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Uplink Power Control (ULPC) is a key feature of mobile networks. Particularly, in LTE, Physical Uplink Shared Channel (PUSCH)
performance strongly depends on Uplink Power Control configuration. In this work, a methodology for the self-planning of uplink
Fractional Power Control (FPC) settings is presented. Values for nominal power and channel path-loss compensation factor are
proposed. The method is designed for the planning and operational (replanning) stages. A very fast solution for FPC setting can
be achieved by the combination of several simple solutions obtained by assuming some simplifications. First, the FPC planning
problem is formulated analytically on a cell basis through the combination of multiple regular scenarios built on a per-adjacency
basis from a live scenario. Secondly, detailed inspection of the FPCparameter values aims to identify themost important variables in
the scenario impacting optimal FPC settings. Finally, regression equations can be built based on those key variables for a simple FPC
parameter calculation, so computational costs are extremely reduced. Results show that network performance with the proposed
FPC parameter settings is good when compared with typical FPC configurations from operators.

1. Introduction

Mobile Communication Networks have experienced strong
evolution in the last years. The development of new radio
access technologies has increased network capacity and
quality significantly, especially with the UMTS Long-Term
Evolution (LTE) [1]. Simultaneously, the appearance of the so-
called smartphones has changed the traffic behavior carried
by mobile networks, where data transmission (and not
voice calls) is the traffic benchmark, and, as a consequence,
data transmission enhancement has been the main focus in
present networks [2].These factors have strengthened the role
of network planning when there is a desire to improve overall
network performance. Before the network deployment stage,
network planning aims to get the best network performance
in a concrete scenario. Trade-off between network capacity
and coverage is themost limiting factor for network planning
[3].

Regardless of the network radio access technology, proper
network planning allows the operator to identify key net-
work areas, which eases proper network dimensioning and

enables the prediction of future bottlenecks. Thus, network
planning is useful to avoid or, at least, delay subsequent
capital investments [4, 5]. The growth of application data
traffic has led to changes in network planning approaches
trying to predict how the user experience is. Whereas former
approaches have focused on network performance indicators,
user-centric statistics are now the preference (e.g., average
and cell-edge user throughput) [6].

Cellular network planning can be divided depending on
the network system to be planned: core and Radio Access
Network (RAN). While the core network planning relies
mainly on dimensioning processes, RAN planning comprises
radio dimensioning and radio parameter configuration [3,
7, 8]. Network operators do not usually take advantage of
radio parameter configuration due to the inherent complexity
of finding optimal parameter settings for every cell in the
network. Thus, operators usually set radio parameters to
some network-wide values recommended by vendors, which
work reasonably well in most cases, but some additional net-
work improvement is discarded. To revert this situation, the
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3rd Generation Partnership Project (3GPP) has defined the
requirements for the automation of planning, optimization,
and self-healing in mobile networks [9]. As a result, network
self-planning has been identified as an important process in
Self-Organizing Networks (SON) now [5, 10, 11] and in the
future [12].

Power Control (PC) is one of the most impacting algo-
rithms in network performance. Fractional Power Control
(FPC) has been selected for the Physical Uplink Shared
Channel (PUSCH) in LTE [13, 14]. Consequently, FPC algo-
rithm controls LTE uplink performance, which makes its
configuration an ideal candidate for self-planning purposes.
In fact, the variability of radio conditions such as propagation
losses and interference level makes it difficult to set an
optimal value for FPC parameters. For this reason, network
operators use safe network-wide recommended values. As
a consequence, suboptimal performance is achieved by the
network. Hence, even if this can be solved in the operational
stage, the provision of proper initial FPC settings would be
valuable for network operators. Additionally, the research of
low computational complexity methodologies for FPC self-
planning is of high interest in the development of SON
algorithms.

2. Related Work and Contribution

There is a wide background regarding FPC performance in
LTE uplink. First, a performance analysis of open-loop FPC
is presented in [15, 16], whereas closed-loop behavior was
analyzed in [17–19]. Moreover, more sophisticated Power
Control schemes for LTE were assessed in later studies [20,
21]. In those schemes, interference or load conditions were
taken into consideration.

A sensitivity analysis of FPC parameters is performed
in [22]. The analysis relies on system-level simulations and
the results suggest a suboptimal parameter configuration for
noise-limited and interference-limited scenarios. Obviously,
the overall problem solution is not as simple, since it is a non-
separable and nonlinear large-scale optimization problem.
However, it is the start point in the search of more complex
solutions. In [23], the FPC parameter settings problem in a
single cell is formulated as a classical optimization problem,
where average user throughput and cell throughput are taken
as figures of merit for the optimization process. An extension
of this analysis to a multicell scenario is done in [24] by
formulating FPC as a noncooperative game model where a
heuristic iterative optimization algorithm solves the problem.
More conscientiously, a self-planning method for selecting
the best parameter settings in FPC on a per-cell basis in an
irregular LTE scenario is proposed in [25]. It is based on an
exhaustive search approach using Taguchi’s method over a
system-level simulator. There are other studies considering
tuning algorithms for the network operational stage. These
self-tuning algorithms, which have been conceived for the
operational stage, can also be applied in the planning stage,
provided that a system model is available (e.g., a system-
level simulator). For instance, a self-tuning algorithm is
proposed in [26] to control interference by performing
dynamical adjustment of nominal power parameter based on

