
Research Article
An Efficient and Packing-Resilient Two-Phase Android Cloned
Application Detection Approach

Fang Lyu, Yaping Lin, and Junfeng Yang

College of Computer Science and Electronic Engineering, Hunan University, Changsha, China

Correspondence should be addressed to Yaping Lin; yplin@hnu.edu.cn

Received 24 March 2017; Accepted 23 August 2017; Published 10 October 2017

Academic Editor: Salvatore Carta

Copyright © 2017 Fang Lyu et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The huge benefit of mobile application industry has attracted a large number of developers and attendant attackers. Application
repackaging provides help for the distribution of most Android malware. It is a serious threat to the entire Android ecosystem,
as it not only compromises the security and privacy of the app users but also plunders app developers’ income. Although massive
approaches have been proposed to address this issue, plagiarists try to fight back through packing theirmalicious code with the help
of commercial packers. Previous works either do not consider the packing issue or rely on time-consuming computations, which
are not scalable for large-scale real-world scenario. In this paper, we propose FUIDroid, a novel two-phase app clones detection
system that can detect the packed cloned app. FUIDroid includes a function-based fast selection phase to quickly select suspicious
apps by analyzing apps’ description and a further UI-based accurate detection phase to refine the detection result. We evaluate our
system on two sets of apps. The result from experiment on 320 packed samples demonstrates that FUIDroid is resilient to packed
apps. The evaluation on more than 150,000 real-world apps shows the efficiency of FUIDroid in large-scale scenario.

1. Introduction

As Android grows into the most popular mobile OS by
globalmarket share, Android-targeted attacks continue rising
in both number and complexity [1]. More than 85% of
Android malware rely on application repackaging to spread
to a large number of genuine users [2]. In this paper, we
define repackaged apps (a.k.a., cloned apps) as applications
that impersonate a genuine app, by slight modifications to
the genuine one (e.g., crack paid apps to bypass payment
function, modify the advertisement libraries, or even insert
various malicious functions) in a way that the cloned app still
looks and feels like the original one. By “copying” the user
interface (UI for short) of a genuine app, cloned app can easily
target novice users that gravitate towards the popularity of the
genuine application.

App repackaging now is becoming one of themost serious
threats to the whole Android ecosystem, which seriously
violates the intellectual property and profit of the legal devel-
opers. Moreover, the cloned app that carries malicious code
may even reveal users’ privacy and threaten their property
security.

To address this imminent issue, previous studies have
proposed various approaches to detect the repackaged apps.
These approaches can be divided into two categories: code-
based techniques [3–8] and UI-based techniques [9–17].
Code-based methods focus on detecting the code reuse
in repackaged apps, while UI-based methods analyze the
similarity of app’s user interface.

It is encouraging that several app clone detection sys-
tems [5, 12] have claimed to achieve good performance in
real-world scenario. However, the commercial app packing
service, which is intended for protecting genuine apps from
being disassembled and repackaged at first, is now becoming
an effective practice for illegal apps to thwart current detec-
tion systems. It is disturbing that so far at least 10%ofAndroid
malware is maliciously packed [18] and, unfortunately, we
find that all code-basedmethods andmostUI-basedmethods
lack the resiliency to the commercial packing techniques,
which can encrypt app’s source code (i.e., the .dex file)
dynamically [19].

Although few latest UI-based approaches can detect the
packed apps, they are not scalable in real-world scenario,
because all of these approaches heavily depend on either

Hindawi
Mobile Information Systems
Volume 2017, Article ID 6958698, 12 pages
https://doi.org/10.1155/2017/6958698

https://doi.org/10.1155/2017/6958698


2 Mobile Information Systems

complex computation based on app’s resource files [13, 17],
or app’s run-time information [14, 15] which is difficult to be
extracted and time-consuming.

In this paper, we propose FUIDroid, a novel two-phase
cloned app detection system that is resilient to the packed
app and achieves accuracy and scalability simultaneously.
FUIDroid includes a function-based fast selection phase to
quickly select all suspected clones of the target app by com-
paring their function descriptions, and a UI-based accurate
detection phase to perform detailed UI-based comparison
between the previously selected candidate clone pairs to
refine the detection result.

FUIDroid is motivated by the following observations:
first, to deceive users, a cloned app must provide the same
core functionality just as the genuine one does, together with
a “looks/feels like” user interface. Second, the features about
app’s functionality and user interface are stored separately
from the source code, whichmeans they are free from current
app packing techniques [19]. Lastly, inspired by WuKong
[4], multilevel based detection strategy is able to keep great
advantage in large-scale scenario.

Specifically, in the fast selection phase, we apply some
mature nature language processing techniques [20, 21] to
analyze the similarity of app’s functional description. In
the detection phase, we propose an UI-based birthmark
called schema layout to identify apps. Schema layout is a
compact XMLdocument that retains the specifics of all layout
files in the app. We apply a state-of-the-art tree-based edit
distance algorithm [22, 23] to calculate the similarity between
birthmarks to determine cloned apps.

FUIDroid is expected to achieve scalability and accuracy
at the same time, because our balanced binary tree-based
searching scheme in fast selection phase can effectively
narrow down the number of suspicious cloned apps by
several orders of magnitude and the well-designed UI-based
birthmark we construct in the detection phase can improve
the final accuracy of the entire detection system. Since all
the features (functions and UI) extracted by FUIDroid can
keep constant after app packing service, our system is resilient
to current commercial packing techniques. Our evaluation
results demonstrate our points.

In summary, our paper makes the following contribu-
tions:

(i) We propose FUIDroid, a novel two-phase Android
cloned app detection system that is able to detect the
packed apps while achieving accuracy and scalability
in real-world scenario.

(ii) In the fast selection phase, we improve a fast searching
scheme based on multikeyword tree index to select
potential cloned apps, which is much more efficient
than traditional pairwise comparison methods.

(iii) In the detection phase, we propose a new UI-based
birthmark, called schema layout, for Android app.
The highlight is that it only relies on the limited
features extracted from the layout files, while still
achieving great accuracy.

(iv) We implement a prototype system and evaluate the
packing resilience of FUIDroid on 40 real-world
packed app samples collected from SandDroid [24].
The experimental result shows that FUIDroid is able
to handle the app packed by current mainstream
commercial app packers.

(v) We evaluate our approach on over 150,000 real-world
apps crawled from 6 popular Android markets. It
turns out that 3%–14% of apps are cloned cases. We
also evaluate the accuracy of FUIDroid on a set of
cloned apps detected by a well-known detection tool
[25]. The false positive rate is only 0.06%.

The rest of this paper is organized as follows. Section 2
introduces two essential pieces of background knowledge
related to our work and claims the scope of our paper. The
design goals and the overview structure are presented in
Section 3. Sections 4 and 5 focus on the core ideas and the
implementation details of the selection and detection phase.
Evaluation is presented in Section 6, followed by related work
in Section 7. Finally, we conclude the work in Section 8.

2. Background

In this section, we will introduce some essential background
about the structure of Android app and the commercial app
packing service. At last, we give the scope of our paper.

