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Indoor shopping trajectories provide us with a new approach to understanding user’s behaviour pattern in urban shopping mall,
which can be derived from user-generated WiFi logs using indoor localization technology. In this paper, we propose a location-
aware Point-of-Interest (POI) recommendation service in urban shoppingmall that offers a user a set of indoor POIs by considering
both personal interest and location preference. The POI recommendation service cannot only improve user’s shopping experience
but also help the store owner better understand user’s shopping preference and intent. Specifically, the proposed method consists
of two phases: offline modelling and online recommendation. The offline modelling phase is designed to learn user preference by
mining his/her historical shopping trajectories. The online recommendation phase automatically produces top-𝑘 recommended
POIs based on the learnt preference. To demonstrate the utility of our proposed approach, we have performed a comprehensive
experiment evaluation on a real-world dataset collected by 468 users over 33 days.The experimental results show that the proposed
recommendation service achieves much better recommendation performance than several existing benchmark methods.

1. Introduction

Indoor location-based services, such as shopping flow mon-
itoring, mobile location-based advertisement, and POI rec-
ommendation, are expected to witness a significant growth
in the next decade due to the popularity of mobile devices
and the development of indoor positioning technologies.
Previous studies about this topic mainly focus on providing
some basic services, such as indoor positioning [1], indoor
navigation [2], or indoor tracking [3]. By contrast, few studies
aim to perform in-depth analysis and utilize user’s location
information in indoor environment, which is a fundamen-
tal context for location-based services. For instance, the
retention time customers spend in visiting shops, the way
customers come to these shops (e.g., go directly to a shop or
just hanging out in the shopping mall), and the frequency of
customers checking in shops, something like that, are useful
for understanding user’s behaviour pattern and preference.

Similar to online behaviour analysis in E-commerce, this
kind of in-depth location analysis is also called physical
analytics [4], which is demonstrated as a revolutionary

new technology for connecting consumers with shop brand.
Specifically, physical analytics in a shopping mall can provide
three sides benefit: (1) For users side, some context-aware
personal services (e.g., personalized recommendation and
optimal shopping route) can be provided based on their
preference deriving from physical analytics. (2) For shop
owner side, physical analytics are beneficial to targeted
advertising since potential consumers can be found based
on their preference. (3) For shopping mall manager side,
physical analytics can monitor traffic flow in real time and
discover correlation between shops and users, which is
useful for optimizing shopping mall layout. For E-commerce
recommendation, website cookies are sufficient to learn user’s
preference. However, physical analytics will suffer serious
challenge due to the difficulty of obtaining user’s behaviour
information, such as user’s shopping trajectory. Even worse,
user’s location information in indoor environment is usually
incomplete and scattered. Fortunately, WiFi check-in logs
provide a new platform to generate user’s trajectory in
indoor environment since free WiFi is increasing available
for many indoor spaces, such as urban shopping mall and
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Figure 1: An example of customer’s check-in activities in urban
shopping mall.

museum. Additionally, customer’s check-in activities imply
their preference; since most people have a finite amount of
resources (e.g., time and money), they tend to visit their
favourite shops (as shown in Figure 1).

As mobile devices and social media are becoming more
andmore pervasive, user-generated information (e.g., check-
in records) from these platforms is providing rich infor-
mation to in-depth understand user preference. Recently, a
few studies [5, 6] on POI recommendation from location-
based social network (LBSN) have been proposed; these
approaches will suffer several challenges. The first challenge
is that it is insufficient to learn customer preference by
only utilizing check-in frequency; other pieces of context
information (such as the residence time of visiting) can
help better reflect the level of customer’s interest towards
a shop. The second challenge is data sparsity due to few
check-ins in reality (most customers usually visit a shop only
once in fact), so only utilizing customer’s check-in frequency
may not be sufficient to learn their preferences. Moreover,
existing POI recommendation methods in LBSN cannot
make recommendations for people who are not members of
the LBSN.

To tackle these challenges, we propose an indoor POI
recommendation method for urban shopping mall with the
following three contributions:

(i) It generates user’s indoor spatial-temporal trajec-
tory from user-generated WiFi logs. The proposed
approach first recognizes POI entranced by utilizing
the WiFi radio signal strength fluctuation of a small
window size when passing a physical boundary point
and then splits WiFi logs to a few subsequences
according to these identified POI entrances. Finally,
the approachmaps each subsequence to POI based on
indoor fingerprint-based localization.

(ii) It utilizes a two-layer relation graph to capture mul-
tirelation among users and POIs from user’s historical
spatiotemporal trajectories. Then it estimates User-
User relation by utilizing a random walk-based prop-
agation algorithm and performs indoor POI recom-
mendation using user-based collaborative filtering.

(iii) We evaluate our method on indoor POI recommen-
dation using a real-world dataset collected by 468
users over 33 days, with performances outperforming
six baselines.

Since it is insufficient to learn user’s preference by merely
utilizing their check-in frequency, our approach extracts
various context information (such as the check-in frequency
and check-in time) from user’s indoor spatial-temporal tra-
jectory formining their preference. In addition, our approach
collects user-generated WiFi logs by passive crowdsourcing,
which is infrastructure-free and no user involvement. There-
fore, our proposed approach can make recommendation for
users who are notmembers of the LBSN. To deal with the data
sparsity challenge, our approach infersUser-User relation uti-
lizing a random walk-based propagation algorithm. Random
walk on graph can alleviate the sparsity problem in indoor
POI recommendation by utilizing both User-Store relation
and User-User relation. Typically, most users have few check-
ins and tend to review a small number of POIs; thus the data
of directly connected vertices (e.g., User-POI vertex pairs and
User-User vertex pairs) are sparse. Fortunately, one vertex can
reach another vertex through intermediate vertices (denote
as hidden propagation path), which can better estimate the
relation strengths between two vertices that are not directly
connected with these hidden propagation paths.

The remainder of the paper is organized as follows.
Section 2 surveys related work on mining indoor trajectories
and indoor POI recommendation. Section 3 introduces our
proposed approach for generating indoor trajectories using
WiFi RSSI. Section 4 describes our indoor POI recommen-
dation algorithm in detail. Section 5 reports the experimental
results. Finally, we present our conclusion and future work in
Section 6.

2. Related Work

In this section, we survey related works and discuss how
these works differ from our research, including previous
studies of generating indoor trajectory and indoor POI
recommendation.

