shows stabilization time in seconds. 𝑧-axis
depicts number of active nodes. Number of VM migrations
is just estimated roughly by comparing source node and
destination node of each VM. Only five generations (the 8th,
16th, 24th, 32th, and 40th generation) are listed in the figure.
Each generation has 32 chromosomes.

From Figure 5, we can find that the reproduction process
of individuals moves gradually towards the best solution
(longer stabilization time, less number of VM migrations,
and less number of active nodes). The process begins with
quick changes. The 8th population is quite different from the
16th generation. But the change becomes small in the latter.
The 32nd generation is close to the 40th generation. Figure 5
shows that the 40th generation is enough to find the best
solution of VM placement in cloud computing.



6 Mobile Information Systems

sites randomly 
Select parents, crossing 

Exchange genes at
crossing sites 

Remove repeated genes 

Place missing VMs
using FFD

(a) Crossover in pMOGA

Select parents, crossing 
sites randomly 

Exchange genes at
crossing sites 

Remove repeated genes 

Place missing VMs using 
a type-matching controller

(b) Crossover in EpMOGA

Figure 3: Contrast between operator crossovers in pMOGA and EpMOGA.

Place missing VMs
using FFD

Select chromosome and 
mutation site randomly 

Remove the gene at
mutation site

(a) Mutation in pMOGA

Select chromosome and 
mutation site randomly 

Remove the gene at
mutation site

Place missing VMs using 
a type-matching controller

(b) Mutation in EpMOGA

Figure 4: Contrast between operator mutations in pMOGA and EpMOGA.

The 8th generation
The 16th generation
The 24th generation

The 32nd generation
The 40th generation

0 20 40 60 80 100120140160 180
Number of VM migraions

45
48

51
54

57
60

Stabilization tim
e (s)

45

48

51

54

57

60

N
um

be
r o

f a
ct

iv
e n

od
es

Figure 5: Evolutional process of EpMOGA.

5.2. Comparison of MOGA, pMOGA, and EpMOGA. In this
part, we compare the performances of MOGA, pMOGA,
and EpMOGA. In environment with the same initial VM
placement and the same resource prediction information,
MOGA, pMOGA, and EpMOGA, respectively, find a new
VM placement. We compare their stabilization time, number
of active nodes, and redistribution overhead (denoted as
number of VM migrations). Average power 𝑝 is roughly
computed using formulae (11).

In formulae (11), 𝑇D denotes stability time of a VM place-
ment pattern D. 𝐸node means energy consumed by all active
physical nodes (∑𝑀𝑖=1 𝑦𝑖) in patternD. 𝑃server denotes average
power of servers. Here, 𝑃server is set as 400 watts [7]. 𝐸mig
expresses energy consumed during VM migration, which
is only related to network traffic in migration process [30].
Network traffic is mainly based on the amount of memory
of migrated VMs (expressed as∑𝑗𝑀𝑒𝑚󸀠𝑗). Parameters 𝑘1, 𝑘2,
and 𝑘3 are, respectively, set as 0.512, 1.5, and 20.165, which are
got by training models [30].

𝑝 =
(𝐸node + 𝐸mig)

𝑡

=
(𝑇D ∗ ∑𝑀𝑖=1 𝑦𝑖 ∗ 𝑃server + (𝑘1 ∗ 𝑘2 ∗ ∑𝑗𝑀𝑒𝑚󸀠𝑗 + 𝑘3))

𝑇D
.

(11)

We normalize performance values of pMOGA and
EpMOGA after setting all the performance values of MOGA
as 1. The results are listed in Figure 6. From Figure 6, we
find that both pMOGA and EpMOGA have less number of
active nodes and less average power at the cost of shorter
stability time and larger number of VM migrations. With a
type-matching controller, EpMOGA has better performance
values than pMOGA. Average power of EpMOGA is 0.818
times that of MOGA and 0.922 times the power of pMOGA.

Figure 6 shows that MOGA has the longest stabiliza-
tion time and the smallest number of VM migrations.
But pMOGA and EpMOGA better balance the relationship



Mobile Information Systems 7

0

0.5

1

1.5

2

2.5

MOGA pMOGA EpMOGA
0

0.5

1

1.5

2

2.5
N

or
m

al
iz

ed
 v

al
ue

 

Algorithm

Stabilization time
Number of migrations

Number of nodes
Average power

Figure 6: Performance comparison of several algorithms.

pMOGA
EpMOGA

0 20 40 60 80100120140160180200Number of PMs
0

120
240

360
480

600

Number of VMs
0

5

10

15

20

25

N
or

m
al

iz
ed

 v
al

ue
 o

f a
ve

ra
ge

 p
ow

er

Figure 7: Average power of pMOGA and EpMOGA.

of VM distribution stabilization and power efficiency by
adding number of active nodes as one of optimization
objectives. Number of active nodes is one of the main
power consumption factors in cloud computing. pMOGA
and EpMOGA migrate more VMs to use less active nodes,
saving more energy consumption. With a type-matching
controller, EpMOGA has better solution than pMOGA. The
controller helps to optimize evolution process for optimal
objectives.