the overload indicator [27]. Likewise, a self-tuning algorithm
for FPC is proposed in [28] based on fuzzy-reinforcement
learning techniques. Most of these self-tuning algorithms
need iterative evaluation of the systemmodel formany differ-
ent parameter settings, thus emulating the realistic network
behavior. As a consequence, this iterative process is adequate
for live networks, where performance measurements are
provided. However, this is not the case of network planning,
where computational cost increases with the complexity of
the implemented systemmodel. For this reason,most existing
FPC planning methods rely on simple analytical models,
which eases scalability and performance assessment.

A more computationally efficient planning method is
presented in [29]. The method relies on an analytical model
that predicts the influence of the nominal power and path-
loss compensation factor on call acceptance probability for
a previously defined spatial user distribution. A suboptimal
solution for these parameters is computed by a local greedy
search algorithm. In the sameway, a computationally efficient
method for self-planning Uplink Power Control parameters
in LTE is presented in [30]. This method proposes a heuris-
tic algorithm that can handle irregular scenarios at a low
computational complexity. For this purpose, the parameter
planning problem in a cell is formulated analytically through
the combination of multiple regular scenarios built on a
per-adjacency basis. However, in [30], Nonfractional Power
Control is considered, assuming total propagation losses
compensation.

To the authors’ knowledge, few of the previous references
handle irregular scenarios at a low computational cost and
none of them propose some simple model with the aim of
getting near-optimal FPC parameter values depending on
scenario details.

In this paper, a fast method for the self-planning of FPC
parameters in LTE uplink is proposed. The self-planning
method determines the nominal PUSCH power, 𝑃0, and the
path-loss compensation, 𝛼, parameters in FPC. Similar to
[30], to dealwith scenario irregularities, the parameter setting
problem is solved by the aggregation of multiple scenarios
defined on a per-adjacency basis. Moreover, with the aim
of minimizing computational complexity, solutions provided
by the self-planning method are further analyzed and a
simple model for the estimation of FPC parameter values is
proposed.

Unlike [30], the decision variables in this work are 𝑃0
and 𝛼, instead of 𝑃0 and uplink cell load, 𝑈UL. The approach
in [30] is suitable for the planning stage, when performance
measurements (PMs) are not available and themaximum cell
loads are still design variables. However, it is limited to some
first vendor releases, where 𝛼 was a system constant (𝛼 =
1). In contrast, the approach proposed here is conceived for
the operational stage, when input parameters can be taken
from network PMs. Thus, 𝑈UL is an input parameter taken
from statistics of Physical Resource Block (PRB) utilization
ratio in the network management system. Likewise, FPC is
considered here (𝛼 ≤ 1).Moreover, the optimization criterion
is different from that used in [30].

The main contributions of this work are (a) a sensitivity
analysis of FPC parameter solutions in a realistic network
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implemented over a system-level simulator, (b) a thorough
analysis of how FPC parameter values are related to LTE
scenario characteristics and the identification of the most
significant scenario parameters affecting FPC setting, and (c)
a highly computationally efficient methodology to configure
FPC parameters.The rest of the paper is organized as follows.
In Section 3, the system model is outlined. The self-planning
algorithm is presented in Section 4. Performance assessment
is carried out in Section 5. Finally, concluding remarks are
given in Section 6.

3. Fractional Power Control in LTE Uplink

Three physical channels are defined for LTE uplink: Physical
Random Access Channel (PRACH), Physical Uplink Shared
Channel (PUSCH), and Physical Uplink Control Channel
(PUCCH) [31]. Attending to LTE standards, Uplink Power
Control feature applies to PUSCH and PUCCH [14]. Specif-
ically, PUSCH is used to transmit user data and control
information for active users. Uplink Power Control (ULPC)
behavior for PUSCH is defined as

𝑃tx = min
{{{
{{{
{

𝑃txmax
, 𝑃0 + 𝛼 ⋅ PL⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
basic open-loop
operating point

+ ΔTF + 𝑓 (ΔTPC)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
dynamic offset

+ 10 ⋅ log10𝑀PUSCH⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
bandwidth factor

}}}
}}}
}

,

(1)

where 𝑃txmax
is the maximum User Equipment (UE) transmit

power, 𝛼 is the channel path-loss compensation factor, PL
are the propagation losses, 𝑀PUSCH is the number of PRBs
assigned to the UE, and ΔTF + 𝑓(ΔTPC) is a dynamic term
that depends on the selected modulation scheme and power
control commands sent by the eNodeB (eNB).

As shown in (1), transmit power depends on three
terms: the basic open-loop operating point, dynamic off-
set which represents closed-loop corrections, and a mul-
tiplicative factor depending on the bandwidth. It must be
noted that, in open-loop behavior, the parameter 𝛼 (𝛼 ∈
{0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}) represents the fraction of PL
which are compensated by the UE to guarantee the nominal
PUSCHpower,𝑃0.Thus, when path-loss compensation factor
is different from one, ULPC is known as Fractional Power
Control (FPC).

