
Research Article
Security Analysis and Improvement of Fingerprint
Authentication for Smartphones

Young-Hoo Jo,1 Seong-Yun Jeon,2 Jong-Hyuk Im,2 and Mun-Kyu Lee2

1Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
2Department of Computer and Information Engineering, Inha University, Incheon 22212, Republic of Korea

Correspondence should be addressed to Mun-Kyu Lee; mklee@inha.ac.kr

Received 6 November 2015; Accepted 24 January 2016

Academic Editor: Seung Yang

Copyright © 2016 Young-Hoo Jo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Currently, an increasing number of smartphones are adopting fingerprint verification as a method to authenticate their users.
Fingerprint verification is not only used to unlock these smartphones, but also used in financial applications such as online payment.
Therefore, it is very crucial to secure the fingerprint verification mechanism for reliable services. In this paper, however, we identify
a few vulnerabilities in one of the currently deployed smartphones equipped with fingerprint verification service by analyzing the
service application. We demonstrate actual attacks via two proof-of-concept codes that exploit these vulnerabilities. By the first
attack, a malicious application can obtain the fingerprint image of the owner of the victimized smartphone through message-
based interprocess communication with the service application. In the second attack, an attacker can extract fingerprint features
by decoding a file containing them in encrypted form. We also suggest a few possible countermeasures to prevent these attacks.

1. Introduction

Recent advances in smartphone technologies enabled users
to do various tasks using their smartphones. These tasks
include not only simple ones such as playing mobile games
and surfing the web, but also more critical ones, in particular,
those dealing with private information and financial data.
Therefore, a reliable mechanism is required to verify the
identity of a person who tries to use the device. However, tra-
ditional secret knowledge-based solutions such as passwords,
numeric PINs, and pattern locks have security issues such as
password guessing attacks, brute-force attacks, and shoulder-
surfing attacks. Moreover, they also have usability issues
because a user must memorize some information and do a
cumbersome task for log-on such as typing a password and
drawing a pattern. In order to address these issues, fingerprint
recognition is now being used for many smartphones, for
example, iPhone 5s, Galaxy S5, and VEGA Secret Note. Fin-
gerprint recognition is used both for unlocking a smartphone
and for activating other security-critical functionalities in
the smartphone, for example, for approving transactions in
financial applications [1].

Therefore, it is very crucial to secure the fingerprint
recognition service from possible threats such as intercepting
a fingerprint image between an image sensor and a fingerprint
recognition application and stealing the fingerprint data
stored in a smartphone. Unfortunately, however, some of
the currently deployed devices do not seem sufficiently safe
against those threats. In this paper, we disclose the vulnera-
bilities in the fingerprint recognition service of VEGA Secret
Note by analyzing the service application and demonstrate
possible attacks against this service. (The VEGA series is
one of the earliest smartphones with fingerprint recognition
service, which is prior to recent popular ones such as
iPhone 5s and Galaxy S5 [2]. The vulnerabilities were found
on the device with Android 4.2.2 as of April, 2014. We
reported these two vulnerabilities to the vendor. The second
vulnerability was already addressed through a patch, and the
vendor commented that the first vulnerability will also be
addressed in the upcoming version.) VEGA Secret Note is an
Android-based smartphone with a Qualcomm Snapdragon
CPU (Krait 400), 3 GB RAM, and a 5.9-inch IPS touch
display. It is equipped with an FPC fingerprint sensor on its
back.

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2016, Article ID 8973828, 11 pages
http://dx.doi.org/10.1155/2016/8973828



2 Mobile Information Systems

Sensor Feature
extraction

Stored 
templates

Matcher?=1
2

3

4 6
7

5 8

Registration (enrollment) stages 
Verification (authentication) stages
Attack points

Yes/no

Figure 1: Generic structure of a biometric verification system and possible attack points (adopted from [4, 5]).

Our first attack is to enable a malicious application to
acquire the fingerprint image of the owner of the victimized
smartphone by accessing the memory space that the finger-
print recognition service application uses to temporarily store
the image. In a nutshell, this attack exploits the design flaw
of the service application which violates the principle of least
privilege for access control [3]. To be precise, when a client
application requests the service application to do fingerprint
authentication, the service application activates a component
which deals with the image of a scanned fingerprint. This
component has been ill-designed so that it calls back an
event handler in the client application with a reference to
the memory location containing this image. As a result, the
malicious client application can obtain the bitmap image by
letting the component be activated and handling the event
raised by that component.

Our second attack is to extract a stored template from
the nonvolatilememory and restore fingerprint feature points
by decoding the template. By identifying and analyzing
a fingerprint service application on the target device, we
identified the location of the stored template. In addition,
we discovered that the template was encrypted, but the
same key and initial vector (IV) are hard-coded and are the
same for all devices. This design results in a vulnerability
that a malicious user may be successfully authenticated if
she/he overwrites a template by another template copied from
his/her own device. In addition, by analyzing the structure of
the decrypted template file, we were able to restore all feature
points constituting the fingerprint template.This implies that
a carefully forged template according to the file structure also
may pass the authentication test.