We change number of nodes and number of VMs to
test average power of pMOGA and EpMOGA. We set the
minimum power in test results as 1 and normalize other
power values. The test results are shown in Figure 7. With
the increase of VMs and PMs, average power of pMOGA and
EpMOGA rises up. EpMOGA always finds a solution with
less power than pMOGA.The more VMs and PMs there are,
the clearer advantage EpMOGA has. Figure 7 demonstrates
that the type-matching controller is helpful to accelerate
evolution process for optimal objectives.

6. Conclusion and Future Work

In this paper, several genetic algorithms have been proposed
to implement dynamic resource allocation for stability in
cloud computing. The group encoding scheme is employed
to clearly express the mapping of VMs and physical nodes. A
type-matching controller is designed to speed up evolution
process. Our simulation results show that these genetic algo-
rithms effectively improve stability of VM redistribution.
Also, pMOGA and EpMOGA both better balance the rela-
tionship of stabilization and energy efficiency. With type-
matching controller, EpMOGA is superior to pMOGA.

In the future, we will continue to work on dynamic
resource configuration in cloud computing using genetic
algorithms.We find that when there aremore objectives to be
optimized, nondominated sorting genetic algorithm II is less
effective.Many chromosomes are in the samenondomination
rank. A new sorting algorithm should be studied.

Abbreviations

M: The total number of physical nodes in the
cloud

N: The total number of virtual machines in
the cloud

C𝑖: The amount of CPU resource that node 𝑖
supplies

𝑀𝑒𝑚𝑖: The amount of memory resource that
node 𝑖 supplies

C󸀠𝑗: The amount of CPU resource that VM 𝑗
requests

𝑀𝑒𝑚󸀠𝑗: The amount of memory resource that VM
𝑗 requests

𝑥𝑖𝑗: Binary variable; if 𝑥𝑖𝑗 = 1, node 𝑖 hosts VM
𝑗, or else, 𝑥𝑖𝑗 = 0

𝑦𝑖: Binary variable; 𝑦𝑖 = 1 if node 𝑖 is active
and hosts one VM at least, or else, 𝑦𝑖 = 0

D𝑘: The 𝑘th placement pattern of all VMs in
the cloud

𝑚𝑗: Binary variable; if𝑚𝑗 = 1, VM 𝑗migrates
once, or else,𝑚𝑗 = 0

𝑇node𝑖 : Stabilization time of a node, node𝑖
𝑇D𝑘 : Stabilization time of a placement pattern

D𝑘.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was supported by the Opening Project of Hubei
Key Laboratory of Intelligent Information Processing and
Real-Time Industrial System in China (no. 2016znss27B), the
National Nature Science Foundation of China (no. 61303117
and no. 61272110), and the Key Projects of National Social
Science Foundation of China under Grant no. 11&ZD189.



8 Mobile Information Systems

References

[1] M. Armbrust, A. Fox, R. Griffith et al., “Above the clouds: a
Berkeley view of cloud computing,” Tech. Rep. UCB/EECS-
2009-28, Electrical Engineering and Computer Sciences
Department, University of California, Berkeley, 2009.

[2] G. Copil, D. Moldovan, H. Truong, and S. Dustdar, “rSYBL:
a framework for specifying and controlling cloud services
elasticity,”ACMTransactions on Internet Technology, vol. 16, no.
3, 2016.

[3] H. Jin, L. Deng, S. Wu, X. H. Shi, H. H. Chen, and X. D. Pan,
“MECOM: live migration of virtual machines by adaptively
compressing memory pages,” Future Generation Computer Sys-
tems, vol. 38, pp. 23–35, 2014.

[4] A. Rai, R. Bhagwan, and S. Guha, “Generalized resource alloca-
tion for the cloud,” in Proceedings of the ACM 3rd Symposium
on Cloud Computing (SOCC ’12), San Jose, Calif, USA, 2012.

[5] F. Hermenier, X. Lorca, J. M. Menaud, G. Muller, and J. Lawall,
“Entropy: a consolidation manager for clusters,” in Proceedings
of the ACM/Usenix International Conference on Virtual Execu-
tion Environments (VEE ’09), pp. 41–50,Washington, DC, USA,
March 2009.

[6] L. Chen andH. Shen, “Consolidating complementaryVMswith
spatial/temporal-awareness in cloud datacenters,” in Proceed-
ings of the 33rd IEEE Conference on Computer Communications
(INFOCOM ’14), pp. 1033–1041, IEEE, Toronto, Canada, May
2014.

[7] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “An
energy-efficient VM prediction and migration framework for
overcommitted clouds,” IEEE Transactions on Cloud Comput-
ing, 2016.

[8] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: a randomized auction approach,” in Proceed-
ings of the 33rd IEEE Conference on Computer Communications
(’INFOCOM ’14), pp. 433–441, Ontario, Canada, May 2014.