2.1. Generating Indoor Trajectory. We are aware of only a few
works [7–10] which directly involve this issue that generates
user’s trajectory in indoor space. Specifically, Prentow et al.
[7] proposed a bootstrapping approach to construct indoor
trajectory for mitigating indoor positioning error biases.
Werner et al. [8] utilized WiFi RSSI as an information
source to infer indoor trajectory from a given trajectories
database. Radaelli et al. [9] utilized sequential patternmining
to identify typical trajectories of indoor objects by exploiting
presence sensors, that is, Bluetooth and RFID. Dakkak et al.
[10] presented a method to generate indoor trajectories using
classical predictors and digital fractional differentiation.

Fortunately, there are a number of works on indoor
tracking which are relevant to generate indoor trajectories,
as it is simple to obtain indoor trajectory from movement
tracking data. In general, existing studies on indoor tracking
can be divided into three categories: (1) Indoor tracking
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by location fingerprinting-based approaches [2, 11]. The key
idea is to obtain user’s location using fingerprinting-based
positioning algorithm, which usually consists of two phases:
offline constructing fingerprint map and online positioning.
(2) Indoor tracking by triangulation positioning approaches
[3]. The main idea is to obtain user’s location using at least
three anchors for triangulation positioning. (3) Indoor track-
ing by dead reckoning approaches [12], which calculates user’s
current position according to previously determined position
using built-in sensors (e.g., gyroscope, accelerometer, and
compass) of mobile devices.

However, fingerprinting-based indoor tracking is time-
consuming and vulnerable to many factors, such as het-
erogeneous devices or environmental changes. Triangulation
positioning will result in heavy infrastructure cost since
it requires anchors to coverage the indoor space. Dead
reckoning approaches rely on the initial location and thus
suffer from cumulative error.

2.2. Indoor POI Recommendation. To the best of our knowl-
edge, only a few literatures [13–15] address the problem of
indoor POI recommendation based on user’s trajectories.
Specifically, Lin [13] proposed an indoor location system
by regarding the stay time in certain shops as item rating.
Fang et al. [15] mined customer’s preference fromWiFi RSSI
patterns, that is, time spent in a store and check-in frequency
of store, and then proposed a recommendation system for
indoor shopping. Jin et al. [14] proposed an indoor hotspots
detecting method by considering user’s interests in locations
and the relationship between users and locations.

We also surveyed related works about indoor recom-
mendation by considering user’s context. For instance, [16]
proposed an store recommendation systems by mining the
context of decision-making behaviour using eye-tracking
data, [17] proposed a POI discovery approach by match-
ing the user profile and the semantic-enhanced POIs, [18]
proposed a recommended system to help users in shopping
for technical products by considering user preference and
technical product attributes, and [19] proposed an automatic
mobile assistant for museum visiting based on WiFi-based
indoor positioning. Additionally, Shin et al. [20] constructed
an indoor database platform for indoor location-based ser-
vices.

Our proposed indoor POI recommendation method
differs from the above-mentioned works in the following
three aspects: (1) We generate user’s indoor trajectories
using opt-in WLAN without needing time-consuming and
labor intensive cost for constructing fingerprinting map for
each small grid of indoor space, such as in [2, 11]. (2) We
only use the indoor trajectories to learn user’s preferences
for making recommendations, unlike literatures [17, 18]
that need additional user profiles for recommendation. (3)
Existing indoor POI recommendation algorithms, such as
[7–10], merely use user-based or item-based collaborative
filtering for making recommendation and will suffer data
sparsity problem since numerous users only have few check-
in information. To address this challenge, we first utilize a
two-layer relation graph to capturemultirelation among users
and POIs from user’s historical trajectories. Then, we infer

User-User relation with a random walk-based propagation
algorithm and perform indoor POI recommendation using
user-based collaborative filtering.

3. Generate Indoor Spatiotemporal Trajectory

Unlike outdoor trajectories that can be easily obtained from
a large number of user-generated GPS trajectories, user’s
indoormoving trajectories are significantly difficult to obtain.
For generating user’s indoor trajectory, our approach utilizes
WiFi RSSI by considering the widespread deployment of
WLAN infrastructure in indoor space nowadays. We for-
mally describe our method for generating indoor trajectory
as follows.

3.1. Problem Definition. For ease of the following presenta-
tion, we first define the key data structures and notations
used in the problem of generating indoor spatiotemporal
trajectory.

Definition 1 (indoor POI). 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑁} denotes the
set of POIs.𝑁 is the number of POIs and POI 𝑝𝑖 refers to an
indoor geographical region that may be useful or interesting
for a user.

Definition 2 (indoor spatiotemporal trajectory). An indoor
spatiotemporal trajectory is a sequence of indoor POIs
consecutively visited by a user, which is defined as Traj𝑢 =⟨𝑞1𝑢 → 𝑞2𝑢 → ⋅ ⋅ ⋅ → 𝑞𝐾𝑢 ⟩ and 𝐾 is the POIs numbers that are
visited by user 𝑢 in one visiting and 𝑞𝑖𝑢 = ⟨𝑢, 𝑝𝑖, ts⟩ is a triple
that means user 𝑢 checks in POI 𝑝𝑖 at a particular timestamp
ts.

In short, user’s visiting history can be regarded as a set
of indoor trajectories. Clearly, user’s trajectories imply spatial
and temporal information.

Definition 3 (POI feature). POI feature is defined as a tuple𝑓𝑝𝑖 = (𝑝𝑖, 𝑅𝑝𝑖). 𝑅𝑝𝑖 is 𝑀-dimensional vector and is denoted
by (𝑟1, 𝑟2, . . . , 𝑟𝑀), which means the scanned WiFi RSSI
recorded from surrounding WiFi APs in 𝑝𝑖, and 𝑀 is the
number of WiFi access points (APs) in indoor space.

According to the principle of indoor fingerprint-based
localization [21], the WiFi RSSI collected in a physical place
can be regarded as the location landmark for positioning.

Definition 4 (POI feature set). POI feature set is the feature
collection of all POIs, denoted by 𝐹 = {𝑓𝑝1 , 𝑓𝑝2 , . . . , 𝑓𝑝𝑁}.
Definition 5 (WiFi logs). Auser-generatedWiFi log is defined
as 𝑆 = ⟨𝑠1, 𝑠2, . . . , 𝑠𝑛⟩, and 𝑠𝑖 = (𝑡𝑖, 𝑅𝑡𝑖) denotes the scanned
WiFi RSSI record by user’s mobile device at time 𝑡𝑖, 1 ⩽ 𝑖 ⩽ 𝑛.

As mentioned above, our approach utilizes existing WiFi
infrastructure to generate user’s interaction behaviours from
WiFi logs, which is infrastructure-free and no user involve-
ment. To achieve both goals, we utilizeWiFi probe requests to
collect the data with a nonintrusive way. WiFi probe requests
are frames that are broadcast by mobile phones to discover
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Table 1: The RSSI records when people walk through a POI entrance.