Although we concentrated on a specific device in con-
ducting our experiments, the technical flaws we have found
in this device are a common trap that developers may fall
into. Therefore, we suggest a few possible countermeasures
to mitigate those vulnerabilities. We expect that the findings
we obtained through our analysis may be used as a general
guideline to design a secure biometric verification service on
smartphones.

The remainder of this paper is organized as follows.
Section 2 provides the preliminary information about the

organization of a generic biometric system, a standard
format for a fingerprint template, and the message-based
communication mechanism between Android processes. In
Section 3, two vulnerabilities and their possible consequences
are explained in detail. A few possible countermeasures to
these vulnerabilities are discussed in Section 4. Finally, we
conclude the paper in Section 5.

2. Preliminaries

2.1. Threat Model against Biometric Verification. A generic
biometric system can be cast in the framework of a pattern
recognition system [4]. Figure 1, which was adopted from
[4, 5], summarizes the typical stages in this generic system.
A biometric system has two main procedures: registration
(enrollment) of biometric data and verification (authenti-
cation) of biometric data, which are represented as blue
dotted lines and green solid lines in Figure 1, respectively.The
first stage of registration is to acquire the original biometric
signal (typically, an image) using a sensor. The next stage
is to extract invariant features from this original signal to
construct a robust representation for biometric data that can
uniquely determine an individual. The extracted features are
stored as a form of a template. In the case of fingerprint
recognition, a template contains fingerprint minutiae points.
A minutia point is a peculiar point in a fingerprint image,
for example, where a ridge either begins or divides into two
ridges. A typical fingerprint may have tens of such points,
and those points forming a template uniquely determine the
characteristic of a specific fingerprint. Current fingerprint
recognition systems are very accurate; in particular, they can
provide a false rejection rate of 0.01% at a false acceptance rate
of 0.1% [6].

The first and second stages of biometric verification are
similar to those of registration. However, instead of storing
the extracted features, the system runs a matching algorithm
to compare the features derived from the current input
biometric with those of the stored template. The matcher
makes a decision, that is, whether to accept the user or not,
based on the matching score.



Mobile Information Systems 3

Figure 1 also specifies eight places in the generic biometric
systemwhere attacksmay occur.These points are represented
as red lines in the figure and correspond to each item in the
following list. This list is an extended version of the lists in
[4, 5]. By a passive attacker wemean an attacker who steals or
eavesdrops the secret information about the biometrics but
who does not modify anything. On the contrary, an active
attacker is an attacker who modifies the original biometric
signal, template, or matching result to thwart a biometric
verification service.

(1) A passive attacker may steal the original biometric
signal by accessing the memory space the sensor
uses to temporarily store this signal. In addition,
fake biometrics such as a fake fingerprint, a copied
signature, and a face mask can be presented for an
active attacker to impersonate a legitimate user.

(2) A passive attacker may eavesdrop the original bio-
metric signal sent from the sensor and store it in
its own storage for later use. On the other hand, an
active attackermay replay previously stored biometric
signals bypassing the sensor. As a result, the attacker
can impersonate the owner of that biometric. Note
that a passive attacker may use the eavesdropped data
to play a role of an active attacker.

(3) An active attackermay override the feature extraction
module so that it produces only preselected features,
ignoring the input from the sensor. A passive attacker
may mount a backdoor which sends the extracted
features back to him/her.

(4) The communication channel from the feature extrac-
tion module to either the template storage or the
matcher may be tapped by a passive attacker. An
active attacker may modify the packets and let the
transmitted template be replaced with his/her own
one. The purposes of these attacks are the same as
those of the above type 3 attacks.

(5) An active attacker may corrupt the matcher so that it
produces preselected matching scores without refer-
ence to the actual matching algorithm.

(6) A passive attacker may steal the stored templates, and
an active attacker may modify the stored templates to
force the system to authorize a fraudulent user or deny
service to a legitimate user.

(7) Thedata sent from the template storage to thematcher
may be intercepted by a passive attacker or modified
by an active attacker. The results of these attacks are
the same as those of the above type 6 attacks.

(8) The attacker may override the final decision with
his/her intended result.

In this paper, we will present two passive attacks against
the fingerprint recognition system of a VEGA Secret Note
smartphone. Our first attack was to acquire the original
biometric signal by injecting a malicious code independent
of the original biometric application program and accessing
the memory space where the biometric signal was stored.