In this work, the system model is the same as the one
used in [30]; that is, uplink Signal over Interference andNoise
Ratio (SINR) is based in the emulation of the uplink scheduler
proposed there.

4. Self-Planning Algorithm

In this section, a self-planning methodology for FPC param-
eters, namely, 𝑃0 and 𝛼, is described. General considerations
regarding the algorithm are first explained in Section 4.1.
The algorithm operation for regular scenarios is described
in Section 4.2, and the algorithm extension for irregular

scenario is performed in Section 4.3. Finally, a detailed
analysis of FPC solutions is approached in Section 4.4, with
the aim of building a multivariate linear regression model
with the most significant scenario parameters.

4.1. General Consideration. Mobile network performance is
usually experienced as a trade-off between coverage and
capacity so both characteristics cannot be optimized sepa-
rately. This trade-off is known as the Coverage and Capacity
Optimization (CCO) SON use case defined by 3GPP in
[32]. Network coverage and capacity are usually measured
with cell-edge user and cell-average throughput statistics,
respectively [6, 33].

Self-planning of FPC parameter is a particular way to
approach the CCO problem. On the one hand, changing
𝑃0 in a cell 𝑖 impacts coverage and capacity of cell 𝑖 and
its surrounding neighbors. High 𝑃0 values force the UEs
connected to cell 𝑖 to transmit with higher power, increasing
interference in adjacent cells. However, received signal in
cell 𝑖 is higher, and, thus, SINR (and, as a consequence, cell
throughput) is increased. Conversely, low 𝑃0 values decrease
transmit power for UEs in the cell, reducing interference in
adjacent cells, which favors coverage of surrounding cells
at the expense of reducing coverage and capacity of the
considered cell. Regarding 𝛼 parameter, different 𝛼 settings
impact similarly the UE transmit power, so it can be also used
to manage interference between cells.

In any case,𝑃0 and𝛼 best settings are both very influenced
by the particular topology and radio propagation conditions
in the network scenario. This is especially important when
irregular scenarios (which are majority) are considered. A
cell-based FPC configuration can reach the best network
performance by adapting 𝑃0 and 𝛼 settings to every cell
environment. As a consequence, the resulting CCO problem
is a nonseparable multivariable optimization problem in
which all cells are jointly optimized. In other words, the
solution space is (𝑁V𝑃0

⋅ 𝑁V𝛼)
𝑁𝑐 , where 𝑁V𝑃0

and 𝑁V𝛼 are the
number of possible values for 𝑃0 and 𝛼 parameters and 𝑁𝑐
is the number of cells to be planned. The large size of the
solution space prevents the use of exact algorithms, which
are substituted by heuristic algorithms, for example, Taguchi’s
method [25], greedy search [29], or simulated annealing.

In this work, the methodology described in [30] is repro-
duced to reduce the algorithm search space.The globalmulti-
variate optimization problem is divided into𝑁𝑐 independent
bivariate subproblems. The following subsections describe
the optimization process in a regular scenario and then
the extension to irregular scenarios and later an analysis of
the algorithm solution that allows optimizing computational
complexity by a regression model.

4.2. Regular Scenario. To design the self-planning algo-
rithm, a sensitivity analysis of FPC parameters is carried
out over a simple regular scenario. This regular scenario
consists in seven trisectorial sites, specifically one central
site surrounded by six adjacent sites, as shown in Figure 1.
In such scenario, FPC parameters 𝑃0 and 𝛼 are configured
uniformly in all cells. Then, parameters are separately swept
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Figure 1: Regular scenario used in FPC parameter sensitivity
analysis.

Table 1: Simulation parameters.

Parameters Settings
Carrier
bandwidth

10MHz (50 PRBs)

Carrier
frequency

2GHz

Cell layout 7 eNBs, 21 sectors, regular grid (40m resolution)
Distance
attenuation

COST 231 [36]

Thermal noise
density

−174 dBm/Hz

Cell radius 1.5 km (3 km intersite distance)
eNB antenna
height

30m

eNB antenna tilt 5∘

eNB antenna
pattern and gain

3GPP ideal [37]

Max. UE
transmit power

23 dBm

Path-loss
compensation
factor, 𝛼

(0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)

Cell load 100%
Traffic model Full buffer

and coverage and capacity indicators aremeasured in one cell
of the centre site. The rest of the simulation parameters are
shown in Table 1.