Records AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8
R1 −69 −56 −87 −95 −62 −71 −48 −94
R2 −64 −61 −80 −92 −51 −65 −52 −91
R3 −71 −52 −75 −86 −55 −61 −63 −89
R4 −68 −54 −63 −80 −60 −59 −69 −82
R5 −74 −84 −67 −84 −68 −77 −87 −71
R6 −85 −92 −71 −65 −86 −81 −89 −62
R7 −92 −90 −65 −60 −92 −85 −92 −59

nearby WiFi APs and can be sniffed by WiFi compatible
antennas on 802.11b/g/n channels. According to [22], mobile
phoneswill broadcastWiFi probe requests every few seconds.
That means collecting data by WiFi probe requests allowed
us to track every mobile device that connects to the WiFi
infrastructure. In our experiment, every device that connects
to WLAN infrastructure at each POI has agreed to this data
collection as part of the sign-on agreement. For privacy issue,
we collect user-generatedWiFi logs as hashed entities with no
additional knowledge about them and finish collecting data
when the user leaves the shopping mall. We believe that this
is a privacy-safe application.

Based on the above definitions, we formulate the prob-
lem of generating user’s indoor spatiotemporal trajectory
as follows: given a user-generated WiFi logs 𝑆 in one vis-
iting and POI feature set 𝐹 = {𝑓𝑝1 , 𝑓𝑝2 , . . . , 𝑓𝑝𝑁}, obtain
the corresponding indoor spatiotemporal trajectory Traj =⟨𝑞1, 𝑞2, . . .⟩.
3.2. Solving Approach. The idea behind our solving approach
is to utilize theWiFi RSSI fluctuation of a small time window
when passing a physical boundary point.The principle is that
WiFi RSSI is relatively stable in a small area according to the
indoor propagation model of wireless signal [23]. However,
some indoor physical constraints, that is, POI’s entrances and
stairs, will cause WiFi RSSI change dramatically even in a
small area. Table 1 shows that the RSSI sequences extracted
from a small time window include 7WiFi RSSI records when
a user walks through a POI entrance; the location for collect-
ing {𝑅1, 𝑅2, 𝑅3} is outside the POI, nearby the POI entrance
when collecting {𝑅4, 𝑅5}, and inside POI when collecting{𝑅6, 𝑅7}. We further calculate the Euclidean distance between
two adjacent records as follows: Dist = {26, 4, 17, 77, 19, 4}.
Obviously, the WiFi RSSI will have a dramatic “jump” when
people walk through the POI entrance.

Based on the above analysis, our approach generates user’s
indoor spatiotemporal trajectory by the following two steps.

Step 1 (recognize POI entrance). Given a user-generated
WiFi logs 𝑆 = (⟨𝑡1, 𝑅𝑡1⟩, ⟨𝑡2, 𝑅𝑡2⟩, . . . , ⟨𝑡𝑛, 𝑅𝑡𝑛⟩), we define𝐹(𝑡𝑖, ℎ) as theWiFi RSSI variation in time window (𝑡𝑖 −ℎ, 𝑡𝑖 +ℎ), as shown in

𝐹 (𝑡𝑖, ℎ) = 1𝑀
𝑀∑
𝑖=1

𝐷(𝑅𝑖) , (1)

where𝑀 is the number ofWiFiAPs and𝐷(𝑅𝑖) is the variation
of WiFi RSSI from WiFi AP 𝑖 during this time window, as
calculated in

𝐷(𝑅𝑖) = 12ℎ + 1
𝑡𝑖+ℎ∑
𝑗=𝑡𝑖−ℎ

(𝑅𝑖𝑗 − 𝑅𝑖)2 , (2)

where 𝑅𝑖 is the average WiFi RSSI from AP 𝑖 and 𝑅𝑖𝑗 is the
WiFi RSSI from AP 𝑖 at timestamp 𝑗.

Based on the WiFi RSSI variation, we can obtain the
time 𝑡𝑖 when user may pass a POI entrance if the WiFi RSSI
variation in time segment (𝑡𝑖 − ℎ, 𝑡𝑖 + ℎ) is larger than a
threshold 𝜃.

As mentioned above, we recognize indoor POI entrance
using the WiFi RSSI jump characteristic, which may bring
some false recognitions, since other factors (e.g., crowd pass-
ing and room layout change) may result in similar RSSI jump
characteristic. However, the WiFi RSSI jump characteristic
caused by these factors (e.g., crowd passing and room layout
change) is temporary, while that caused by POI entrances
is stable (there is an obvious RSSI jump characteristic when
users pass through a POI entrance). Therefore, we utilize a
user-specific threshold method to remove false recognitions.
Formally, let 𝑅𝑖 as the scanning WiFi RSSI record that user
may walk through a POI entrance, and 𝜃 and 𝜏 are the user-
specific threshold. We consider 𝑅𝑖 as a false recognition if

𝐼 (󵄩󵄩󵄩󵄩󵄩󵄩𝑅𝑖, 𝑅𝑗󵄩󵄩󵄩󵄩󵄩󵄩 < 𝜃) < 𝜏, (3)

where ‖𝑅𝑖, 𝑅𝑗‖ is the Euclidean distance between 𝑅𝑖 and 𝑅𝑗
and 𝐼(‖𝑅𝑖, 𝑅𝑗‖ < 𝜃) means the number of RSSI records that
the Euclidean distance between 𝑅𝑖 and 𝑅𝑗 is smaller than 𝜃.
Step 2 (map WiFi RSSI to POI). After obtaining time set𝑇 = {𝑡𝑝, 𝑡𝑝+1, . . . , 𝑡𝑞} when user walks through POIs en-
trance, we first split the WiFi logs 𝑆 into a subsequence set𝑆 = {𝑆𝑡1 :𝑡𝑝 , 𝑆𝑡𝑝 :𝑡𝑝+1 , . . . , 𝑆𝑡𝑞−1 :𝑡𝑞 , 𝑆𝑡𝑞 :𝑡𝑛} and then map each subse-
quence to the corresponding POI using POI feature set.
Finally, we construct indoor spatiotemporal trajectory
according to Definition 2.

The framework of generating indoor spatiotemporal tra-
jectory is described in Algorithm 1.
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Table 2: Notations used in indoor POI recommendation.