Our second attack was to directly access the stored template,
not passing through the biometric application program.
Therefore, the first attack can be viewed as a passive type 1
or type 2 attack, and the second attack can be viewed as a
passive type 6 attack. We remark that even though we only
demonstrate passive attacks, the output of our attacks may
also be immediately used for active attacks. Although type 3,
type 5, and type 8 attacks need an attacker’s modification of
the original biometric application, the effects of these attacks
are the same as those of our attacks. Thus, we did not try to
mount type 3, type 5, and type 8 attacks. In addition, type 4
and type 7 attacks were not required either, because stored
templates were already manipulated by our type 6 attack.

2.2. Biometric Verification Using Fingerprint Minutiae. Many
devices that deal with fingerprints, including our target
device, use the fingerprintminutia formats based on ISO/IEC
19794-2 [7] and ANSI INCITS 378 [8]. According to these
standards, four main characteristics of minutiae are consid-
ered. These four characteristics are the 𝑥 and 𝑦 coordinates
of the minutia on the original fingerprint image, the angle
(𝜃) of the ridge corresponding to this minutia point, and
ridge types. Although there aremany distinct ridge types, two
major types among them, that is, a ridge ending (also known
as a ridge termination) and a ridge bifurcation, are frequently
used in most settings [7–10], where a ridge ending stands for
a point where a ridge suddenly ends and a ridge bifurcation
is a point where a ridge divides into two ridges. See Figure 1
in [11] for the concrete examples of these two ridge types.

For biometric verification, a matcher compares the fea-
tures extracted from the current sensor image with the stored
template which is composed of multiple minutia points. The
comparison is done by comparing (𝑥, 𝑦, 𝜃) of each fingerprint
minutia point in the stored template with those from the
sensor. A matching score is increased whenever each point
matches. If the score is larger than a predefined threshold, the
user is permitted to access the target device (see Figure 2).

2.3. Message-Based Communication between Processes in
Android. Android supports messages for interprocess com-
munication (IPC) [12]. It enables an application to share an
object with another application by sending a reference to the
object to the target application. Figure 3 shows an example
procedure where two applications communicate with each
other through messages. As shown in this figure, a typical
communication between two applications is done according
to the following scenario. Throughout the paper, an item
written in typewriter font represents a name of a class, an
object, or their field.

(1) First, application A sends an intent to initiate a
communication with application B, where an intent
is a kind of signal to abstractly describe an oper-
ation to be performed [13]. An intent contains a
parceled Messenger object which is a reference to
the data which A wants to share. In addition, the
intent specifies which component in B should use
the parceled object and what this component should
do with this object. That is, the application initiating



4 Mobile Information Systems

Fingerprint from
sensor

Minutiae extractor Extracted
minutiae Matcher database

Enrollment

Match result

𝜃𝜃 yy

xx

Figure 2: Matching of fingerprints (modified from Box 1 in [6]).

{
act: AAA,
name: BBB,
data: CCC

}

Smartphone

Application B Application A

Intent

① Messenger
② Prepare Message

③ Call Messenger.send
④ Handler

Hold the reference of Messenger
object from A and prepare Message

(the data to be returned)

Create a Messenger object and
define handleMessage

Send a copy of Message object
Call handleMessage
with Message object

Figure 3: Message-based communication between Android processes.

the communication can designate a specific action
the target application should do if only this action
is defined in one of the components of the target
application.

(2) While the specified component in B is being executed
using the parceled object, this component may pre-
pare the data to be returned to A, if required.

(3) The component then calls a publicmethod of parceled
object, Messenger.send, after setting the data to be
returned, that is, a Message object, as its parameter.
Among the various fields defined in a Message object
are the what and obj fields. The what field specifies
what kind of this message is and the obj field stands
for data itself.

(4) Next, the Handler in the Messenger object, which
has been used by A to initiate the communication,
receives this object, and the handleMessagemethod
of the Handler utilizes the data contained in the
Message object.

3. Vulnerability Analysis

The fingerprint recognition service application on a VEGA
Secret Note supports three main functionalities, registration,
verification, and deletion.

(i) Registration. To register a fingerprint, a user is asked
to swipe a fingerprint over the fingerprint sensor. For high
reliability, the user should swipe his/her fingerprint multiple
times. At the moment when the user’s fingerprint is scanned,
the scanned fingerprint image is displayed on the screen. See
Figure 4.

(ii) Verification. The verification operation is usually used to
unlock the smartphone. In this case, the user’s task is just to
scan his/her finger over the fingerprint sensor on the locked
smartphone. The device recognizes the scanned fingerprint
and decides whether to permit this user’s access based on
the matching result. In addition, other applications may
request the fingerprint recognition application to activate
the verification functionality to verify if the person who
attempts to use the application is the legitimate owner of this
smartphone.



Mobile Information Systems 5

Figure 4: The example procedure for fingerprint registration on VEGA Secret Note.