2.1. Android App Structure. Android app is distributed and
installed in Android app package (i.e., APK) format. An APK
is an archive that contains the .dex file and other resource
files. The .dex file is a Dalvik executable file compiled from
Java source code and implements the functionality of app.
Due to the openness of Java programing language, it is easy
to reverse engineer the .dex file with the help of some open
source tools [26–28] to extract app’s source code. All the raw
resource files, including images, audios, and the XML files
that define the layout of user interface, are stored in separate
folders (like /res/drawable or /res/layout). The information
about app developers is stored under the MATE-INF folder.

Besides the files conducted by developers, there are vari-
ous external files (icons, Java file, layout file, etc.) imported by
third-party libraries inmost of APK files.These files mix with
original files andmay influence the accuracy and efficiency of
app clone detection.

2.2. Android Packing Service. Apppacking service is intended
to protect Android app from being reversed, modified, and
repackaged [18, 19]. Commercial security companies apply
various code protection techniques to hide the .dex file and
impede the attempt of dumping the source code. Code obfus-
cation [29] is used to raise the bar of understanding the logic
of source code.Dynamic loading helps packers to encrypt the
original .dex file to prevent it from being disassembled and
decrypt it before running the app. Antidebugging can detect
the running environment and thwart the debugging gdb by
self-attaching. All these techniques are designed to protect
the .dex file, because all the source code is assembled in it.



Mobile Information Systems 3

Application package

META-INF
AndroidManifest.xml
res

drawable
layout
color

assets
class.dex

source code
resource.arsc

Figure 1: The structure of APK and the packed parts are marked by
boldface.

Figure 1 shows the structure of normalAPKand the boldfaced
words represent the files encrypted by packing service.

App packing is becoming the common practice for
single app to resist malicious cracking. Unfortunately, the
app packing service is available for all apps without strict
security analysis.More andmoremalware tries to use packing
techniques to disguise the malicious functions to evade the
security detection in app markets. Although there are some
approaches [30, 31] that can unpack these packed apps,
they all rely on the a priori knowledge obtained by manual
analysis.

2.3. Scope and Assumptions. In this paper, our purpose is to
detect cloned Android app pairs but not to identify which is
the original one and which is the cloned one.

2.3.1. Inconsistent Functional Description. The description of
an app on the third-party market may be missing or not
match the apps implementation. Although the consistent
description is not essential in our detection system, it can
greatly improve our detection speed. Hence, apps with
inconsistent description will increase the time complexity of
our method. Our paper does not concern these apps, because
(a) this kind of app arouses the vigilance of users very easily
and (b) the inspection by the app market is becoming more
and more strict.

2.3.2. Dynamic User Interface. We only focus on the apps
whose user interface features are defined in layout XML files.
Apps with no or very few layout files, such as web apps,
games based on third-party engines, and background apps
with only services, are out of the scope of our paper. Just like
previous static detection systems, apps whose user interface is
dynamically defined by programs are also out of the scope of
our paper. All of the apps used in our evaluation are not paid
apps, so we can crawl enough apps to simulate the real-world
scenario.

3. System Design

3.1. Design Goals. Our system is proposed to help appmarket
to detect Android app clones in real world. Considering the

current realistic detection scenario, there are three key goals
for FUIDroid.

(i) Packing Resilience. There are more and more malware
employee commercial packing services to encrypt or obscure
their source code to evade detection [18]. Hence, FUIDroid
should be able to handle the packed apps.

(ii) Efficiency and Scalability. The number of apps in real
world has reached millions and is increasing every day [32].
Therefore, our detection approach must be scalable to detect
apps in large-scale.

(iii) Accuracy. Accuracy is a basic goal for detection system.
The key is to construct an accurate birthmark to characterize
app.

3.2. Overview of FUIDroid. Figure 2 shows the architecture
and workflow of FUIDroid. The whole system contains two
consecutive phases: a function-based fast selection phase and
an UI-based accurate detection phase.

In the selection phase, we apply natural language pro-
cessing techniques to extract keywords from app’s functional
description to construct a feature vector. Suspicious cloned
apps are quickly selected by the tree-based multikeyword
searching algorithm [33]. In the detection phase, we extract
layout trees [13] from apps layout files to build an UI-based
birthmark to calculate similarity scores for app pairs selected
by the coarse-grained phase.

4. The Function-Based Fast Selection Phase

4.1. Challenge and Strategy. In our design, the task of the
selection phase is to quickly pick up a small set of candidate
cloned apps for the target app in large-scale scenario. By
dramatically narrowing down the number of suspicious app
pairs, the selection phase can reduce the invalid computation
in next accurate detection phase and ultimately improve the
scalability of the whole system.The performance of searching
algorithmand the false alarm rate together determine the per-
formance of selection scheme. Therefore, the key challenge
for our selection scheme is: how to achieve scalability in large-
scale scenario with low false alarm rate? We figure out that
there are two realistic challenges that hinder our function-
based selection scheme from achieving scalability and low
false alarm rate.

Challenge 1 (C1). The number of apps in real-world markets
has reached millions and is increasing every day.

Challenge 2 (C2). It is difficult to get low false positive rate and
false negative rate at the same time, especially when we take
C1 into consideration. We try to reach our goals in two ways:

(i) To overcome C1, for each single app, we only extract
the function-based features from app’s description
to avoid any time-consuming operations. For apps
under the same category, we modify an efficient tree-
based searching algorithm [33] to quickly select the



4 Mobile Information Systems

App
Cloned

Similarity

Similarity
measurement

Birthmark generation

AP-TED
algorithm score

pair
markets

Vector extraction

A.desc
ription

Stanford

Parser

Merging

Blacklist

Layout trees

files
Layout layout

A

Schema

layout
B

Schema
· · ·

· · ·

Noisy-layouts

�e UI-based accurate detection phase�e function-based fast selection phase

A.apk

Unzip

Data extraction
Candidate pairs

Suspect selection

Keyword IndexTree

(A, APK2, 0.85)
(A, APK6, 0.67)
(A, B, 0.90)

· · ·

Filter
GDFS

algorithm

⟨0, 1, . . . , 1⟩⟨1, 0, . . . , 1⟩

⟨1, 1, . . . , 1⟩

⟨1, 0, . . . , 0⟩⟨0, 0, . . . , 1⟩⟨0, 1, . . . , 1⟩⟨0, 0, . . . , 1⟩

⟨key 1, key 2, . . .⟩

Figure 2: The architecture and workflow of FUIDroid.

Table 1: Examples of the workflow of vector extraction.

App Part of description Keywords Vector

Uber

. . .There’s no need to park or wait for a
taxi or bus. With Uber, you just tap to
request a ride, and it’s easy to pay with
credit or cash in select cities. . .

{...taxi, need, uber, bus, city, ride,
credit, cash...} ⟨. . . 4, 26, 38, 7, 40, 10, 869, 0 . . .⟩

Twitter

. . .From breaking news and
entertainment, sports and politics, to
big events and everyday interests. Be
part of what everyone is talking about
and get videos, live footage and
Moments, direct from the source. . .