Symbol Description
𝑃,𝑈,TS The set of POIs, users, and timestamps𝑁,𝑀 The number of POIs and WiFi APs𝜑𝑢𝑝 The visiting interaction between user 𝑢 and POI 𝑝
Traj𝑢 A trajectory of user 𝑢𝐼𝑢 The interest of user to POIs𝑤𝑢𝑖 The relation strength of user 𝑢 to POI 𝑝𝑖
sim(𝑢𝑖, 𝑢𝑗) The similarity of two user’s interest

4. Indoor POI Recommendation Algorithm

In this section, we first introduce the key data structures
and notations used in our POI recommendation algorithm
and then present the offline modelling part and online
recommendation part of the proposed algorithm.

4.1. Preliminary. For ease of the following presentation, we
define the key data structures and notations used in the
proposed approach. Table 2 lists the relevant notations used
in this paper.

Definition 6 (User-POI visiting interaction). A visiting inter-
action is a triple 𝜑𝑢𝑝 = ⟨𝑢, 𝑝, ts⟩, which means user 𝑢 visits
POI 𝑝 at a particular timestamp ts. Information about the
user and POI history interaction is given by {⟨𝑢, 𝑝, ts⟩ | 𝑢 ∈𝑈 ∧ 𝑝 ∈ 𝑃 ∧ ts ∈ TS}.

Note that the interaction between user and POI carries
three-dimensional information: user, POI, and timestamp,
which can provide rich information to learn the latent
relationship between user and POI. Typically, different users
have different interesting POIs in indoor environment. For
instance, customers choose to visit shops according to their
income level or visit clothing shops based on personal dress
style.The timestamp of interactions carries certain behaviour
patterns; that is, people usually eat lunch at 12:00 p.m.–14:00
p.m., which means that a customer has a higher probability
to check in a restaurant rather than a clothing store at this
timestamp. In addition, the stay time when a customer visits
different shops implies her preference since most users have
finite resources; the more time spent in a shop indicates the
more interesting. Obviously, the time dimension information
can help to better recommend POIs to users.

Definition 7 (User-POI relation). The relation strength indi-
cates the interest of a user 𝑢 for POIs, which is defined as a
vector 𝐼𝑢 = {𝑤𝑢1, . . . , 𝑤𝑢𝑖, . . . , 𝑤𝑢𝑁}, where 0 ≤ 𝑤𝑢𝑖 ≤ 1.
Definition 8 (User-User relation). The relation strength
sim(𝑢𝑖, 𝑢𝑗) indicates the similarity of two user’s POI interest.

Definition 9 (relation graph). We denote the graph by 𝐺 =⟨𝑉, 𝐸⟩, which is an undirected bipartite graph. Here 𝑉 =𝑈 ∪ 𝑃, where 𝑈 and 𝑃 are the sets of users and POIs,
respectively. Edges 𝐸 = 𝐸𝑈 ∪ 𝐸𝐼, where 𝐸𝑈 = {(𝑢, 𝑢󸀠) :(𝑢, 𝑢󸀠) ∈ 𝑈 × 𝑈} represents the relation between users, and

𝐸𝐼 = {(𝑢, 𝑝) : (𝑢, 𝑝) ∈ 𝑈 × 𝑃} represents the relation strength
between users and POIs.

4.2. OfflineModelling. In this subsection, we first describe the
offlinemodelling part of the proposedmethod, a graph-based
model to capture the relation between User-User and User-
POI, and then present the inference process. Our goal of the
inference process is to derive the pairwise relevance scores for
each pair of User-User. To achieve this, a random walk with
restart (RWR) [24] is performed on the constructed relation
graph, and the value of relevance scores reflects the relation
strength of users.

4.2.1. Relation Graph Construction. Our approach for con-
structing relation graph is comprised of two stages.

In the first stage, we calculate the initial relation strength
of User-POI and User-User from user’s visiting trajectories.
More exactly, the two kinds of relation strength calculation
are described as follows.

User-POI Relation Calculation. We calculate the initial rela-
tion strength of a user to POI with considering two factors:
one is the POI check-in frequency and another is the average
stay time of this POI. Obviously, the more times user visits a
POI and the longer stay time demonstrate the more interest
for this POI. Therefore, we calculate the User-POI relation
strength as shown in

𝐼 (𝑢, 𝑝𝑖) =
𝐶𝑢∑
𝑘=1

𝑇𝑘 (𝑢, 𝑝𝑖)
max (𝑇𝑘 (𝑢)) , (4)

where𝑇𝑘(𝑢, 𝑝𝑖) is the stay time of user 𝑢 in POI𝑝𝑖 at trajectory𝑇𝑘, max(𝑇𝑘(𝑢)) is the longest POI stay time of user 𝑢 at
trajectory 𝑇𝑘, and 𝐶𝑢 is the history trajectories of 𝑢.
User-User Relation Calculation. Following the principle of
collaborative filtering, we use Pearson’s correlation [25] to
measure User-User relation strength based on User-POI
relation, and the relation strength sim(𝑢𝑖, 𝑢𝑗) is defined as

sim (𝑢𝑖, 𝑢𝑗)

= ∑𝑝𝑘∈𝑝𝑖𝑗 (𝐼 (𝑢𝑖, 𝑝𝑘) − 𝐼 (𝑢𝑖)) (𝐼 (𝑢𝑗, 𝑝𝑘) − 𝐼 (𝑢𝑗))
√var (𝑢𝑖) ⋅ √var (𝑢𝑗) , (5)

where 𝐼(𝑢𝑖) and 𝐼(𝑢𝑗), respectively, represent the average
relation strength that users 𝑢𝑖 and 𝑢𝑗 have given to all POIs,𝑝𝑖𝑗 represent the POIs that are visited by both users 𝑢𝑖 and 𝑢𝑗,
and var(𝑢𝑖) and var(𝑢𝑗) are calculated according to

var (𝑢𝑖) = ∑
𝑝𝑘∈𝑝𝑖𝑗

(𝐼𝑢𝑖 ,𝑝𝑘 − 𝐼𝑢𝑖)2 ,

var (𝑢𝑗) = ∑
𝑝𝑘𝑘∈𝑝𝑖𝑗

(𝐼𝑢𝑗,𝑝𝑘 − 𝐼𝑢𝑗)2 .
(6)

At the second stage, we model the POIs, users, and User-
POI interaction in a relation graph based on the two kinds



6 Mobile Information Systems

Require: (1) User-generated WiFi logs 𝑆 = ⟨𝑠1, 𝑠2, . . . , 𝑠𝑛⟩; (2) POI
fingerprint set 𝐹 = (𝑓1, 𝑓2, . . . , 𝑓𝑁),