(iii) Deletion. It is also possible to reset the registered finger-
print by conducting a deletion operation. After unlocking the
smartphone by scanning the correct fingerprint, a user may
delete the stored fingerprint by scanning his/her fingerprint
once again. If this fingerprint matches the registered one, it is
deleted from the database.

Because a scanned fingerprint image is displayed on
the screen when a user’s fingerprint is scanned over the
fingerprint sensor, it should be the case that an Android
Bitmap object in the View object related to the finger-
print registration interface is loaded on memory. Therefore,
the original fingerprint image may be extracted if we can
access the memory location that contains the corresponding
Bitmap object. Our first attack is to find a way to access the
fingerprint image on memory.

On the other hand, a registered fingerprint should be
stored somewhere in nonvolatile memory storage for later
use in fingerprint verification. Therefore, we may try to find
the location of the stored template and restore the original
minutia points. Our second attack is to achieve this objective.

3.1. Reverse Engineering of Fingerprint Service Mechanism.
First of all, it is important to know where the binary
code of the fingerprint recognition service application is
located in flash memory. To find this location, we exam-
ined the list of running applications when the fingerprint
service application is running as shown in Figure 5. To
double-check, we also examined the result of the execu-
tion of a ps command through Android Debug Bridge
(adb) [14]. As a result, we successfully identified applica-
tion com.pantech.app.fingerscan. The next step was
to extract the Android package file of this application for
analysis. To this end, we ran an adb shell on a PC and tried to
extract the package file using the backup functionality of adb,
that is, by executing adb backup -apk com.pantech.app
.fingerscan. After acquiring root user permission through

rooting, we analyzed the package file. We remark that the
root user permission is only required for the analysis of the
application package file, but not all actual attacks such as the
fingerprint disclosure attack explained in Section 3.2 require
this permission.

Next, by analyzing the package file using a few tools
such as dex2jar 0.0.9.15 and jd-gui 0.3.7, we found out
that this application uses JNI (Java Native Interface) to use
the low-level functions implemented in a C++ library for
fingerprint management, and we identified the path of this
library loaded by the application. As a result, we successfully
extracted anAndroid framework file, framework.odex (and
its corresponding framework.jar), and a shared library
file, libfpc1080 jni.so. We used framework.odex
to understand the interaction between class.dex and
libfpc1080 jni.so. For the analysis of framework.odex,
we used a disassembler, baksmali 2.0.3.

The above implementation stack is summarized in
Figure 6. According to our analysis, the library file,
libfpc1080 jni.so, which is an ARM-based dynamic
linking library, contains the core routines for fingerprint
authentication, in particular, fingerprint image processing.
Therefore, in order to find attack vectors against fingerprint
authentication service, we traced a source code decompiled
from libfpc1080 jni.so line by line. The detailed
operation mechanism of this library will be explained in
Sections 3.2 and 3.3.

3.2. Acquisition of Original Fingerprint Image through a Mali-
cious Application. As briefly explained in the introductory
part of this section, a scanned fingerprint image is displayed
on the screen when a user’s fingerprint is scanned.Therefore,
an Android graphic data object such as a Bitmap object
should be generated to show a fingerprint image while the
fingerprint was being enrolled. We tried to find the code
segments referring to this object in the decompiled source
code, and, eventually, we successfully identified the following



6 Mobile Information Systems

Figure 5: List of Android applications which are running currently.

Swipe sensor

Device driver

Java Native Interface

Android framework

Application
(com.pantech.app.fingerscan)

(framework.jar)

(libfpc1080_jni.so)

(/dev/fpc1080)

Figure 6: Implementation stack of fingerprint recognition service in VEGA Secret Note (the figure of a smartphone was adopted from [15]).

three locations, (1) setting up a View object for the fingerprint
image during fingerprint registration; (2) getting a fingerprint
image from the sensor during both fingerprint registration
and verification; and (3) responding to an authentication
request from an external application. Note that, in the
last case, the external application may directly handle the
Bitmap object corresponding to the fingerprint image if the
response from the service application includes this object.
This finding motivated us to analyze the communication

procedure between the service application and the external
client application requesting this service.

Figure 7 shows the analyzed result for the organization
of the fingerprint authentication service in VEGA Secret
Note. As shown in this figure, fingerprint authentication is
conducted as follows.

(1) First, a client application A who wishes to use
the fingerprint authentication service sends an



Mobile Information Systems 7

{
act: verification 
or cancel,
name: BTPService,
data: reference of
Messenger
}

VEGA Secret Note
com.pantech.app.fingerscan

(BTPService component)
Client application

Intent

① Messenger② Sensor on/off

③ Scan fingerprint and verify

④ Handler

Turn sensor on for verification.
Keep it on until it receives

a cancel request
Create a Messenger object and

define handleMessage

Notify Handler of every event with
Message that sometimes contains

Bitmap object

Call handleMessage
with Message object

FINGER_PRESENT

FINGER_LEAVE

FINGER_SCANNING

FINGER_SCANNED

PROCESS

VERIFY

Figure 7: Fingerprint authentication service in VEGA Secret Note.