{. . .news, entertainment, sport,
politics, event, interest, video,
footage, moment, source. . .} ⟨

. . . 27, 39, 25, 1021, 269, 1347, 225, 9926, 484 . . .⟩

Tinder

. . .is a powerful tool to meet people,
expand your social group, meet locals
when you’re traveling and find people
you otherwise never would have met. . .

{. . .tool, people, group, locals. . .} ⟨. . . 30, 246, 270, 331 . . .⟩

suspicious cloned apps to reduce redundant pairwise
comparisons.

(ii) To overcome C2, we apply the Stanford Parser [21]
to preprocess the description before extracting key
words to reduce the false negative rate. To reduce the
false positive rate, we set up a simple filter to filter out
the obvious independent app pairs.

4.2. Implementation. We implement the fast selection system
with 600 lines of Java code to parse original description and
extract key words vector and 1,000 lines of Python code to
build keyword index tree and perform large-scale searching
task. For every target app, the complete process includes
two steps: extracting features from app’s description and
searching suspicious cloned apps by comparing features with
target app.

4.2.1. Feature Extraction. We execute a crawler program to
download apps and descriptions from third-party market.
After analyzing 40,000 app description samples, we select
15,000 most used words to construct a standard dictionary,
which covers most of the functionality of the apps. Differ-
ent from previous methods [34–38], which all directly use
app’s description, for single input app, we try to construct
a function-based vector based on app’s description. The
original description is usually very detailed and redundant;
hence we apply Stanford Parser to work out the grammatical
structure of each sentence in description and filter out the dis-
pensable parts like empty words in description. Finally, only

the function related words are left. All left words are trans-
formed to original form by [20] to avoid deviations caused
by tenses or plurals (i.e., plays/played to play). After that, we
construct a dynamic-dimensional vector for the target app
and fill the vector with a set of integer values according to the
index of the extracted keywords in the standard dictionary.
Table 1 gives examples of the workflow of feature extraction.

4.2.2. Suspect Selection. Regular distance-based similarity
measurement method for vector, like cosine distance, is
not suitable for our large-scale scenario because of the
complex computing. In [33], Xia et al. proposed a tree-based
multikeyword searching approach that has claimed to achieve
sublinear search efficiency. We make modifications to this
systemand apply it to quickly search similar apps. Specifically,
all the keyword vectors are stored with the structure of
keyword balanced binary (KBB) index tree [39, 40] and the
construction details are described in [33]. We make three
major improvements to the original algorithm. First, we
construct a specially designed dictionary for app functional
description, which contains 15,000 keywords. Second, to
avoid complex computation, we transform the fixed high-
dimensions vector to dynamic-dimensions vector to store
features. Third, we skip all computations related to privacy
and security. The searching process is a recursive procedure
upon the index tree and finally all suspicious cloned apps
whose relevance scores with the target app beyond an upper
threshold are returned. Apps that share high relevance scores
are divided into the same group andwait for further detection
in the fine-grained phase.



Mobile Information Systems 5

4.2.3. Filtering Strategy. Before the complex pairwise com-
parisons, a filter is applied to filter out the obvious inde-
pendent app pairs incorrectly selected by the fast selection
system. We consider the fact that under two conditions
related apps should not be grouped together:

(i) The suspicious app pairs signed with the same signa-
ture. The component reuse among apps released by
the same developers is common.

(ii) The sizes of installation file of two apps should not be
much different (i.e., the difference should be less than
the smaller value of 1/3).

5. The UI-Based Accurate Detection Phase

5.1. Challenge and Strategy. The major goal of UI-based
detection system is to accurately determine the cloned app
pairs in a small set of suspicious apps that are selected by
previous fast selection system. To improve the performance
of FUIDroid in real-world scenario, our UI-based detection
system shouldmeet strict requirements on both accuracy and
packing-resiliency. Through analysis, we found that current
mainstream app packing (i.e., app hardening) services and
app developers only pay attention to the security of the source
code (i.e., the .dex file) in app, while leaving the layout files
nonencrypted. Thus, our detection approach tries to avoid
conflicts with current packing services by proposing a new
birthmark that only relies on the UI-based features extracted
from layout XML files to identify apps. In this case, here is the
main challenge in the accurate detection system that we need
to overcome: how to build an accurate birthmark with limited
resources? We construct a new UI-based birthmark, called
schema layout, which uses the limited features extracted from
layout XML files to accurately characterize apps. Below is the
formal definition of schema layout.

Definition 1. A schema layout is a prototype XML document
subsuming the most relevant layout features of all the layout
files within a single app, and the following applies:

(i) The elements and attributes in schema layout are
extracted from the layout files through static analysis.

(ii) The relative relationships (e.g., including, containing,
and sequence) among elements in original layout files
are retained in schema layout.

(iii) The homogeneous subparts in different layout files are
merged in schema layout, while the noisy-layout is not
involved in the generation of schema layout.

Schema layout is distinct enough to identify theAndroid apps
and the detailed analysis and construction process are left to
later in this section.

The key obstacle that hinders schema layout from achiev-
ing a higher accuracy is the noisy-layout. The noisy-layout
refers to two particular types of layout files: (NL-1) the
external layout files included by the third-party libraries
and (NL-2) the extra layout files imported by plagiarists.
We proposed a counting based filtration technique, called

blacklist, to filter the noisy-layout. Blacklist identifies the
noisy-layout by analyzing the frequency of the layout file in
a great number of apps:

(i) Within a large enough app database, the layout
files that belong to NL-1 are those of which the
frequency exceeds an upper threshold, because third-
party libraries would be included by many different
apps.

(ii) Inside the clone app couple (app and its clone ver-
sion), the native layout files are copied once, while the
NL-2 files only exist in the repackaged app. Thus, the
local frequency ofNL-2 inside the couple is half of the
native layout files.

5.2. Implementation. The accurate detection task can be
divided into three steps. For each suspicious app selected by
the UI-based selection system, we first extract the layout fea-
tures from app’s installation file (i.e., the APK) and then use
the blacklist to filter out noisy-layout. After filtration, we use
these features to construct a unique UI-based birthmark and
apply the TED (Tree-based Edit Distance) [41] tomeasure the
similarity between birthmarks.

5.2.1. Feature Extraction. We extract the layout features from
app to build birthmark to identify Android app.TheUI-based
birthmark is reliable and effective because

(i) cloned apps share similar layout files to keep the look
and feel similar to original apps to deceive users and
it takes the plagiarist great efforts to reimplement an
existing layout from scratch;

(ii) the layout files are stored separately in APK and stay
consistent after app packing service;

(iii) it is a lightweight operation to extract layout features
as we only obtain the layout files from APK, rather
than disassembling the entire app.

A major drawback of our approach is that the layout-
based birthmark can be easily tainted by noisy-layout. We
proposed a counting based filtering method, called blacklist,
to address this issue. The layout feature extraction can be
broken down into two steps.