Ensure: Indoor spatio-temporal trajectory Traj.
(1) Initial user trajectory Traj = 0.
(2) Obtain the time set 𝑇 = {𝑡𝑝, 𝑡𝑝+1, . . . , 𝑡𝑞} that user walks through

POIs entrance according to RSSI variation.
(3) Split 𝑆 into a subsequence set 𝑆 = {𝑆𝑡𝑜 :𝑡𝑝 , 𝑆𝑡𝑝 :𝑡𝑝+1 , . . . , 𝑆𝑡𝑞−1 :𝑡𝑞 }.
(4) for ∀𝑆𝑡𝑘 :𝑡𝑘+1 ∈ 𝑆 do
(5) Initial POI set 𝑃 = 0.
(6) for ∀𝑡𝑖 ∈ (𝑡𝑘, 𝑡𝑘+1) do
(7) Obtain the corresponding POI 𝑝 at time 𝑡𝑖 using nearest

neighbour.
(8) Add 𝑝 to 𝑃.
(9) end for
(10) Find the element 𝑝𝑘 with the most times in 𝑃.
(11) Obtain the timestamp Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘
(12) Construct triple 𝑞𝑘 = ⟨𝑢, 𝑝𝑘, Δ𝑡⟩ and add 𝑞𝑘 to trajectory

Traj.
(13) end for
(14) return Indoor Spatio-temporal trajectory Traj.

Algorithm 1: Generating indoor spatiotemporal trajectory.
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Figure 2: Two-layer relation graph using historical spatiotemporal
trajectories.

of relation strengths obtained from the first stage, as shown
in Figure 2. The relation graph contains a user layer and
a POI layer; each node in the user layer represents a user
of which the edge between any two users represents their
relation strength. Each node in the POI layer represents a
POI while the edge between a user and a POI represents
the User-POI relation strength. We formally described the
relation graph construction as follows.

As described in Definition 9, we construct the relation
graph including user layer and POI layer. The edge weight
in the user layer is calculated according to (5), while the
edge weight between user and POI is calculated according
to (4). We formulate the weight matrix 𝑊 of graph 𝐺 as (7),
where𝑊𝑈 and𝑊𝐼 are the weight matrix of edges 𝐸𝑈 and 𝐸𝐼,
respectively. Since we do not consider the relation between
POIs,𝑊𝑃 is a zero matrix.

𝑊 = [𝑊𝑈 𝑊𝐼
𝑊𝑇𝐼 𝑊𝑃] . (7)

4.2.2. User-User Relation Inference. Existing indoor POI rec-
ommendation algorithms, that is, user-based [13] method
or item-based method [15], will suffer serious data sparsity
problem since numerous users only have few POI check-
ins. In addition, few historical trajectories cannot reflect
user’s POI preference and further infer reasonable User-
POI relation and thus may result in cold-start problem
in recommendation system. To address this challenge, we
perform the random walk with restart to derive the relation
between each pair of users.This method first infers transition
probabilities between users based on their similarities and
models finite length random walks on the user space to
compute predictions, which is especially useful when training
data is less than plentiful, that is, when typical similarity
measures fail to capture actual relationships between users
(such as data sparsity challenge). On the other hand, our
method has resemblance to the studies in [26, 27] in the
manner by which they deal with sparsity problem. The goal
of RWR in our approach is to find neighbour users with top-
K highest relevance score for a given user based on their
historical POI check-ins.

Random walk on relation graph can alleviate the sparsity
problem in indoor POI recommendation by fusing mul-
tirelation between users and POIs. Users usually have few
check-ins for most POIs; thus the directly connected vertices
are sparse. However, one vertex can reach another vertex
through hidden propagation path, which can better estimate
the relation strength between two vertices that are not directly
connectedwith these hiddenpropagation paths.The intuition
on howhidden propagation paths can alleviate sparsity can be
explained by the following example.

Example 10. Suppose we need to infer the relation between
two vertices: 𝑢1 and 𝑢4 (as shown in Figure 3), which is
not directly connected in the relation graph. Since 𝑢1 has an
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Figure 3: Example of inferring the relation strength between two users by hidden relationships.

edge with 𝑢2 and 𝑢3, respectively, we can find some hidden
relations between 𝑢1 and 𝑢4 through intermediate vertices
(e.g., 𝑝1). More exactly, we can find one hidden propagation
path ⟨𝑢1 → 𝑝1 → 𝑢3 → 𝑢4⟩ from the User-POI relation
and two hidden propagation paths ⟨𝑢1 → 𝑢2 → 𝑢4⟩ and⟨𝑢1 → 𝑢3 → 𝑢4⟩ from the User-Store relation. Such hidden
propagation paths are beneficial to infer the relation strength
of two vertices that are not connected directly, thus alleviating
the data sparsity problem.

Without loss of generality, we assume the random walker
starts from a user node 𝑢𝑖 on graph 𝐺. Then, the random
walker iteratively transmits to other nodes which have edges
with 𝑢𝑖, with the probability that is proportional to the edge
weight between them. At each step, 𝑢𝑖 also has a restarting
probability 𝜆 to return itself. We can obtain the steady-state
probability of 𝑢𝑖 by visiting other vertexes when the RWR
process is converged. The RWR process can be formulated as

𝑌𝑡+1 = (1 − 𝜆)𝑀𝑝𝑌𝑡 + 𝜆𝑋, (8)

where 𝑌 and 𝑋 are two 𝑅𝑁×1 vectors, 𝑋 is the initial relation
strength of target user 𝑢𝑖 to other users and calculated as (5),𝑌𝑡 represents the probability distribution in step 𝑡 and𝑌0 = 𝑋,
and 𝑀𝑝 is the transition matrix, which is obtained based on
weight matrix𝑊 of 𝐺 by now normalization, as shown in

𝑀𝑝 = 𝑊𝐷−1, (9)

where𝐷 is a diagonal matrix with𝐷(𝑖, 𝑖) = ∑𝑗𝑊(𝑖, 𝑗).
4.3. Online Recommendation. After constructing the relation
graph, the problem of recommendation POIs to a target user𝑢𝑖 can be converted to calculate the relation strength between
vertex 𝑢𝑖 and the unvisited POIs and then generate POI
recommendation lists according to the top-𝑘 relation strength
rank.

Following the principle of collaborative filtering, we
calculate the relation strength between vertex𝑢𝑖 andunvisited
POI 𝑝𝑘 as

𝐼 (𝑢𝑖, 𝑝𝑘) = ∑
𝑢𝑗∈𝑈

sim (𝑢𝑖, 𝑢𝑗) (𝐼 (𝑢𝑗, 𝑝𝑘) − 𝐼 (𝑢𝑗)) , (10)

Table 3: Statistics of shop categories.