Figures 2 and 3 show cell-edge and cell-average user
throughput for cell 𝑖, THce(𝑖) and THavg(𝑖), respectively, with
different 𝑃0 and 𝛼 settings. Every curve in Figure 2 shows
a similar behavior. With low 𝑃0 values, increasing 𝑃0 leads
to an improvement in THce. After that initial improvement,
additional 𝑃0 increases lead to THce decreases due to intercell
interference issues. Thus, an optimal 𝑃0 value, 𝑃(ce)0,opt, can
be defined (i.e., THce is maximum for that 𝑃(ce)0,opt value).
A similar behavior is observed for THavg performance in
Figure 3. Optimal 𝑃0 has a different value when THavg

performance is considered (i.e., 𝑃(ce)0,opt ̸= 𝑃(avg)0,opt ). On the other
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Figure 2: Cell-edge throughput performance in regular scenarios.
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Figure 3: Cell-average user throughput performance in regular
scenarios.

hand, decreasing 𝛼 has a high impact on coverage and
capacity figures. Maximum THce value decreases with 𝛼 due
to uncompensated losses, whereas maximum THavg value
increases due to the interference decreases for lower 𝛼 values.
Moreover, curves in Figures 2 and 3 are displaced to the
right due to path-loss compensation impact over UE transmit
power in (1). Additionally, the difference between optimal 𝑃0
values, 𝑃(avg)0,opt -𝑃(ce)0,opt, is decreased for lower 𝛼 values (and, thus,
the best coverage and capacity performance could be reached
simultaneously).

Based on the behavior observed in Figures 2 and 3,
a self-planning algorithm for 𝑃0 and 𝛼 parameters in a
regular scenario is designed. The proposed algorithm finds
the optimal 𝑃0 and 𝛼 settings by a simple gradient search
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MeM

Solution aggregation

Neighbor cell l

Neighbor cell j

Serving cell i

Neighbor cell k

Adjacency identification in
an irregular LTE scenario

Division into local
regular scenarios

Scenario i, j: P0(i, j), 𝛼(i, j)

P0(i, j), 𝛼(i, j)

Scenario i, k: P0(i, k), 𝛼(i, k)
Scenario i, l: P0(i, l), 𝛼(i, l)

· · ·

...

Cell i solution:

Figure 4: Optimization process for irregular scenarios.

which maximizes THce and THavg according to a trade-off
value, 𝑡, as

max
(𝑃0 ,𝛼)

{𝑡 ⋅ THce (𝑖) + (1 − 𝑡) ⋅ THavg (𝑖)} , 𝑡 ∈ [0, 1] . (2)

Note that in regular scenarios all cells are identically config-
ured (i.e., 𝑃0(𝑖) = 𝑃0(𝑗) and 𝛼(𝑖) = 𝛼(𝑗), ∀𝑖, 𝑗).

4.3. Irregular Scenario. The previous section proposed a
method for finding an optimal solution for FPC parameter
settings in a regular scenario. However, mobile networks
operate in realistic scenarios (where cells are not regular)
with very different user and radio conditions along cells.
Additionally, cell performance is also affected by the also
irregular adjacent cells. Hence, these irregularities have to
be considered to plan FPC parameters. In this work, irregu-
larities are approached similarly to the algorithm presented
in [30]. Figure 4 depicts this process in three different
stages.

In the first stage, the identification of adjacent cells in an
irregular LTE scenario is performed. To identify the most
relevant adjacent cells for cell 𝑖, 𝑁adj(𝑖), neighbors are sorted
following the indicator NRUL, defined as

NRUL (𝑖, 𝑗) = 𝐿 (𝑖, 𝑗) − 𝐴𝐻 (𝑖, 𝑗) − 𝐴𝑉 (𝑖, 𝑗) , (3)

where 𝐿(𝑖, 𝑗) is the path-loss between the cell under study
𝑖 and cell 𝑗 and 𝐴ℎ(𝑖, 𝑗) and 𝐴V(𝑖, 𝑗) are the horizontal and
vertical gains for the antenna of cell 𝑖 to the location of
eNB 𝑗. First 𝑁adj(𝑖) cells in the list are selected as adjacent
cells.

In the second stage, division into several local regular
scenarios is done. One regular scenario is built per serving
cell 𝑖 and neighbor cell 𝑗, based on the relative geometry
between both cells. Relative antenna angles, antenna tilt, and
height of both cells are kept from the irregular scenario. To
compute interference levels in each regular scenario, it is

assumed that all cells have the same uplink cell load, equal
to that of the serving cell, 𝑈UL(𝑖). Recall that 𝑈UL(𝑖) is an
input parameter taken from network measurements. Then,
neighbor cell is replicated to complete the first tier of adjacent
cells resulting in a regular scenario as that shown in Figure 1.
𝑁adj(𝑖) regular scenarios are built per cell. Equation (2) is
solved to find optimal 𝑃0 and 𝛼 for each scenario. Note that
every regular scenario has different network parameters and
has to be simulated (and solved) separately. At the end of
this process, there are𝑁adj(𝑖) solutions (i.e., 𝑃0(𝑖, 𝑗) and 𝛼(𝑖, 𝑗)
value for every 𝑗 cell being adjacent to cell 𝑖), so some final
criteria must be defined to obtain the final 𝑃0(𝑖) and 𝛼(𝑖)
values.

Finally, in the third stage, the aggregation of solutions
obtained from every regular scenario is carried out. As a
result, a unique solution of the pair of parameters 𝑃0(𝑖) and
𝛼(𝑖) is given for each cell 𝑖. Different aggregation methods
were tested in [30], although the so-called Medium Method
(MeM) achieved better trade-off results.MeM calculates𝑃0(𝑖)
and𝛼(𝑖) as the average value of all𝑃0(𝑖, 𝑗) and𝛼(𝑖, 𝑗) solutions.
Hence, MeM is selected as the aggregation method in this
work.