Obtain Layout Files. The user interface of Android app is
usually defined in layout XML files. For each app, we obtain
layout files from the /res/layout directory. Some apps are
carefully packaged to resist reverse engineering. In this case,
we apply the “unzip” command together with AXMLPrinter
(a format conversion tool) to extract layout files.

Filter Noisy-Layout.The extracted layout files can be classified
into 2 groups: internal layout files created by app developers
and external layout files (noisy-layout) imported by third-
party libraries or attackers. The goal of this step is to filter
the noisy-layout and we apply blacklist to do this job. The
blacklist maintains a SQLite database which stores the MD5
hash fingerprint of all identified noisy-layout and can update
automatically. To find out the external layout files in the app,



6 Mobile Information Systems

<!-- SignIn XML file--!>

<?xml version= “1.0” · · · ?>

<ScrollView layout_width= · · · >

<LinearLayout orientation= · · · >
<include layout=@layout · · · />
<LinearLayout orientation=· · · />

<EditText inputType=· · · />
<View visibility= “gone” · · · />
<EditText inputType= · · · />

</LinearLayout>
<LinearLayout orientation=· · · />

<CheckBox id=· · · />
<Button text=· · · />

</LinearLayout>
</LinearLayout>

</ScrollView>

Step 1 (generate layout trees) Step 2 (modification) Step 3 (merge layout trees)

Subtree

Subtree

ViewEditText EditText

CheckBox Button

LinearLayout

ScrollViewScrollable

Scrollable

LinearLayout

LinearLayout

ScrollView

LinearLayout LinearLayout

LinearLayout

editable editable

EditText
editable

Editable

editable

checkable clickable

clickable
clickable clickable

TextView Button ImageButton ImageButton

Register
XML file

Scrollable

LinearLayout

LinearLayout
LinearLayout

ImageButtonCheckBox

Button

checkable clickable

clickable

Clickable

The Resulting Tree After The Merge

The isomorphic part

Figure 3: An example of generating birthmark.

we compare the hash value of layout file with the hash values
stored in the database. If theymatch, we update the frequency
of this file and identify the noisy-layout only if its frequency
exceeds the upper threshold. For example, we find out that
the layout file alipay.xml exists inmore than 700 independent
apps (among 15K apps).We can determine that this layout is a
typical noisy-layout that belongs to a well-known third-party
library (i.e., AlipaySDK).

5.2.2. Birthmark Generation. Software birthmark is a unique
characteristic of a certain app that can be used to determine
the identity of app. For Android app, birthmark can be
divided into two categories: code-based birthmark and UI-
based birthmark. In this phase, we proposed an UI-based
birthmark, schema layout, that relies on app’s layout features
for app clones detection. Figure 3 illustrates the process
of constructing our UI-based birthmark. The construction
consists of three steps.

Generate Layout Trees. The layout features of apps are sep-
arately defined in layout XML files. To simplify next merge
operation, we generate a layout tree [13] over each layout
file. A node in layout tree represents an element in original
XML files and the hierarchical relationship among nodes is
corresponding to that in layout file. The leaf nodes in layout
tree present specific visual elements (button, image, text, etc.)
in user interface, while the nonleaf nodes determine the
position and size of these visual elements. There is a special
kind of element in layout files that can import other layout
files. Hence, we first build a layout tree over the included
file and then replace the corresponding statement nodes in
original layout tree.

Modify Layout Trees. We need to modify the original layout
trees to filter the useless elements and attributes that may
cause ambiguity between the layout file and the user interface.
There are some elements in layout files that make no differ-
ence to the actual user interface but may affect the accuracy

of our birthmark. Most attributes of elements are also useless
in our birthmark. For example, the plagiarists can change the
“text” attribute from “username” to “login id” or just translate
the text into another language. Thus, we need to clear the
attributes and remove the nodes with zero width and height
or whose visibility is set to “invisible” in layout tree.

Merge Layout Trees. After building layout trees over separate
layout files, we merge these trees together to generate a final
matching tree for the entire app. Considering the accuracy
and efficiency, we need to reduce the number of redundant
nodes as far as possible while maintain the diversity of layout
files. In summary, the output of this step is a minimal tree
that contains the structure of all separate layout trees. We
start merging two layout trees from the root node and then
layer down. For the isomorphic parts in two layout trees, we
merge these nodes and their direct children.The definition of
isomorphic part in layout tree is generalized. According to the
functionality [14], we divide the element into four categories:
“clickable,” “ checkable,” “ editable,” and “scrollable.” Nodes
that belong to the same categories while with the same depth
in one layout tree are identified as isomorphic parts. We
devise a greedy breadth-first strategy to find the isomorphic
parts. Algorithm 1 illustrates the process of merging layout
trees.

5.2.3. Similarity Measurement. We save the tree conducted
by previous algorithm to database in the bracket notation.
Then we apply AP-TED (All Path Tree Edit Distance) [22]
algorithm to measure the similarity between two apps. AP-
TED algorithm measures similarity of tree structured data
by using the TED measure. The TED between ordered
labeled trees is the minimal-cost sequence of node edit
operations (delete, insert, or replace) that transforms one
tree into another. Comparing to other TED algorithms, AP-
TED algorithm is more efficient as it consumes less memory
for the strategy computation than for the actual distance
computation, which is the bottleneck of previous algorithms.



Mobile Information Systems 7

Input: Two layout trees 𝑙𝑡1, 𝑙𝑡2;
Output: Minimum tree match both 𝑙𝑡1 and 𝑙𝑡2;

(1) 𝑑𝑒𝑝𝑡ℎ = min (𝑙𝑡1.getDepth (), 𝑙𝑡2.getDepth ()) + 1;
(2) 𝑟𝑜𝑜𝑡 = initTree ().getRoot ();
(3) 𝑙𝑡1.getRoot ().setRoot (root);
(4) 𝑙𝑡2.getRoot ().setRoot (root);
(5) for 𝑖 = 0 to 𝑑𝑒𝑝𝑡ℎ do
(6) 𝑁𝑖 = 𝑟𝑜𝑜𝑡.getChildrenAtDepth (𝑖);
(7) foreach (𝑉𝑎, 𝑉𝑏) 𝑖𝑛 𝑀𝑎𝑡𝑐ℎ𝐼𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 (𝑁𝑖) do
(8) foreach 𝑐ℎ𝑖𝑙𝑑 𝑖𝑛 𝑉𝑏.𝑔𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 () do
(9) 𝑐ℎ𝑖𝑙𝑑.setParent (𝑉𝑎);
(10) end
(11) 𝑉𝑎.getParent ().removeChild (𝑉𝑏);
(12) end
(13) end
(14) return 𝑟𝑜𝑜𝑡;

Algorithm 1: Merge two layout trees.