Restaurant Fashion Leisure Fitness
19 23 8 10

where sim(𝑢𝑖, 𝑢𝑗) represents the relation strength between 𝑢𝑖
and 𝑢𝑗, 𝐼(𝑢𝑗, 𝑝𝑘) is the relation strength of 𝑢𝑗 to 𝑝𝑘, and 𝐼(𝑢𝑗)
is the average relation strength of 𝑢𝑗 and all POIs.

Algorithm 2 formally describes the proposed two-stage
approach for recommendation indoor POIs to users in urban
shoppingmall.The framework consists of two stages. First, as
shown in Lines 2∼5, we calculate the initialUser-POI relation
strength and User-User relation strength from user’s indoor
spatiotemporal trajectories. Second, as depicted in Lines 6∼
8, we construct relation graph and perform a random walk
with restart to infer User-User relation strength. Third, we
calculate the relation strength of the target user to his/her
unvisited POIs as shown in Lines 11∼13. Finally, we obtain
top-k POIs with the highest relation strength as the POI
recommendation list.

5. Experiment Evaluation

In this section, we report on the results of a series of
experiments conducted to evaluate the performance of the
proposed approach to generate indoor spatiotemporal tra-
jectory and recommend top-𝑘 POIs to users, followed by
discussion. Our experiment environment is a large indoor
shopping mall with four floors and over 60 shops, and we
regard each shop as an indoor POI, and these shops belong
to 4 categories given by the mall owner, as shown in Table 3.

5.1. Generate Indoor Spatiotemporal Trajectory. In this sub-
section, we describe the experimental settings for generat-
ing user’s indoor spatiotemporal trajectory using WiFi logs
including datasets, comparative approaches, and the evalua-
tionmetric.We then report the performance of our proposed
method and compare it with three baseline methods.

5.1.1. Experimental Datasets. To evaluate our proposed
approach for generating user’s indoor spatiotemporal trajec-
tory using WiFi logs, we develop a mobile application based
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Require: (1) User set 𝑈, POI set 𝑃, and user’s indoor spatial-temporal
trajectory 𝑇; (2) Target user 𝑢𝑖

Ensure: POI recommendation list of user 𝑢𝑖.
(1) Stage 1: Relation graph construction and inference.
(2) for ∀𝑢 ∈ 𝑈 do
(3) Calculate initial User-POI relation strength according to Equation (4);
(4) Calculate initial User-User relation strength according to Equation (5);
(5) end for
(6) Construct relation graph 𝐺;
(7) Obtain transition probability matrix𝑀𝑝 according to Equation (9);
(8) Perform random walk with start over 𝐺 to infer User-User relation;
(9) Stage 2: POI online recommendation
(10) Obtain the unvisited POIs set 𝑃𝑖 of target user 𝑢𝑖
(11) for ∀𝑝 ∈ 𝑃𝑖 do
(12) Calculate User-POI relation strength 𝐼(𝑢𝑖, 𝑝) according to Equation (10).
(13) end for
(14) Rank ∀𝑝 ∈ 𝑃𝑖 according to 𝐼(𝑢𝑖, 𝑝).
(15) return Select top-K POIs as the recommendation list of 𝑢𝑖.

Algorithm 2: The proposed two-stage approach for indoor POI recommendation.

Table 4: One example of WiFi RSSI record.

[001] ⋅ ⋅ ⋅ [57] [58]
−61 ⋅ ⋅ ⋅ −75 2016/11/12 14:48:23

on Android system to collect experimental dataset with a
sampling rate of 1Hz. The format of each record is a triple:⟨mac, time, 𝑅⟩, where mac is the MAC address of scanning
device and time is the time of collecting data.𝑅 is the scanned
RSSI from surrounding WiFi APs, which is represented as a
serial of tuples rssi = {⟨mac1, 𝑟1⟩, . . . , ⟨mac𝑖, 𝑟𝑖⟩, . . .}, where
mac𝑖 represents the MAC address of ap𝑖 and 𝑟𝑖 is the scanned
RSSI from ap𝑖.

We invite 25 volunteers carrying mobile phones to collect
WiFi logs of 117 predefined trajectories for evaluating the
performance of mining indoor trajectory. The predefined
information includes the check-in time and check-out time
of each shop, which can be regarded as ground-truth data
to evaluate the performance of generating indoor spatiotem-
poral trajectory. After analysis, there are 57 different WiFi
APs in all WiFi logs; we extend each RSSI record to a 58-
dimensional vector. For WiFi AP without scanning RSSI
value, we set −110 dBm as default value in RSSI record. An
example of RSSI record is shown in Table 4. In addition, we
collect 100 WiFi RSS records in each shop to construct POI
feature set according to Definition 4. Note that the phase for
constructing POI feature set is not time-consuming and labor
intensive, since two hours are enough to collect 6000 RSSI
records (the sample rate is 1 Hz) for constructing POI feature
set.

5.1.2. Comparative Approaches. We compare our proposed
method for generating indoor trajectory with the following
three competitor methods:

(i) RSSI-NN. This approach obtains the corresponding
POI of each RSSI record using fingerprint-based

positioning method [28], which regards raw WiFi
RSSI as POI feature and uses nearest neighbour as
matching method.

(ii) DIFF-NN. DIFF-NN [29] uses the difference of RSSI
between each pair ofWiFi APs as POI feature to solve
the RSSI variation problem caused by heterogeneous
devices.

(iii) Weight-RSS. Weight-RSS [1] utilizes both the raw
WiFi RSSI and their relation to design stable POI
fingerprint and uses a weighted 𝑘-nearest neighbour
as matching method.

After mapping each record of WiFi logs to POI with the
above threemethods, we construct the corresponding indoor
trajectory as Definition 2.

5.1.3. Evaluation Metric. For evaluating the performance of
generating indoor spatiotemporal trajectory usingWiFi RSSI,
we first need to define the distance of two trajectories.
Let 𝐶𝑖𝑗 = {𝑝1, 𝑝2, . . . , 𝑝𝑘} denote the common POI set of
trajectory Traj𝑖 and Traj𝑗, and then the longest common
subsequence of Traj𝑖 and Traj𝑗 is defined as

LCSS (𝐶𝑖𝑗)
= {{{

0, 𝑘 = 0,
LCSS (Rest (𝐶𝑖𝑗)) + 1, 󵄨󵄨󵄨󵄨󵄨𝑡𝑖 (𝑝𝑘) − 𝑡𝑗 (𝑝𝑘)󵄨󵄨󵄨󵄨󵄨 < 𝜃,

(11)

where |𝑡𝑖(𝑝𝑘)−𝑡𝑗(𝑝𝑘)| < 𝜃means that the stay time difference
of 𝑝𝑘 in Traj𝑖 and Traj𝑗 is less than a threshold and Rest(𝐶𝑖𝑗) ={𝑝1, 𝑝2, . . . , 𝑝𝑘−1}.