4.4. Regression Model for FPC Solutions. A self-planning
algorithm for FPC parameters has been presented in previous
sections. The proposed algorithm reduces the complexity
of exhaustive search by breaking down the problem into
many regular scenarios. Nonetheless, each of these regular
scenarios has still to be simulated and solved. Thus, the
computational complexity of the method can be reduced by
deriving a simple analytical formula giving the optimal value
of FPC parameters in terms of network parameters obtained
from simulations. In this section, a thorough analysis of FPC
optimal settings in a regular scenario is performed by means
of multivariate linear regression (MLR) model inspection.
The aim is to identify which are the most relevant variables
in the scenario when finding optimal 𝑃0 and 𝛼 settings in
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Figure 5: 𝑃0,opt(𝑖, 𝑗) and 𝛼opt(𝑖, 𝑗) values.

a regular scenario. Thus, a set of regression equations for
calculating optimal FPC settings is obtained as follows:

𝑃0,opt (𝑐) = 𝛽0 +
𝑘

∑
𝑙=1

𝛽𝑙 ⋅ 𝑝𝑙 (𝑐) + 𝜖,

𝛼opt (𝑐) = 𝛽0 +
𝑘

∑
𝑙=1

𝛽𝑙 ⋅ 𝑝𝑙 (𝑐) + 𝜖,
(4)

where 𝑃0,opt(𝑐) and 𝛼opt(𝑐) are the optimal solutions obtained
from the self-planning approach for a combination 𝑐 of
independent variables (i.e., scenario configuration), 𝑙 is used
to index variables, 𝑝𝑙 are the variables selected as candidate
independent variables, 𝛽𝑙 is the regression coefficient for each
𝑝𝑙, 𝑘 is the number of candidate independent variables in the
MLR model, and 𝜖 is the error term.

The first set of scenario variables to be considered in the
regression analysis is as follows: (a) intersite distance, ISD, in
a logarithmic scale as an indicator of propagation losses, (b)
antenna height, ℎ𝑏, in meters, (c) uplink cell load ratio, 𝑈UL,
(d) vertical antenna gain,𝑉𝐺, measured in dB, as an indicator
of the antenna tilt, and (e) horizontal gain, 𝐻𝐺, measured
in dB, as an indicator of the relative angle between cells. A
wide set of regular scenarios are built for different values
of these variables. Specifically, 145800 different combinations
of the independent variables have been tested. Note that a
regular scenario can be built with a different value of the same
variable for the central and surrounding cell (e.g., ℎ𝑏(𝑖) ̸=
ℎ𝑏(𝑗) in a regular scenario). MLR model defined in (4) is,
thus, built from𝑃0,opt and 𝛼opt solutions extracted from all the
regular scenarios built according to the values set for these
variables. MLR analysis has been performed for a fixed value
of trade-off, 𝑡 = 0.5.

A previous analysis of𝑃0,opt and 𝛼opt values obtained from
the different regular scenarios is shown in Figure 5. Solutions
in the figure are divided by ISD in the scenario. It is shown
that there is a clear trend of optimal solutions with ISD.
Parameter 𝛼opt remains almost constant when ISD < 1500m,

Table 2: MLR model for small-medium cells.

Regression statistics, ISD < 1500m
Determination coefficient 𝑅2(𝑃0,opt) = 0.9

𝑃0,opt
MLR analysis �̂�

𝑖
𝑃

Constant (𝛽0) 71.23 0
ISD [dB] −5.437 0
ℎ𝑏(𝑖) [m] −3.8𝐸 − 15 1
ℎ𝑏(𝑗) [m] −2.24𝐸 − 15 1
𝑉𝐺(𝑖) [dB] −2.22𝐸 − 15 1
𝑉𝐺(𝑗) [dB] 0.372 0
𝑈UL −0.05 0.471
𝐻𝐺 [dB] −2.83 1.5𝐸 − 97

whereas 𝑃0,opt moves in a wide range (20 dB). When ISD >
1500m, the solution behavior is not constant, but lineal
dependence between 𝑃0,opt and 𝛼opt is shown. Thus, MLR
model construction is performed in two stages: (a) small-
medium cells (ISD < 1500m) and (b) medium-large cells
(ISD > 1500m).

4.4.1. Small-MediumCellsMLRAnalysis. Table 2 detailsMLR
model analysis when ISD < 1500m. Subscript 𝑖 in the table
refers to the value of such parameter for the central cell in the
regular scenario (e.g., antenna height in cell 𝑖), and 𝑗 subscript
refers to the neighbor cell (e.g., antenna height for neighbor
cell 𝑗). As shown in the table, 𝑃0,opt is accurately predicted
when all variables are considered (𝑅2 = 0.9). As seen in
Figure 5, 𝛼opt remains almost constant (between 0.95 and 1),
so no MLR model is built and 𝛼opt = 1 is considered.