After computation, we normalized the AP-TED output to get
the final similarity score. The mapping formula is as follows:

Similarity Score = [1 − TED
max (len𝐴, len𝐵)] × 100. (1)

The final similarity score is an integer of zero to a
hundred. Zero means two apps are completely independent
and a higher score indicates that the app pair is more likely to
be cloned. If the similarity score of two apps is beyond the
upper threshold 𝜃, we can identify that these two apps are
cloned app. After evaluation, we found that when 𝜃 is set to
90, the accuracy (both false positive and false negative) of our
approach is optimal.

6. Evaluation

We conducted two sets of experiments to evaluate the
performance of FUIDroid. At first, we focus on the robustness
of our UI-based detection approach against the packed apps.
Then, we evaluate the effectiveness and efficiency of thewhole
system on a large set of real-world apps. In addition, we
measure the accuracy with a set of cloned apps detected by
AndroGuard (a well-known Android app diagnostic tool).

6.1. App Packing Resilience. It is necessary to declare at
first that only the fine-grained detection phase is tested,
because the selection phase does not directly handle the
packed APK. In order to comprehensively analyze the app
packing resilience of FUIDroid, we conduct two experiments
on different packed app sets. In the first experiment, we
evaluate the effectiveness of FUIDroid on six mainstream
commercial Android packers, equipped with the latest pack-
ing techniques. In the second experiment, we are concerned
about the robustness in the real-world packed apps.We really
appreciate Yang et al. [18] for providing us with the real-world
packed malware samples.

Table 2: Average similarity score calculated by FUIDroid compared
with AndroGuard and FSquaDRA for each packer; “—” indicates no
score return.

Packer AndroGuard FSquaDRA FUIDroid
Alibaba — 0.98 0.94
Bangcle — 0.94 1.00
Ijiami 0.29 0.90 1.00
Qihoo360 — 1.00 0.96
Tencent 0.17 0.85 0.98
Tongfudun — 0.96 0.99

6.1.1. Resilience to Current Mainstream Commercial Packers.
At first, we employ different commercial packers to encrypt
the original app. Then, we use the UI-based detection
approach in FUIDroid to calculate the similarity between the
original app and the packed app.The higher similarity scores
returned by FUIDroid for each specific packer indicate the
better resilience against that particular app packing service.

We randomly choose 40 apps from Android app market
as the original app set and conduct amanual check to confirm
that these 40 samples are all of different package names
and contain enough layout files. We upload these apps to
the web portals of six mainstream commercial packers (i.e.,
Bangcle [42], Ijiami [43],Qihoo360 [44],Tencent [45],Alibaba
[46], and Tongfudun [47]) and finally get different packed
versions. On this 280-Android app dataset, we evaluate our
system together with two well-known open source tools.
AndroGuard is a code-based app clones detection tool.
FSquaDRA is an UI-based detection system and is well-
known for its detection speed and is resilient to code obfus-
cation. Table 2 shows the app packing resilience comparison
among FUIDroid, AndroGuard, and FSquaDRA.The packer
columns indicate the packing service providers. The next
three columns (FUIDroid, AndroGuard, and FSquaDRA) list
the average similarity score calculated by different systems for
six packers. Specifically, we apply the above three detection
systems to measure the similarity for each original app and
its packed version and finally report the average similarity
over 40 apps. Note that we normalized the similarity scores
to make the comparison results more intuitive.

Overall, our experiment result show that FUIDroid is
robust enough against currentmainstream commercial pack-
ers.

6.1.2. Resilient to Real-World Packed Samples. It is essential
to evaluate FUIDroid on real-world packed samples, because
the hackers may employ some customized techniques or
hybrid packing techniques to evade the detection system in
practice.

We test our approach with a dataset that contains 40 real-
world packed malware samples. The dataset is accumulated
from an online Android app analysis system, SandDroid,
lasting for more than four years in collecting related packed
malware samples. We manually disassemble every malware
sample to make sure that all these samples are packed.
The experiment result shows that FUIDroid can effectively
generate birthmark for most (39 out of 40) real-world packed



8 Mobile Information Systems

Table 3: Real-world experiment dataset.

Market Number of apps Size Percentage
Anzhi 49,855 255GB 32.06%
Gfan 5,472 42.8GB 3.51%
Google 7,939 47.6GB 5.11%
HiAPK 13,199 156GB 8.49%
SnapPea 11,055 105GB 7.11%
Xiaomi 67,967 536GB 43.71%
Total 155,487 1,397GB 100%

Table 4: The top 6 most used noisy-layout and libraries.

Noisy-layout Library Frequency
abc list menu ∗.xml Android/support/v7 3186/15520
abs list menu ∗.xml ActionBarSherlock 2268/15520
umeng socialize∗.xml UmengSDK 2236/15520
pull to refresh ∗.xml PullToRefresh 2086/15520
slidingmenumain.xml SlidingMenu 951/15520
alipay.xml AlipaySDK 715/15520

malware samples. The only failed case is specially encrypted
and cannot be disassembled by common reverse engineering
tools or simple “unzip” command.

6.2. Efficiency on Large-Scale Real-World Dataset. We apply
FUIDroid to detect the cloned apps that exist in differentmar-
kets to evaluate the efficiency of each subsystem in our system
in real-world large-scale scenario. Furthermore, we analyze
the time consumption of FUIDroid in the experiment.

6.2.1. Dataset Statics. We crawled more than 150K (totally
155,487)Android apps and descriptions from six appmarkets.
The distribution of collected apps from different markets is
shown in Table 3. We list the top 6 most used noisy-layout
and libraries in 15 K app samples in Table 4. Figure 4 shows
the average number of original words and final extracted
words in app descriptions that are under different categories.
Figure 5 shows the average number of layout files in app with
different size and also indicates the number of layout files
that belong to third-party libraries in different size. There are
nearly 65% (97.4 K out of 150K) of apps that include third-
party libraries and 26 external layout files are included in each
app on average.

6.2.2. Function-Based Fast Selection Phase

Feature Extraction. The dependency parser we used is able to
parsemore than 1000 sentences or about 100 app descriptions
per second. We construct a dynamic-dimensions vector for
each app and filled in integer values based on the index of
the key words that we extracted within 1ms. As shown in
Figure 4, more than 90% apps contain more than 140 words
in their description and, after parsing, only 24 key words are
finally distilled on average.

A
rt

 &
 D

es
ig

n
Au

to
 &

 V
eh

ic
le

s
Bo

ok
s &

 R
ef

er
en

ce
Bu

sin
es

s
C

om
ic

s
C

om
m

un
ic

at
io

n
D

at
in

g
Ed

uc
at

io
n

En
te

rt
ai

nm
en

t
Ev

en
ts

Fi
na

nc
e

Fo
od

 &
 D

rin
k

H
ea

lth
 &

 F
itn

es
s

H
ou

se
 &

 H
om

e
G

am
es

0
20
40
60
80

100
120
140
160
180

Key words
Avg words

Most used words

Design Driver Career Audio Relation Statistic Drink Cardio
Commentator Door

Literature Princess Guidebook Mobile Battle

Figure 4: The number of words and keywords extracted from app
descriptions under different category.