Intent object to initiate a communication with
the fingerprint recognition service application, com
.pantech.app.fingerscan. For this purpose,
A does not have any data to share. The
Intent contains the name of the target
component, BTPService, and its requested action,
btp.intent.action.verification. This request
allows A to occupy the fingerprint sensor and prevent
another application from using the fingerprint
authentication service until btp.intent.action
.cancel is sent by A.

(2) While BTPService in com.pantech.app.finger-
scan is being executed, it turns on the fingerprint
sensor and asks the user to scan his/her fingerprint.
A Bitmap object is defined to contain the scanned
fingerprint image.

(3) From the moment that a finger contacts the sensor,
BTPService notifies A of every event that occurs,
which can be one of the following seven events:
FINGER PRESENT (the finger touches the sensor),
FINGER SCANNING (the sensor is scanning the fin-
gerprint), FINGER SCANNED (the sensor completed a
scan), FINGER LEAVE (the finger leaves the sensor),
PROCESS (the fingerprint verification operation is
being done), VERIFY (the fingerprint verification
operation has been completed), and IGNORE NOTIFY
(it seems that this event is not actually used).The pro-
cedure to send these notices is as follows. Whenever
BTPService needs to send a notice, it first creates a
new Message object and sets the what field in this
Message to one of the constants corresponding to the
current state of the sensor, which is defined in the
Android framework file, framework.odex. When

the event is FINGER SCANNED, BTPService sets the
obj field in Message to the Bitmap object containing
the scanned fingerprint image. Finally, BTPService
calls the function Messenger.send defined by A
after setting the parameter to its own Message.

(4) The Handler in Messenger receives Message
from BTPService, and then A can utilize the
Bitmap object in Message in the way that its own
Handler.handleMessage defines.

Our task is now to design a proof-of-concept (PoC)
appliction that plays A’s role. In addition, this PoC
application should contain an event handler function,
Handler.handleMessage, so that it may export the
Bitmap object to a standard image file. To achieve this
objective, we first analyzed the bitmap configuration of the
object and found out that it was Android.Bitmap.Config
.ALPHA 8. This constant is defined in the Android.Bitmap
.Config class and it implies that pixels are stored as
a single translucency channel. Next, we tried to use
Bitmap.compress which is a typical method to export
a bitmap image from memory to a file. Unfortunately,
however, the Bitmap.compressmethod did not support the
exportation of an image configured with Android.Bitmap
.Config.ALPHA 8. To solve this problem, we converted the
image into a 32-bit color image using the Android.Bitmap
.Config.ARGB 8888 configuration. However, because the
original fingerprint is a grey-scale image, we set 𝑅 = 0,𝐺 = 0,
and 𝐵 = 0, keeping the original alpha value unchanged.
Finally, we succeeded in generating a png-format file
containing the scanned fingerprint image.

The above attack vector was implemented in our PoC
application. Figure 8 demonstrates its execution result. We
call this attack a fingerprint disclosure attack. It should be



8 Mobile Information Systems

FingerPrint_14133
87071424.png

FingerPrint_14133
87073798.png

FingerPrint_14133
87077569.png

FingerPrint_14133
87079769.png

FingerPrint_14133
87084398.png

FingerPrint_14133
87086938.png

FingerPrint_14133
87090097.png

FingerPrint_14133
87094503.png

FingerPrint_14133
87097447.png

Figure 8: PoC that stores scanned images to files.

noted that this PoC application may be normally installed if
only the smartphone owner accepts this application’s request
for a few application-level permissions. In other words, the
above attack does not require any privilege such as root user
permission.

The fingerprint disclosure attack can be viewed as a
passive type 1 or type 2 attack explained in Section 2.1, though
the actual extraction of the full image is done at the moment
when the matcher makes the decision for a matching result.
As the next step of this attack, an attacker may forge a fake
fingerprint with the obtained fingerprint image to mount
an attack fooling an image sensor, that is, an active type
1 attack, or to bypass the image sensor by injecting the
disclosed image, that is, an active type 2 attack. Moreover,
this fake fingerprint may be used for other environments
where a fingerprint is used for authentication. For example,
an attacker may unlock the victim’s doorlock with a fake
fingerprint obtained via a fingerprint disclosure attack against
the victim’s smartphone.

3.3. Extraction of Fingerprint Minutiae from an Encrypted
Fingerprint Template. A registered fingerprint should be
stored somewhere in nonvolatile memory storage for later
use in fingerprint verification. If the fingerprint template
is stored as a readable data file, we may try to analyze its
structure and get minutiae points. Therefore, our second
attack began with finding the location of the stored template
file. As explained in Section 3.1, we analyzed the fingerprint
application and identified a few essential functions in the
library file libfpc1080 jni.so dedicated for fingerprint
matching. In addition, by analyzing the code segment where
the file storing the fingerprint data is accessed, we found
out that the name and path of this file were hard-coded
irrespective of a specific device.The file name was csfp.tpl.