Attending to the 𝑝 values in Table 2, ISD and 𝑉𝐺(𝑗)
prove to be the most important variables when calculating
𝑃0,opt. With a similar methodology to that described in
[34], a simplified MLR model is constructed by following a
variable elimination process. Initially, all variables in Table 2
are included in the model. Then, in each iteration, the
least important variable (that with the highest 𝑝 value) is
eliminated until the determination coefficient, 𝑅2, remains at
an acceptable level (i.e., when the determination coefficient,
𝑅2, is less than 0.7). The resulting model is

𝑃0,opt = 64.545 − 5.437 ⋅ ISD + 0.372 ⋅ 𝑉𝐺 (𝑗) ,

𝛼opt = 1,
(5)

where 𝑉𝐺(𝑗) refers to the vertical gain of the neighbor cell 𝑗
towards the cell under study. This simplified model reaches
𝑅2 = 0.894.

4.4.2. Medium-Large Cells MLR Analysis. Analogously,
Table 3 shows the MLR model with all variables when
ISD > 1500m. As shown in the table, 𝑃0,opt and 𝛼opt can be
determined with relatively good accuracy attending to the
determination coefficient (𝑅2 > 0.75 in both cases).

Regarding the 𝑝 values in Table 3, ISD, 𝑉𝐺(𝑗), and 𝑈UL(𝑖)
prove to be the most important variables when calculating
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Table 3: MLR analysis for medium-large cells.

Regression statistics, ISD > 1500m
Determination coefficient 𝑅2(𝑃0,opt) = 0.76 𝑅2(𝛼opt) = 0.75

𝑃0,opt 𝛼opt
MLR analysis �̂�

𝑖
𝑃 �̂�

𝑖
𝑃

Constant (𝛽0) −423.53 0 3.639 0
ISD [dB] 10.527 0 −0.0893 0
ℎ𝑏(𝑖) [m] −1.47𝐸 − 15 1 2.91𝐸 − 17 1
ℎ𝑏(𝑗) [m] −6.4𝐸 − 16 1 2.03𝐸 − 17 1
𝑉𝐺(𝑖) [dB] −3.29𝐸 − 15 1 2.53𝐸 − 17 1
𝑉𝐺(𝑗) [dB] −0.258 1.09𝐸 − 296 2.44𝐸 − 3 0
𝑈UL −17.083 0 0.144 0
𝐻𝐺 [dB] −0.139 1.3𝐸 − 4 9.16𝐸 − 4 3.08𝐸 − 3

𝑃0,opt and 𝛼opt. Again, a simplified MLRmodel is constructed
and defined as

𝑃0,opt = −425.73 + 10.53 ⋅ ISD − 0.258 ⋅ 𝑉𝐺 (𝑗) − 17.08

⋅ 𝑈UL (𝑖) ,

𝛼0,opt = 3.65 − 0.0893 ⋅ ISD + 0.00244 ⋅ 𝑉𝐺 (𝑗) + 0.144

⋅ 𝑈UL (𝑖) .

(6)

5. Performance Analysis

Solutions for FPC settings proposed by the algorithm pre-
sented in this work are assessed in a system-level simulator
implementing a realistic scenario. The simulator is the same
as the one used in [30]. For the sake of clarity, the different
tests are described first in Section 5.1 and the results are
commented on in Section 5.2. Additionally, some comments
on time complexity are presented in Section 5.3.

5.1. Analysis Setup. A static system-level LTE simulator like
that in [30, 35] is used. In the simulator, the analyzed area is
divided into a regular grid of points, representing potential
user locations. For each network parameter setting (i.e., a
FPC parameter plan), the received signal level at each base
station from each point is computed by a macrocellular
propagation model including log-normal slow fading (no
fast fading is considered). Then, the serving cell for each
point is defined as that providing the maximum signal level.
Interference level is estimated by considering a nonuniform
spatial user and cell load distribution following a realistic
pattern extracted from a live LTE network. Then, radio link
quality and efficiency are computed. Finally, different PMs are
calculated by aggregating the previous measurements across
all points in the scenario. Only uplink is considered here.

Despite its simplicity, the simulator is designed to make
themost of available network statistics tomodel a livemacro-
cellular scenario. For this purpose, the simulator includes the
following features:

(i) Delimitation of forbidden areas (i.e., points where
users cannot be located) due to water resources by

1
(km)

2

Figure 6: Simulated LTE network.

coastline files in Keyhole Markup Language (KML)
format

(ii) Parameterization of antenna model on a cell basis
(maximum gain, horizontal/vertical beamwidth, etc.)
depending on vendor equipment

(iii) Initialization of cell load distribution across the sce-
nario with uplink utilization ratio (𝑈UL) derived from
counters in the network management system of a live
LTE network

(iv) Adjustment of spatial user distribution within a cell
on a distance ring basis from timing advance (TA)
distributions

(v) Tuning of propagation model parameters based on
the histogram of Reference Signal Received Power
(RSRP) measurements

A live scenario is simulated. The scenario consists of 129
LTE cells covering a wide metropolitan area. Cells location,
azimuth, antenna tilts, and uplink cell load are retrieved
from network configuration management data stored in the
operator network management system (NMS). In Figure 6,
cell locations and services areas are represented.