<1M 5M 10 M 20 M 30M 40M 50M >50

Size of apps

Noisy-layout
Normal layout

N
um

be
r o

f n
oi

sy
-la

yo
ut

 &
no

rm
al

 la
yo

ut
 fi

le
s

0

25

50

75

100

125

150

175

200

225

250

Figure 5: The number of noisy and normal layout files in different
size apps.

Suspect Selection. According to the category provided by the
app market, we construct 15 binary index trees for 150K
apps with an average depth of 13.With nonparallel execution,
our selection scheme can accomplish the task of searching
suspects for 1000 target apps per second. In most of positive
cases, the selected suspicious apps only accounted for 0.025%
of the original category. Due to the special structure of index
tree, the complexity of searching scheme is fundamentally
kept logarithmic.

Determine Threshold. The accuracy of searching scheme
is directly affected by the relevance threshold (see Sec-
tion 4.2.2). Hence we choose 30,000 samples (2,000 apps
per category) and apply a series of relevance thresholds to
measure their accuracy. After manually checking sampling,
we find that, with a threshold of 0.85, our selection scheme
can achieve the most true positives. Figure 6 shows the
selection result with different relevance score.

Although there exist some false positive cases, we can
reduce the final false positive rate in next UI-based detection
phase. With the determined threshold, we detect all the apps



Mobile Information Systems 9

0.9750.9250.8750.8250.7750.7250.6750.625

N
um

be
r o

f t
ru

e p
os

iti
ve

s &
fa

lse
 p

os
iti

ve
s

Relevance score threshold

True positive
False positive

0

1000

2000

3000

5000

4000

6000

7000

Figure 6: The number of true positives and false positives under
different relevance score. The sign “×” refers to the final threshold
used in our system.

in our database. We get 1.5 × 104 distinct suspicious cloned
app pairs and on average 0.2 cloned suspect for each target
app. After selection, the size of suspicious cloned apps to
each app is greatly reduced. Ultimately, the selection phase
narrows down the number of UI-based pairwise comparison
by almost five orders of magnitude (from 104 narrowed down
to 10−1) to enhance the scalability of the entire system.

6.2.3. UI-Based Accurate Detection Phase

Feature Extraction. FUIDroid requires 166 hours to extract
the layout XML files from 150K app installation package files,
or 4 seconds per app. The time cost in this phase will not
be the bottleneck of our scalability, because this overhead for
each app happens one time.

BirthmarkGeneration. It takes us another three hours to build
the birthmark for each app, including filtering noisy-layout,
merging layout trees, and saving to database. We build a
SQLite database to store the birthmark and other information
of each app.The database consumes less than 400MB of hard
drive storage.

Similarity Measurement. All suspicious cloned app pairs (3 ×104) are detected within one hour. Even compared with
FSquaDRA,which is well-known for the attractive processing
speed like 6,700 pairwise comparisons per second, our
approach still holds the advantage in terms of the efficiency
of detection algorithm. Although our UI-based detection
methodperforms only 43.5 pairwise comparisons per second,
the previous coarse-grained selection phase already helps us
avoid massive invalid comparisons. Given an APK and its
description, no matter packed or not, we can find out the
potential cloned apps in our 150K apps dataset within on
average 5 seconds.

Determine Threshold. We apply a series of similarity thresh-
olds (see Section 5.2.3) to measure the accuracy of our
approach. In practice, we randomly select 500 pairs of
suspicious clone apps with different similarity scores and
manually identify the cloned app pairs by checking the files

50 55 60 65 70 75 80 85 90 95 100

N
um

be
r o

f f
al

se
 p

os
iti

ve
s &

fa
lse

 n
eg

at
iv

es

Similarity score threshold

False positive
False negative

0
10
20
30
40
50
60
70
80
90

100

Figure 7: The number of false positives and false negatives under
different similarity score. The sign “×” refers to the final threshold
used in our system.

in two apps, including layout files, manifest files, and other
multimedia files. By counting the false positives and the
false negatives under different threshold, we choose 90 as
the optimal threshold. Figure 7 shows the accuracy under
different similarity score.

We present the situation of cross-market app clones
in Figure 8. Each node on outer circle corresponds to a
market. The number and percentage besides an edge means
the number of app clone pairs cross the two markets. Our
detection result shows that the situation of cross-market app
clone is still serious, as 3%–14% of apps in app markets are
cloned.

6.2.4. Time Consumption. We evaluate the time consumption
of both FUIDroid and FSquaDRA using the same collected
app dataset on a MacBook Pro laptop with 2.9GHz Intel i7
processor with 2 cores, and 8GB 1867MHz DDR3 memory.
FSquaDRA is another famous app clone detection system,
which is well known for its very low time complexity.
Table 5 shows the detail time consumption of FUIDroid
and FSquaDRA on 10,000 apps. During the detection phase,
FUIDroid can only finish about 43.5 pairwise similarity
comparisons per second, which obviously has disadvantages
to FSquaDRA. While in the preprocessing phase, besides
the common operations like unzip and reverse engineering,
FUIDroid conducts extra function-based selection opera-
tion, which can greatly reduce the number of the target
apps pairwise comparisons. The extra phase does not cause
extra time overhead because it is executed in parallel with
other preprocesses. Hence, the preselection operation can
effectively reduce the time consumption of FUIDroid’s entire
detection process.

In summary, given a target app, FUIDroid can find out all
the cloned versions from 10,000 apps within 5 seconds.

6.3. Accuracy. In this section, we use two sets ofAndroid apps
to evaluate the accuracy of FUIDroid. To measure the false
negative rate (FNR) of our approach, we employ a small set
of clone apps detected by AndroGuard (a well-known open
source detection tool) as the ground truth. In addition, we



10 Mobile Information Systems

(7,939) Google

(13,199) HiAPK

Anzhi (49,855)

SnapPea (11,055)

37
2 

(4
.7

%
) 933 (8.4%

)

(8.2%) 651

(8.5%) 465(3.1%) 170

2,962 (5.9%)

XiaoMi (67,967)

Gfan (5,472)

1,1
46

1,151

(14.0%)

(13.8%) 1,096

(9,5%)

(9
.2%

)

(5.5%)211

(8
.7%

) (6.6%)

(3.9%)

(1
2.

5%
)

1,052

684

865

50
4

440

Figure 8: The situation of cross-market app clones.

Table 5: The average time consumption of detecting one cloned application in dataset.

Approach Preprocesses Time of preprocess Time of detection Average competition
times

Total time
consumption

FSquaDRA unzip, reverse engineering 4 sec 0.15ms 10000/10000 5.5 sec

FUIDroid suspect selection, unzip, reverse
engineering 4 sec 23.0ms 18/10000 4.4 sec

handpick 200 independent apps to build a dataset to verify
the false positive rate (FPR) of FUIDroid.