According to our analysis, the file csfp.tpl starts with a
48-byte header and the remainder is a main body containing
fingerprint data. To be precise, as shown in Figure 9, the
header contains a 4-byte identifier (signature) which stands
for CSFP, a 12-byte field which stands for file version, a 4-byte
field which stands for file size, a 16-byte field which stands for

MD5 checksum, and some additional data.This structure was
found by tracing the header updating function in the library
file.

The main body starting at the 49th byte is not in a
readable form, but it is encrypted. By analyzing the point
in libfpc1080 jni.so when a user’s fingerprint template
data is stored in csfp.tpl, we could decode the encryption
logic. According to our analysis, the encryption of a template
is performed using the CBC mode of AES [16, 17] with a
256-bit key and a 128-bit IV. We also found out that most
routines used for this encryption procedure resemble those
of OpenSSL [18], which was helpful for our analysis. The
key and IV are generated using very simple for statements
without involving any randomness. As a result, the key and
IV are fixed as 0x00010203 . . . 1F and 0x00010203 . . . 0F,
respectively, and all devices use the same key and IV.

We remark that the fact that all devices use the same
key may be a critical issue. If the csfp.tpl in device A is
copied and overwritten to another template file with the same
name in another device B, then B will accept the fingerprint
of the owner of A. This implies that virtually any attacker
may bypass the fingerprint authentication. We will call this
attack a template replacement attack, which may be regarded
as an active type 6 attack according to the taxonomy in
Section 2.1. Below is a practical scenario where this attack
may be a potential threat. If an attacker has a temporary access
to B when B is temporarily unattended (e.g., the owner of
B may go to a restroom leaving his/her smartphone on the
desk.), the attacker may inject his/her own csfp.tpl into
B after rooting B. The attacker then may execute a financial
transaction which is approved with fingerprint verification,
for example, a payment on PayPal [1]. If time is sufficient,
the attacker may recover the original template file and unroot
B, which prevents the owner of B from recognizing what
happened with his/her device.

Because the encryption mechanism and its key informa-
tion have been analyzed, our next step was to decrypt the
encrypted template file and obtain the information about
the original template, which we call a template restoration
attack. We wrote a C code to perform AES decryption using



Mobile Information Systems 9

① ②

③
④

③

④

①

②

0x00 ∼ 0x03: file type (CSFP)
0x04 ∼ 0x0F: file version
0x10 ∼ 0x13: file size
0x1C ∼ 0x2B: MD5 checksum of body

Figure 9: Header format of csfp.tpl.

Figure 10: Decrypted content of csfp.tpl (extended from Figure 1 in [19]).

Table 1: Size andmeaning of each field in aminutia in the decrypted
csfp.tpl [19].

Index Size (B) Meaning
0x00 4 Node (minutia) id
0x04 2 𝑥 coordinate
0x06 2 𝑦 coordinate
0x08 4 Duplicate count (weight)†

0x0c 2 𝜃 (0 ≤ 𝜃 ≤ 47)
0x0e 32 Additional information of node
0x2e 1 Minutia type
0x2f 4 (Distance to next minutia in bytes)/16
†A weight is the number of occurrences of the same minutia point when a
fingerprint is scanned multiple times to enhance accuracy.

the procedures provided by OpenSSL [18]. For decryption,
we used the fixed IV vector and key revealed in the above
analysis. This C code reads the csfp.tpl as input and
outputs the decrypted data. An example result is shown in
Figure 10. At a glance, it does not seem to be feasible to
identify the meaningful fields such as 𝑥, 𝑦, and 𝜃 and ridge
types from the decoded binary data in Figure 10. However,
we could identify 𝑥 and 𝑦 coordinates by analyzing the
code segments in libfpc1080 jni.so which refer to the
coordinates. In addition, we could identify 𝜃 by analyzing
the code segment for rotation. According to our analysis, 𝜃
was represented in a metric system where a full rotation is
defined as an integer, 48. In Figure 10, the highlighted region,
which is 51 bytes long, stands for a single minutia point. The
meaning of each field constituting thisminutia is summarized
in Table 1.

We were able to restore each and every minutia point
in the original fingerprint template from the encrypted file,
csfp.tpl, by using our PoC code. This result is shown in
Figure 11. In the left-hand part of this figure, we enumerated

restored points. These points can be graphically expressed
using the convention in the literature. The result is presented
in the right-hand part of Figure 11.