Following the work of [30], we define the distance of Traj𝑖
and Traj𝑗 as

Dist (Traj𝑖,Traj𝑗) = 1 − LCSS (𝐶𝑖𝑗)
min {𝑙𝑖, 𝑙𝑗} , (12)
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Table 5: Recognition accuracy of shop entrance with different time window sizes and user-specific thresholds.

2ℎ + 1 𝜃
50 100 150 200 250 300 350

1 0.02 0.05 0.09 0.11 0.17 0.14 0.1
3 0.06 0.11 0.28 0.39 0.47 0.43 0.37
5 0.09 0.26 0.43 0.59 0.71 0.65 0.53
7 0.08 0.21 0.37 0.51 0.62 0.54 0.48
9 0.05 0.13 0.28 0.41 0.47 0.39 0.27

where 𝑙𝑖 and 𝑙𝑗 are the POIs number of Traj𝑖 and Traj𝑗,
respectively.

5.1.4. Experimental Results

(1) Recognize Shop Entrance. In our proposed method, three
parameters that directly impact the performance of recog-
nizing shop entrance need to be determined, and they are
as follows: time windows size (2ℎ + 1) for calculating the
RSSI “jump” variation and user-specific thresholds 𝜃 and 𝜏
for removing false recognition. We empirically set 𝜏 = 10 for
removing false recognition of shop entrance.

Table 5 shows the recognition accuracy as a function of
time window size and user-specific threshold 𝜃 for recogniz-
ing shop entrance, respectively. From this table, we observe
the following: (1) the accuracy drops sharply when the user-
specific threshold 𝜃 is lower than 150 or greater than 350 and
achieves the highest accuracy when 𝜃 = 250. (2) Set 𝜃 = 250;
the accuracy increases with the time window size increasing
from 1 to 5 and slightly decreases when the time window size
is larger than 5, since the RSSI fluctuation caused by shop
entrance and other factors will be smaller with increasing
time window size. Finally, the best performance (71%) is
achieved when 𝜃 = 250 and 2ℎ + 1 = 5.

Figures 4(a) and 4(b) show the performance of filtering
false identification as a function of user-specific threshold
and time window size, respectively. From the two figures, we
observe the following: (1) Set the timewindow size 2ℎ+1 = 5,
and the filtering performance declines sharplywhen variation
coefficient 𝜃 is lower than 200 and achieves the best accuracy
when 𝜃 = 250. (2) Set 𝜃 = 250, and the filtering accuracy
increases with increasing the number of time window sizes
between 3 and 5 and slightly decreases when the timewindow
size is larger than 5. The reason is that the difference of RSS
fluctuation between physical boundary points and normal
locations will be smaller with increasing the time window
size.

Set 𝜃 = 250 and 2ℎ + 1 = 5, and we investigate the recog-
nition accuracy with different sampling rates in Figure 4(c).
From this figure, we observe that the recognition perfor-
mance increases slightly with the sampling rate increasing
from 500ms to 1000ms and drops significantly when the
sampling rate is larger than 1000ms. The best recognition
performance is achieved when setting the sampling rate as
1000ms. For example, the recognition accuracy is 70.4% after
removing false recognition when setting the sampling rate as
1000ms, while the recognition accuracy is only 24.7% after
removing false recognition when setting the sampling rate as

3000ms. The reason is that when collecting RSS values of
a relatively short or long period (e.g., 0.5 s or 3 s), the RSS
values of both physical boundary point and normal location
will fluctuate wildly when users are moving and thus cannot
effectively identify physical boundary points.

(2) Map WiFi Logs to Indoor Spatiotemporal Trajectory.
Figure 5 shows the performance for generating indoor spa-
tiotemporal trajectory with different methods. We can see
that the performance is the same for the three compara-
tive methods, since they are based on a fingerprint-based
positioning method using RSSI. Our method outperforms
the three methods according to Figure 5. More exactly, the
percentage that trajectory distance is less than 0.5 for our
method is 81% and 67% for DIFF-NN, 60% for weight-RSS,
and 46% for RSSI-NN. The reason our method achieves
better performance is that our method can better recognize
POI entrance and further more accurately divide WiFi RSSI
records into the corresponding POIs, using the RSSI variation
characteristics caused by the POI entrance. In contrast, the
performance of other three methods will rapidly decline due
to the RSSI variation caused by heterogeneous devices or
environmental changes.

In addition, we also compare the processing time of
generating trajectories for the four methods, as shown in
Figure 6. In this figure, we can see thatDIFF-NN is very time-
consuming compared to the other three methods.The reason
is that DIFF-NN will suffer the curse of dimensionality with
numerous WiFi APs, since it constructs POI feature using
the difference of each pair of WiFi APs. Our method needs
the least time costs. The reason is that our approach firstly
splits RSSI sequence into POIs. Therefore, our method does
not require dealing with WiFi RSSI records outside POIs.

5.2. Indoor POI Recommendation. In this subsection, we
describe the experimental settings for indoor POI recom-
mendation, including datasets, comparative approaches, and
the evaluationmetric.We then report the performance of our
proposed method and compare with five baseline methods.

5.2.1. Experimental Datasets. We gather an anonymous
dataset from468 registered customers using an opt-inWLAN
in an urban shopping mall over 33 days. Firstly, we filter out
these WiFi logs that are generated from mall workers and
shop employees using the check-in frequency. More exactly,
we consider a user as a mall worker or shop employee if
his/her check-in frequency ismore than 15 during the 33 days.



10 Mobile Information Systems

50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Re

co
gn

iti
on

 ac
cu

ra
cy

A�er �ltering
Before �ltering



(a) The accuracy with different user-specific threshold (𝜃)

A�er �ltering
Before �ltering

1 3 5 7 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time window size

Re
co

gn
iti

on
 ac

cu
ra

cy

(b) The accuracy with different time window sizes (2ℎ + 1)

1000 1500 2000 2500 3000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

�e sampling rate (ms)

Re
co

gn
iti

on
 ac

cu
ra

cy

A�er �ltering
Before �ltering

(c) The accuracy with different sampling rates

Figure 4: The accuracy with different parameters.

Table 6: Statistics of data set for indoor POI recommendation.