6.3.1. False Negative. We consider the app pairs which are
labeled as clones in the standard dataset while not detected by
our approach to be false negative. The AndroGuard dataset
includes 92 apps which belong to 67 clone pairs (25 pairs,
ten 3-app sets and three 4-app sets). We manually check,
install, and compare these apps to make sure that all apps in
the same set do have strong similarity. When the relevance
threshold is set to 0.85, the function-based selection system
obtains 117 distinct suspicious cloned app pairs that cover all
the 67 positive cases. In the UI-based detection system, with
similarity threshold = 90, we finally determined 66 cloned
app pairs. Hence the overall false negative rate of FUIDroid is
no more than 1.49%.

After further investigation, these two apps in the false
negative case are different from normal apps, as they are
developed based on Unity-3D engine and their user inter-
face is defined in native source code. It is gratifying that,
discarding the apps beyond our scope, FUIDroid can achieve
a perfect FNR.

6.3.2. False Positive. If a legitimate app is reported as cloned
app, we take it as a false positive. We consider that the
false positive rate of FUIDroid is actually determined by the
performance of UI-based detection system. After analyzing
many previous works [4, 8–10], we find out that the false
positive occurs mainly under one case. When different apps
include the same third-party libraries, the similarity between
them may anomalously increase. Hence, we picked 200 apps
of which 100 apps contain massive external libraries while

the other half are with no third-party libraries as the test
dataset to measure our false positive rate. These apps are
independent of each other, except for the overlapping of
third-party libraries that they contained. We compared these
apps in a pairwise way and totally 19,900 app pairs are
completely compared.

When we set the similarity threshold at 90, our approach
detects only 12 false positive pairs. In other words, the
false positive rate of FUIDroid is 0.06%. It is the blacklist
that contributes to this low false positive rate. We checked
sampling of the birthmark of each app and found out that the
blacklist can filter almost all noisy-layout in apps.

7. Related Work

There are many studies focusing on detecting Android app
clones. Most of the earlier works use sample code-based
features to build birthmark to identify app.

DroidMOSS [6] adopts fuzzy hashing algorithm to cal-
culate the similarity of the instruction sequence in two apps
to detect app clones. DNADroid [7] generates the program
dependency graph (PDG) as a birthmark for each app and
applies the subgraph isomorphism algorithm to measure the
similarity between PDGs. Chen et al. [8] use the calling
sequence of API in app’s source code to construct a 3D-
control flow graph (3D-CFG). By comparing the birthmark
of apps, they can detect app clones quickly and accurately.
Parmjit and Sharma [35] propose a hybrid approach to
analyze application. This hybrid approach depends upon
three parameters—Description Mapping, Interface Analysis,
and Source Code Analysis—to identify a unique application.
Wukong [4] proposes a two-phase approach to detect app



Mobile Information Systems 11

clones and uses an accurate and automated clustering-based
approach to filter third-party libraries.

One of themajor drawbacks of code-based systems is that
their detection accuracy is easily affected by code obfuscation.
To address this issue, recent studies focus on usingUI features
to identify apps.

ViewDroid [10] constructs a novel birthmark based on the
switch sequence of UI which is resilient to code obfuscation
techniques to detect app clones. FSquaDRA [17] detects app
clones by comparing the resource files in app which is fast but
not robust against modifications to the resource files. Soh et
al. [14] and Malisa et al. [15] try to execute app on a specific
simulator to extract run-time UI information to construct
birthmark for Android apps, which is robust to malicious
modifications but the time-consuming execution ruined their
scalability in large-scale scenario. FUIDroid is similar to their
approaches in the sense that they all rely on UI information.
Our approach is more advanced as our UI-based birthmark
is extracted from static analysis and, by working with the
function-based selection, massive invalid comparisons are
avoided.

8. Conclusion

In this paper, we proposed a novel two-phase Android app
clone detection system, FUIDroid. We only use, especially,
the limited features extracted fromappdescription and layout
XML files to quickly and accurately identify the cloned apps.
The evaluation results show that FUIDroid can effectively
detect app clones among the packed apps, without compro-
mising the legitimate app packing service. We also proposed
a counting based filtering method to improve the accuracy
of FUIDroid which can effectively filter the noisy-layout
without any prior knowledge. Experiments on over 150K
real-world apps show that FUIDroid achieves both accuracy
and scalability at the same time in large-scale scenario.

Disclosure

This paper is an extended version of the conference paper
presented in the 15th IEEE International Conference onTrust,
Security and Privacy in Computing and Communications
(TRUSTCOM2016) [48].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported in part by the National Natural
Science Foundation of China (Project no. 61472125) and
Research Foundation of Chinese Ministry of Education and
China Mobile Communications Corporation (no. MCM
20122061).

References

[1] IDC Corporate USA, “Android market statistics from idc,”
Website, 2017. http://www.idc.com/prodserv/smartphone-os-
market-share.jsp.

[2] Y. Zhou and X. Jiang, “Dissecting android malware: char-
acterization and evolution,” in Proceedings of the 33rd IEEE
Symposium on Security and Privacy, pp. 95–109, San Francisco,
Calif, USA, May 2012.

[3] W. Zhou, Y. Zhou,M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of “piggybacked” mobile applications,” in Proceedings
of the 3rdACMConference onData andApplication Security and
Privacy, CODASPY 2013, pp. 185–195, February 2013.

[4] H.Wang, Y. Guo, Z.Ma, and X. Chen, “WuKong: A scalable and
accurate two-phase approach to android app clone detection,”
in Proceedings of the 24th International Symposium on Software
Testing and Analysis, ISSTA 2015, pp. 71–82, July 2015.

[5] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song,
“Juxtapp: a scalable system for detecting code reuse among
android applications,” inProceedings of the International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 62–81, 2012.

[6] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,”
in Proceedings of the the Second ACM conference, pp. 317–326,
San Antonio, Texas, USA, Feburary 2012.

[7] J. Crussell, C. Gibler, and H. Chen, Attack of the Clones:
Detecting Cloned Applications on Android Markets, Springer,
Berlin, Germany, 2012.

[8] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalabil-
ity simultaneously in detecting application clones on Android
markets,” in Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pp. 175–186, June 2014.

[9] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards
a scalable resource-driven approach for detecting repackaged
android applications,” in Proceedings of the 30th Annual Com-
puter Security Applications Conference, ACSAC 2014, pp. 56–65,
December 2014.

[10] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “ViewDroid:
Towards obfuscation-resilient mobile application repackaging
detection,” in Proceedings of the 7th ACMConference on Security
and Privacy in Wireless and Mobile Networks, WiSec 2014, pp.
25–36, July 2014.

[11] J. Zhu, Z. Wu, Z. Guan, and Z. Chen, “Appearance similarity
evaluation for Android applications,” in Proceedings of the 7th
International Conference on Advanced Computational Intelli-
gence, ICACI 2015, pp. 323–328, March 2015.

[12] K. Chen, P. Wang, L. Yeonjoon et al., “Finding unknownmalice
in 10 seconds: mass vetting for new threats at the google-play
scale,” in Usenix Security Symposium, pp. 659–674, 2015.

[13] M. Sun, M. Li, and J. C. S. Lui, “DroidEagle: seamless detection
of visually similar android apps,” in Proceedings of the 8th
ACMConference on Security and Privacy inWireless andMobile
Networks, WiSec 2015, pp. 1–12, June 2015.