The restored template may be used to reconstruct the
original fingerprint image [9, 20]. The reconstructed image
can be used to forge a fake fingerprint to fool an image
sensor. Moreover, the reconstructed image can be used for
the samepurposes as those of the fingerprint disclosure attack
in Section 3.2, for example, to unlock a door. In some sense,
however, the reconstruction through a template restoration
attack may be a more severe threat because there is no need
to execute a malicious application and to wait until the user
scans his/her fingerprint.

4. Discussion on Countermeasures

The reason why our fingerprint disclosure attack was suc-
cessful was that com.pantech.app.fingerscan has a
component which provides the client application (the mali-
cious application, in our case) with the bitmap image of a
fingerprint. Because fingerprint recognition service should
be available to client applications, it seems inevitable to
allow these applications to call some component provid-
ing fingerprint recognition functionalities. However, this
component should be designed so that it returns only the
result of fingerprint authentication, not the original image
itself. Therefore, we suggest that the BTPService compo-
nent should be replaced with such a new component. We
also remark that a customized permission com.pantech
.fingerprint.security for fingerscan recognition has
already been defined in the manifest in VEGA Secret Note. If
an external application obtains this permission, it can access
the fingerprint recognition service including the original
fingerprint image, whose property was used by our PoC
program. Therefore, we suggest that the permissions for
the fingerprint recognition service should be subdivided



10 Mobile Information Systems

(a) (b)

Figure 11: Restored minutiae points and their graphical representation using 𝑥, 𝑦, and 𝜃 (reproduction of Figure 2 in [19]).

into several ones and the permission to access the original
fingerprint image should be selectively given.

Regarding the template replacement attack, using the
same key and IV vector on all devices is not recommended
because an attacker can thwart the authentication test by
overwriting the template file in the target device with
that extracted from another device. Therefore, we suggest
that a distinct key and a distinct IV should be used for
each device. Then, even the same template will be trans-
formed into a distinct ciphertext in each device, which
implies that simply overwriting a template file does not
work. For automatic generation of these device-dependent
values, hardware characteristics such as a processor iden-
tifier could be used. For example, ARM Cortex-A series
including Cortex-A7 processor embedded in Qualcomm
Snapdragon CPU of VEGA Secret Note provide the device
ID number in the Primary part number field in the
Main ID register (MIDR) [21]. However, this patch does
not completely solve the problem, given that the key gener-
ation and encryption procedures are easily recognizable by
reverse engineering the library file. Thus, an attacker can still
mount a template restoration attack that we demonstrated in
Section 3.3, even if she/he cannot use the same template file.
That is, a forged csfp.tpl file encrypted using the key of the
target device and the minutiae points from a source device
will let the owner of the source device be authenticated by the
target device. Therefore, it would be desirable to design a fin-
gerprint recognition procedure so that an extracted template
should be useless for other devices even after being properly
decrypted. To achieve this goal, cancelable fingerprints [10,
22]may be adopted. By using a noninvertible transformbased
on device-dependent parameters, an original template may
be transformed into a new template before encryption. This

transform can be viewed as a kind of error-tolerant one-
way hash. Then, the comparison of templates for fingerprint
verification is done over a transformed domain as in the case
of traditional password authentication where passwords are
compared over the hashed domain. Even after an attacker
extracts the transformed template, the information about
the original minutiae points is protected thanks to the one-
way property of the noninvertible transform. This approach
prevents a template restoration attack, though it cannot
prevent a fake template synthesized according to the rules
reverse-engineered from the target device. Therefore, the
logic to generate a key and an IV vector should be obfuscated
and made hard to be analyzed. For this purpose, we may use
the well-known off-the-shelf obfuscation tools.

We may consider a more essential solution including
hardware-based isolation technologies such as ARM Trust-
Zone [23].These techniquesmight be adopted for secure stor-
age of fingerprint data and isolated execution of fingerprint
recognition service.

We finally remark that there is an automated tool to
analyze the cryptographic misuse in Android mobile appli-
cations [24]. This system only supports the analysis of Dalvik
bytecodes, but applications such as our target application that
invoke cryptographic primitives from native code cannot be
analyzed.

5. Conclusion

By reverse engineering a fingerprint recognition service
application, we have identified a few vulnerabilities in the
fingerprint recognition service of VEGA Secret Note and
demonstrated actual attacks against this service. The techni-
cal flaws we have found in this device are a common trap



Mobile Information Systems 11

that developers may fall into. To mitigate these vulnerabil-
ities, we suggested possible countermeasures which may be
implemented using well-known techniques in the literature.
We expect that the findings we obtained through our analysis
may be used as a general guideline to design a secure
biometric verification service on smartphones. However, the
proposed countermeasures cannot prevent all attacks, for
example, a fake template synthesized using the reverse-
engineered rules and keys of the target device. Therefore,
it would be an important future research issue to develop
a more robust countermeasure. In addition, it would be a
good research issue to verify whether other smartphones
such as Galaxy series and iPhones equipped with fingerprint
recognition service are vulnerable or not to the attacks
described in this paper.