[9] Z. Zhou, F. Liu, Z. Li, and H. Jin, “When smart grid meets geo-
distributed cloud: an auction approach to datacenter demand
response,” in Proceedings of the IEEE Conference on Computer
Communications (INFOCOM ’15), pp. 2650–2658, IEEE, May
2015.

[10] L. Deng and L. Yao, “Dynamic allocation of virtual resources
based on genetic algorithm in the cloud,” in Proceedings of the
Asia-Pacific Services Computing Conference (APSCC ’15), pp.
153–164, 2015.

[11] S. Nathan,U. Bellur, and P. Kulkarni, “Towards a comprehensive
performance model of virtual machine live migration,” in Pro-
ceedings of the 6th ACM Symposium on Cloud Computing (SoCC
’15), pp. 288–301, Kohala Coast, Hawaii, USA, August 2015.

[12] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and
Y. Li, “Cloud computing resource scheduling and a survey of its
evolutionary approaches,” ACM Computing Surveys, vol. 47, no.
4, article 63, 2015.

[13] T. Kaur and I. Chana, “Energy efficiency techniques in cloud
computing: a survey and taxonomy,” ACM Computing Surveys,
vol. 48, no. 2, article 22, 2015.

[14] J. Liu, K. L. Li, D.K. Zhu, J. J.Han, andK.Q. Li, “Minimizing cost
of scheduling tasks on heterogeneous multicore embedded sys-
tems,”ACMTransactions on Embedded Computing Systems, vol.
16, no. 2, 2016.

[15] Q. Li, Q.-F.Hao, L.-M. Xiao, andZ.-J. Li, “Adaptivemanagement
and multi-objective optimization for virtual machine place-
ment in cloud computing,”Chinese Journal of Computer, vol. 34,
no. 12, pp. 2253–2264, 2011.

[16] W. Wang, B. Li, and B. Liang, “Dominant resource fairness in
cloud computing systems with heterogeneous servers,” in Pro-
ceedings of the IEEE Conference on Computer Communications
(INFOCOM ’14), pp. 583–591, IEEE, Toronto, Canada, May
2014.

[17] J. Guo, F. Liu, J. C. S. Lui, and H. Jin, “Fair network bandwidth
allocation in IaaS datacenters via a cooperative game approach,”
IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp. 873–
886, 2016.

[18] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C.
Kozyrakis, “Improving resource efficiency at scale with hera-
cles,” ACM Transactions on Computer Systems, vol. 34, no. 2,
2016.

[19] S. Singh and I. Chana, “QoS-aware autonomic resource man-
agement in cloud computing: a systematic review,” ACM Com-
puting Surveys, vol. 48, no. 3, article 42, 2016.

[20] K. H. Park, W. Hwang, H. Seok et al., “MN-MATE: elastic
resourcemanagement ofmanycores and a hybridmemory hier-
archy for a cloud node,” ACM Journal on Emerging Technologies
in Computing Systems, vol. 12, no. 1, article 5, 2015.

[21] R. C. Chiang, S. Rajasekaran, N. Zhang, and H. H. Huang,
“Swiper: exploiting virtual machine vulnerability in third-party
clouds with competition for I/O resources,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 6, pp. 1732–1742,
2015.

[22] N. Jain, I. Menache, J. Naor, and J. Yaniv, “Near-optimal sched-
uling mechanisms for deadline-sensitive jobs in large comput-
ing clusters,” ACM Transactions on Parallel Computing, vol. 2,
no. 1, 2015.

[23] J. Ghaderi, S. Shakkottai, and R. Srikant, “Scheduling storms
and streams in the cloud,” ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, vol. 1, no. 4, 2016.

[24] T. Wu, W. Dou, F. Wu, S. Tang, C. Hu, and J. Chen, “A
deployment optimization scheme over multimedia big data for
large-scale media streaming application,” ACM Transactions on
Multimedia Computing, Communications, and Applications, vol.
12, no. 5, article 73, 2016.

[25] J. Xu, C. Liu, X. Zhao, S. Yongchareon, and Z. Ding, “Resource
management for business process scheduling in the presence
of availability constraints,” ACM Transactions on Management
Information Systems, vol. 7, no. 3, article 9, 2016.

[26] E. Falkenauer and A. Delchambre, “A genetic algorithm for bin
packing and line balancing,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pp. 1186–1192,
Nice, France, May 1992.

[27] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans-
actions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197,
2002.

[28] L. Chen, H. Shen, and K. Sapra, “Distributed autonomous vir-
tual resource management in datacenters using finite-Markov
decision process,” in Proceedings of the 5th ACM Symposium
on Cloud Computing (SOCC ’14), pp. 1–13, ACM, Seattle, Wash,
USA, November 2014.

[29] CloudSim:AFramework forModeling and Simulation of Cloud
Computing Infrastructures and Services, 2015, http://www
.cloudbus.org/cloudsim/.



Mobile Information Systems 9

[30] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao, “Performance
and energy modeling for live migration of virtual machines,” in
Proceedings of the 20th ACM International Symposium on High-
Performance Parallel andDistributedComputing (HPDC ’11), pp.
171–181, ACM, San Jose, Calif, USA, June 2011.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