[14] C. Soh, H. B. K. Tan, Y. L. Arnatovich, and L. Wang, “Detecting
clones in android applications through analyzing user inter-
faces,” in Proceedings of the 23rd IEEE International Conference
on Program Comprehension, ICPC 2015, pp. 163–173, May 2015.

[15] L. Malisa, K. Kostiainen, M. Och, and S. Capkun, “Mobile
application impersonation detection using dynamic user inter-
face extraction,” Lecture Notes in Computer Science (including

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp


12 Mobile Information Systems

subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 9878, pp. 217–237, 2016.

[16] I. Gurulian, K. Markantonakis, L. Cavalaro, and K. Mayes,
“You can’t touch this: Consumer-centric android application
repackaging detection,” Future Generation Computer Systems,
vol. 65, pp. 1–9, 2016.

[17] Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina, and E.
Moser, “Fsquadra: Fast detection of repackaged applications,” in
Proceedings of the The Ifip Wg 11.3 Working Conference on Data
and Applications Security and Privacy, pp. 130–145, 2014.

[18] W. Yang, Y. Zhang, J. Li et al., “AppSpear: Bytecode decrypting
and DEX reassembling for packed android malware,” Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
9404, pp. 359–381, 2015.

[19] Y. Zhang, X. Luo, and H. Yin, DexHunter: Toward Extracting
Hidden Code from Packed Android Applications, Springer Inter-
national Publishing, 2015.

[20] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J.
Miller, “Introduction to wordnet: an on-line lexical database,”
International Journal of Lexicography, vol. 3, no. 4, pp. 235–244,
1990.

[21] D. Chen and C. D. Manning, “A fast and accurate dependency
parser using neural networks,” in Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing,
EMNLP 2014, pp. 740–750, October 2014.

[22] M. Pawlik and N. Augsten, “Efficient computation of the tree
edit distance,” ACM Transactions on Database Systems, vol. 40,
no. 1, pp. 1–40, 2015.

[23] M. Pawlik and N. Augsten, “Tree edit distance: Robust and
memory-efficient,” Information Systems, vol. 56, pp. 157–173,
2016.

[24] Botnet Research Team from Xi’an Jiaotong University. Sand-
droid - an automatic android application analysis system.
Website, 2017. http://sanddroid.xjtu.edu.cn/.

[25] Geoffroy Gueguen Anthony Desnos. Androguard. Website,
2017. https://github.com/androguard/androguard.

[26] RyszardWiniewski Connor Tumbleson. Apktool.Website, 2017.
https://ibotpeaches.github.io/Apktool/.

[27] JesusFreke. Smali/baksmali. Website, 2017. https://github.com/
JesusFreke/smali.

[28] Google. Dex2jar. Website, 2017. https://github.com/pxb1988/
dex2jar.

[29] GuardSquare nv. Proguard - java code obfuscation. Website,
2017. https://www.guardsquare.com/en/proguard.

[30] Y. Haoyang, Towards Unpacking Android Apps [PhD. Thesis],
Department of Computing, The Hong Kong Polytechnic Uni-
versity, 2016.

[31] L. Xue, X. Luo, L. Yu, S. Wang, and D.Wu, “Adaptive unpacking
of android apps,” in Proceedings of the 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), pp.
358–369, May 2017.

[32] Google. Wiki - google play. Website, 2017. https://en.wikipedia
.org/wiki/Google Play.

[33] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic
multi-keyword ranked search scheme over encrypted cloud
data,” IEEE Transactions on Parallel & Distributed Systems, vol.
27, no. 2, pp. 340–352, 2016.

[34] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen,
“AutoCog: Measuring the description-to-permission fidelity in

Android applications,” in Proceedings of the 21st ACM Confer-
ence on Computer and Communications Security, CCS 2014, pp.
1354–1365, November 2014.

[35] K. Parmjit and S. Sharma, “Spyware detection in android using
hybridization of description analysis, permission mapping and
interface analysis,” Procedia Computer Science, vol. 46, pp. 794–
803, 2015.

[36] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy
policies of android apps?” in Proceedings of the 46th IEEE/IFIP
International Conference on Dependable Systems and Networks,
DSN 2016, pp. 538–549, July 2016.

[37] L. Yu, X. Luo, C. Qian, and S.Wang, “Revisiting the description-
to-behavior fidelity in android applications,” in Proceedings
of the 2016 IEEE 23rd International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 415–426,
March 2016.

[38] L. Yu, X. Luo, C. Qian, S.Wang, andH. K.N. Leung, “Enhancing
the description-to-behavior fidelity in android apps with pri-
vacy policy,” IEEE Transactions on Software Engineering, vol. 99,
pp. 1-1, 2017.

[39] B. Gu and V. S. Sheng, “Feasibility and finite convergence
analysis for accurate on-line v-support vector learning,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 24,
no. 8, pp. 1304–1315, 2013.

[40] X.Wen, L. Shao,W. Fang, andY. Xue, “Efficient feature selection
and classification for vehicle detection,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 25, no. 3, pp. 508–
517, 2015.

[41] K. C. Tai, “The tree-to-tree correction problem,” Journal of the
Association for Computing Machinery, vol. 26, no. 3, pp. 422–
433, 1979.

[42] Bangcle. Bangcle. Website, 2017. https://dev.bangcle.com/.
[43] Ijiami. Ijiami. Website, 2017. http://www.ijiami.cn/.
[44] 360.CN. Qihoo360. Website, 2017. http://jiagu.360.cn/.
[45] Tencent legu. Tencent legu. Website, 2017. http://legu.qcloud

.com/.
[46] Alibaba. Alibaba. Website, 2017. http://jaq.alibaba.com/.
[47] Tongfudun. Tongfudun. Website, 2017. https://www.tongfudun

.com/protect.jhtml.
[48] F. Lyu, Y. Lin, J. Yang, and J. Zhou, “SUIDroid: An efficient

hardening-resilient approach to android app clone detection,”
in Proceedings of the Joint 15th IEEE International Conference
on Trust, Security and Privacy in Computing and Communica-
tions, 10th IEEE International Conference on Big Data Science
and Engineering and 14th IEEE International Symposium on
Parallel and Distributed Processing with Applications, IEEE
TrustCom/BigDataSE/ISPA 2016, pp. 511–518, August 2016.

http://sanddroid.xjtu.edu.cn/
https://github.com/androguard/androguard
https://ibotpeaches.github.io/Apktool/
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://www.guardsquare.com/en/proguard
https://en.wikipedia.org/wiki/Google_Play
https://en.wikipedia.org/wiki/Google_Play
https://dev.bangcle.com/
http://www.ijiami.cn/
http://jiagu.360.cn/
http://legu.qcloud.com/
http://legu.qcloud.com/
http://jaq.alibaba.com/
https://www.tongfudun.com/protect.jhtml
https://www.tongfudun.com/protect.jhtml


Submit your manuscripts at
https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