Main configuration parameters of the simulated scenario
are shown in Table 4. The rest of the simulation parameters
were previously shown in Table 1.



8 Mobile Information Systems

Table 4: Network parameters.

Parameters Settings
Carrier bandwidth 10MHz (50 PRBs)
Carrier frequency 2.1 GHz
Cell layout 44 eNBs (129 sectors)
Intersite distance 0.45–4.5 km
eNB antenna height 15–54m
eNB antenna tilt 0∘–13∘

Uplink cell load 5–19.2%

Three FPC parameter plans have been obtained under
different trade-off conditions. FPC plans are calculated for
𝑡 = 0 (a capacity oriented plan), 𝑡 = 1 (a coverage oriented
plan), and 𝑡 = 0.5 (a balanced trade-off of capacity-coverage).
Note that a FPC plan comprises 𝑃0,opt(𝑖) and 𝛼opt(𝑖) values for
every cell 𝑖 in the scenario. As a benchmark for the solution
comparison, different uniform FPC parameter settings (i.e.,
the same𝑃0 and 𝛼 value for all cells) have also been simulated.

On the other hand and regarding the grade of complexity
for simulations, three simulation configuration degrees are
executed in ascending order of realism. In the lowest step,
the simulator does not consider path-loss shadowing and
uniform user spatial distribution is applied. In the second
step, the simulator considers path-loss shadowing (𝜎 = 8 dB)
but still uses uniform user spatial distribution. Finally, in the
third step, both path-loss shadowing and nonuniform user
spatial distribution are considered. Here, it is worth noting
that user spatial configurations are obtained from network
realistic measurement.

To quantify solution performance, user-centric mea-
surements are used. Overall cell-average user throughput,
THavg(𝑖), as the average of THavg(𝑖) for all cells in the scenario,
is taken as a capacity indicator. Similarly, overall cell-edge
user throughput, THce(𝑖), as the average of THce(𝑖) for all cells
in the scenario, is taken as a coverage indicator.

5.2. Results. Results are analyzed by simulator complexity
and capacity/coverage trade-off first. Then, some comments
on the performance of uniform parameter settings and time
complexity are given.

5.2.1. Simulation Results with No Shadowing and Uniform
Spatial User Distribution. Figure 7 shows the performance of
the uniform FPC plans and trade-offs when no shadowing
and uniform user distribution are considered.This figure can
be considered as a basic case. Note that every plan is a point
in the figure.

In the case of the capacity trade-off approach (𝑡 = 0),
the proposed solution capacity (THavg(𝑖)

(cap) = 18180 kbps)
slightly outperforms the maximum capacity achieved by
any uniform FPC parameter settings. However, coverage
(THce(𝑖)

(cap) = 8951 kbps) is decreased by 7% with respect
to the maximum coverage achieved by benchmark curves.

For the balanced trade-off approach (𝑡 = 0.5), coverage
indicator (THce(𝑖)

(bal) = 10030 kbps) outperforms the best
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Figure 7: Simulation results, no shadowing, uniform traffic distri-
bution.

coverage obtained by benchmark curves by 4%, but capacity
decreases by 5.7% in comparison with the capacity approach.
This is due to the trade-off between capacity and coverage.

Similar to the balanced trade-off approach, in the cover-
age approach (𝑡 = 1), coverage (THce(𝑖)

(cov) = 9816 kbps)
outperforms the best coverage obtained by any uniform FPC
plan. Nonetheless, capacity is highly degraded (downgrade
of 29% compared to capacity approach) as better coverage
is obtained at low 𝑃0 values, where the distance between
optimal 𝑃0 for capacity and coverage is higher as explained
in Section 4.2.

As expected, balanced trade-off approach outperforms
all other approaches, because it considers both capacity and
coverage indicators for the construction of FPC plan.

5.2.2. Simulation Results with Shadowing and Uniform Spatial
User Distribution. Figure 8 shows similar information when
shadowing is included. The overall behavior is the same as
that behavior shown in the basic case, Figure 7, but coverage
values have decreased in all cases due to the inclusion of path-
loss shadowing feature.

For the capacity approach, THavg(𝑖)
(cap) = 17800 kbps,

performing as good as the best uniform plan. However,
THce(𝑖)

(cap) = 5729 kbps, which is 25% lower than the best
performance achieved by benchmark curves (THce(𝑖)

(max) =
7652 kbps).
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Figure 8: Simulation results with shadowing, uniform traffic distri-
bution.
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Figure 9: Simulation results with shadowing and nonuniform traffic
distribution.

When the balanced trade-off is considered, both coverage
and capacity are degraded. Thus, capacity and coverage indi-
cators are, respectively, 5.2% and 7.9% below the maximum
achieved by other methods.

Coverage approach reaches THce(𝑖)
(cov) = 7461 kbps,

degrading only by 2.5% compared to the maximum
achieved by other methods. However, capacity indicator
(THavg(𝑖)

(cov) = 12650 kbps) is degraded by 29.2% regarding
the maximum achieved by the capacity approach.