Disclosure

Most of this research was done when Young-Hoo Jo was
a student in Inha University. A preliminary version of this
paper was presented at FutureTech 2015 [19].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research was supported by Basic Science Research
Program through theNational Research Foundation of Korea
(NRF) funded by the Ministry of Education (Grant no.
2014R1A1A2058514).

References

[1] PayPal, “Pay faster with your fingerprint,” 2014, https://www
.paypal-pages.com/samsunggalaxys5/us/index.html.

[2] Pantech,“PantechunveilsVEGALTE-A,world’sfirstLTE-Awith
fingerprint recognition and rear touch,” 2013, http://www.pan-
tech.co.kr/en/board/reportBoardView.do?seq=5870&bbsID=
report&ulcd=KO.

[3] M. Bishop, Computer Security: Art and Science, Addison-
Wesley, Boston, Mass, USA, 2003.

[4] N. K. Ratha, J. H. Connell, and R.M. Bolle, “Enhancing security
and privacy in biometrics-based authentication systems,” IBM
Systems Journal, vol. 40, no. 3, pp. 614–634, 2001.

[5] A. K. Jain, K. Nandakumar, and A. Nagar, “Biometric template
security,” EURASIP Journal on Advances in Signal Processing,
vol. 2008, Article ID 579416, 17 pages, 2008.

[6] A. K. Jain, “Technology: biometric recognition,” Nature, vol.
449, no. 7158, pp. 38–40, 2007.

[7] ISO/IEC, “Information technology—biometric data inter-
change formats—part 2: finger minutiae data,” ISO/IEC Inter-
national Standard 19794-2, 2011.

[8] ANSI and INCITS, “AmericanNational Statandard for informa-
tion technology—finger minutiae format for data interchange,”
ANSI INCITS 378-2009, 2009.

[9] R. Cappelli, A. Lumini, D. Maio, and D. Maltoni, “Fingerprint
image reconstruction from standard templates,” IEEE Transac-
tions on Pattern Analysis andMachine Intelligence, vol. 29, no. 9,
pp. 1489–1503, 2007.

[10] N. K. Ratha, S. Chikkerur, J. H. Connell, and R. M. Bolle, “Gen-
erating cancelable fingerprint templates,” IEEE Transactions on
Pattern Analysis andMachine Intelligence, vol. 29, no. 4, pp. 561–
572, 2007.

[11] T.-Y. Jea and V. Govindaraju, “A minutia-based partial finger-
print recognition system,” Pattern Recognition, vol. 38, no. 10,
pp. 1672–1684, 2005.

[12] Android Developers, android.os.Messenger, 2014, http://devel-
oper.android.com/reference/android/os/Messenger.html.

[13] Android Developers, android.content.Intent, 2014, http://
developer.android.com/reference/android/content/Intent.html.

[14] Android Debug Bridge, 2014, http://developer.android.com/
tools/help/adb.html.

[15] Pantech VEGA Service, 2014, http://www.pantechservice.co.kr.
[16] National Institute of Standards and Technology, Recommenda-

tion for Block Cipher Modes of Operation, NIST Special Publica-
tion 800-38A, National Institute of Standards and Technology,
Gaithersburg, Md, USA, 2001.

[17] NIST Federal Information Processing Standards Publication
197, Advanced Encryption Standard (AES), 2001.

[18] OpenSSL, “The Open Source Toolkit for SSL/TLS,” 2014,
http://www.openssl.org/.

[19] Y.-H. Jo, S.-Y. Jeon, J.-H. Im, and M.-K. Lee, “Vulnerability
analysis on smartphone fingerprint templates,” in Advanced
Multimedia and Ubiquitous Engineering, vol. 354 of Lecture
Notes in Electrical Engineering, pp. 71–77, Springer, Berlin,
Germany, 2016.

[20] J. Feng and A. K. Jain, “Fingerprint reconstruction: from
minutiae to phase,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 33, no. 2, pp. 209–223, 2011.

[21] ARM,Cortex-A7MPCore Technical ReferenceManual, Revision
r0p3, 2012.

[22] D. Moon, J.-H. Yoo, and M.-K. Lee, “Improved cancelable fin-
gerprint templates usingminutiae-based functional transform,”
Security and Communication Networks, vol. 7, no. 10, pp. 1543–
1551, 2014.

[23] ARM, “TrustZone,” 2014, http://www.arm.com/products/proc-
essors/technologies/trustzone/index.php.

[24] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An
empirical study of cryptographic misuse in Android appli-
cations,” in Proceedings of the ACM SIGSAC Conference on
Computer & Communications Security (CCS ’13), pp. 73–83,
ACM, Berlin, Germany, November 2013.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