In this case, balanced trade-off approach is again the best
solution proposed by the method. However, capacity and
coverage values are below the maximum achieved by the
set of uniform configurations. Nonetheless, the performance
degradation remains below 8%.

5.2.3. Simulation Results with Shadowing and Nonuniform
Spatial User Distribution. Finally, Figure 9 shows perfor-
mance results including shadowing and nonuniform user
distribution. Again, a similar behavior is observed, but some
additional comments must be highlighted.

About the performance of capacity approach, capacity
indicator (THavg(𝑖)

(cap) = 16750 kbps) is slightly degraded
(0.71%) compared to the maximum achieved by all other
solutions. Nonetheless, the coverage indicator (THce(𝑖)

(cap) =
6708 kbps) is 19.33% below the maximum obtained by any
uniform FPC plan. The balanced trade-off approach expe-
riences a reduction of 4.7% and 1.57% for capacity and
coverage indicators, respectively, compared to the other
approaches. Regarding coverage approach, coverage indica-
tor (THce(𝑖)

(cov) = 8435 kbps) slightly outperforms (1.43%)
the best result achieved by any other solution. Nonetheless,
capacity indicator is degraded by 27.8% when compared to
the best capacity performance for any other FPC plan.

Note that Figure 9 reflects the most realistic situation.
Hence, performance results from the proposed FPC plans
(i.e., capacity, coverage, and balanced approaches) perform
similarly to the best uniform FPC plans. However, execution
timewhen getting FPCplanswith the proposedmethodology
is extremely decreased.

5.2.4. Uniform Parameter Settings. Figures 7, 8, and 9 show
the performance for different network-wide uniform FPC
settings. The impact of 𝑃0 changes on capacity and coverage
performance is the same as described in [30], and, hence, it is
not detailed in this work. However, some comments on LTE
network capacity and coverage regarding uniform 𝛼 settings
are outlined.

The different curves in those figures correspond to
different 𝛼 values. As expected by the analysis carried out
in Section 4.2, maximum capacity is not achieved for total
compensation, 𝛼 = 1. On the contrary, maximum capacity is
achieved for medium 𝛼 values (0.7–0.8). Regarding coverage
and similar to capacity, there is a trade-off in the best value
of 𝛼 for coverage. Another interesting behavior is observed
when 𝛼 decreases. In this situation, curves are narrower.
Higher and lower 𝑃0 configurations have a similar impact on
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capacity and coverage performance.This effect is produced by
the decrement in 𝑃(avg)0,opt -𝑃(ce)0,opt when decreasing 𝛼 described in
Section 4.2.

5.3. Execution Time. All tests have been run on an Intel�
Xeon© machine at 3.47GHz with 12GB of RAM. The exe-
cution time required to build curves from uniform FPC
plans (i.e., uniform 𝑃0 and 𝛼 settings) was 974.67 seconds on
average. The self-planning method proposed in this work for
calculating cell-individual FPCparameters took an average of
64.5 seconds (0.5 seconds per cell), which is a gain of 15 times.
However, if MLR models are used, execution time is almost
instantaneous, which is quite useful in self-planning tools.

It is also worth mentioning that a uniform FPC requires
resimulation of thewhole scenariowhen a new cell is added to
an existing (i.e., already planned) scenario. On the contrary,
the self-planning method proposed in this work only needs
to solve 1 + 𝑁neigh(𝑖) subproblems.

6. Conclusion

In this work, a very fast approach for the self-planning of FPC
parameters in LTE uplink has been proposed. The method
deals with irregular scenarios by dividing the large-scale
multivariable optimization problem into multiple simple
optimization problems, where a regular scenario is assumed
on a per-adjacency basis. In those simplified scenarios,
optimal FPC settings are calculated by an exhaustive search
method. Additionally, optimal solutions have been analyzed
and a set of regression equations have been given for the
estimation of optimal FPC settings and, hence, reducing com-
plexity and time execution. Finally, per-adjacency solutions
are aggregated by averaging them into one solution per cell in
the scenario. As a consequence, the proposed methodology
is able to cope with complex irregular scenarios at a very
low computational cost, which is very useful for self-planning
tools. Performance assessment has been carried out over a
system-level simulator implementing a real scenario. Results
show that the proposed solutions work reasonably well when
compared with uniform FPC plans designed by an exhaustive
search process. Capacity performance is degraded by 4.7%
and coverage performance by 1.57%. The main gain is in the
execution time, which allows this approach to be used in
frameworks where fast planning is required at a very low
computational cost.

The proposed FPC self-planning methodology can be
implemented as part of a centralized SON service.The system
would retrieve eNB needed information from the NMS
(location, azimuth, antenna tilt, uplink cell load, etc.). On the
one hand, the method would perform self-configuration of
every eNB in the network in the deployment stage. On the
other hand, the method would reconfigure FPC parameter
settings when a new eNB is added/removed from the network
during the operational stage.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work has been funded by the Spanish Ministry of
Economy andCompetitiveness (TEC2015-69982-R),Optimi-
Ericsson and Agencia IDEA (Consejeŕıa de Ciencia, Inno-
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