Number of shops 60
Number of customers 468
Number of WiFi logs 1021
Number of WiFi records 9,556,560
Average RSSI records of each WiFi logs 9360
Average number of visited shops per customer 13
Average number of check-ins per shop 221

After preprocessing, the dataset consists of 1021WiFi logs and
over 9,556,560WiFi RSSI records. More details of the dataset
are shown in Table 6.

5.2.2. Comparative Approaches. We compare our method
with the following five well-known recommendation algo-
rithms that have been widely used in POI recommendation
systems.

(i) Content-Based k-Nearest Neighbours Algorithm
(CBNN) [31]. CBNN utilizes all user’s trajectories to
create a POI-POI matrix 𝑀, and 𝑀(𝑖, 𝑗) represents
the similarity of 𝑝𝑖 and 𝑝𝑗 based on the visiting
correlation of POIs. Formally,𝑀(𝑖, 𝑗) is defined as

𝑀(𝑖, 𝑗) = 𝜏𝑝𝑖 ∩ 𝜏𝑝𝑗𝜏𝑝𝑖 ∪ 𝜏𝑝𝑗 , (13)
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where 𝜏𝑝𝑖 and 𝜏𝑝𝑗 denote the set of trajectories include𝑝𝑖 and 𝑝𝑗, respectively.
For a unvisited POI𝑝𝑥, CBNNfirst retrieves𝐾nearest
neighbour POIs 𝑃 = {𝑝1, . . . , 𝑝𝑘} which have been
visited by the target user 𝑢 using POI-POI matrix.
Then, calculate the recommendation score of𝑝𝑥 using
User-POI relation, as shown in

Score (𝑝𝑥) = 𝐾∑
𝑖=1

𝐼 (𝑢, 𝑝𝑖) . (14)

(ii) Item-Based Collaborative Filtering Algorithm (Item-
Based CF) [32]. This method formulates User-POI
matrix and POI-POI matrix according to (4) and (13)
and then applies item-based collaborative filtering to
calculate the recommendation score of unvisited POIs
for the target user.

(iii) User-Based Collaborative Filtering Algorithm (User-
Based CF) [33]. Similar to Item-Based CF, thismethod
first obtains User-POI matrix and User-User matrix

according to (4) and (5) and then applies user-based
collaborative filtering to calculate the recommenda-
tion score of unvisited POIs.

(iv) Collaborative Filtering Based Location Cooccurrence
(LCCF) [34]. LCCF calculates the recommendation
score of unvisited POI by combining other user’s
visiting history of the POI. Let 𝑐⟨𝑢, 𝑝⟩ = 1 if 𝑢 has
visited POI 𝑝, and 𝑐⟨𝑢, 𝑝⟩ = 0 otherwise; 𝐶𝑢 =(𝑐⟨𝑢, 𝑝1⟩, . . . , 𝑐⟨𝑢, 𝑝𝑁⟩) is the check-in vector of cus-
tomer 𝑢. Then, the recommendation score between 𝑢
and an unvisited POI 𝑝 is calculated by

score (𝑢, 𝑝) = ∑V∈𝑈 sim (𝑢, V) ∗ 𝑐 ⟨V, 𝑝⟩
∑V∈𝑈 sim (𝑢, V) , (15)

where sim(𝑢, V) is the similarity between user 𝑢 and
user V and is calculated using the cosine similarity
between 𝐶𝑢 and 𝐶V.

(v) Rule-Based Recommendation Algorithm (RBCA) [15].
RBCA estimates user’s POI preference by linearly
fusing three factors: time spent in a POI, check-in fre-
quency of a POI, and matching between promotional
activities in the POI and user preference towards
promotional activities. Recommendation rules are
extracted according to two assumptions: one is that
the higher the user’s preference for a POI is, the more
likely he/she is to visit the store; another is that a user
will visit the POI in which promotions are in line with
his preference.

(vi) Graph Recommendation Based Random Walk with
Restart (RWR) [24]. This method first constructs a
graph, where a node in the graph denotes a POI
and the weights between nodes are assigned using
the POI’s relation. Then, RWR considers the POI
recommendation as an entity ranking problem on the
graph and utilizes personalized PageRank algorithm
[35] to generate top-𝑘 recommended POIs.

5.2.3. Evaluation Metric. For each user 𝑢 in 𝑇test, using 𝑃te(𝑢)
represents POIs where 𝑢 has been visited in the test set. Let
hit(𝑢) represent the recommendation POIs that appear in𝑃te(𝑢), which means that 𝑢 is interesting in POIs of hit(𝑢).
Then, we define the recommendation hit rate as

Hit (𝑘) = hit (𝑢)𝑘 , (16)

where 𝑘 is the length of recommendation list.
For evaluating the effectiveness of the proposed POI

recommendation algorithm, we randomly select 30% of
indoor trajectories as the test set and use the rest as training
set, denoted by 𝑇test and 𝑇training. We use 𝑇training to construct
the relation graph for inferring User-User relation and User-
POI relation. Specifically, 𝑇test includes 133 users as the target
users. For evaluation of the performance of the proposed
recommendation algorithm, we perform a top-k recommen-
dation task on the 133 target users.

In addition to hit rate, we also measure the recommen-
dation diversity of the proposed method, which indicates the
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surprise of recommended results. Following the work in [36],
we exploit the category information of POIs to evaluate the
recommendation diversity. For each user, the diversity div(𝑢)
is measured as follows:

div (𝑢) = 󵄨󵄨󵄨󵄨𝐶 (Tr𝑢) ∩ 𝐶 (Te𝑢)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐶 (Tr𝑢)󵄨󵄨󵄨󵄨 , (17)

where 𝐶(Tr𝑢) denotes the categories that 𝑢 likes in the
training data while 𝐶(Tr𝑢) ∩ 𝐶(Te𝑢) are the categories that
appear in the recommendation list of user 𝑢. Then, we
measure the total diversity of a recommendation algorithm
by averaging the diversity of all users:

div = ∑|Te|𝑢=1 div (𝑢)|Te| , (18)

where |Te| denotes the number of users in test data.

5.2.4. Experimental Results. In this subsection, we first report
the impact of model parameters for the proposed algorithm
and then present the results of our experiments for all users
and cold-start users, respectively.

(1) Impact of Model Parameters. Tuning model parameters,
such as the parameter 𝜆 for inferring the User-User relation
using randomwalk with restart, is critical to the performance
of the proposed algorithm. We study the impact of model
parameter (𝜆) on the dataset. Set the recommendation list𝑘 as 5, and we tested the performance of the proposed
recommendation model by varying parameter 𝜆 and present
the results in Figure 7. From the figure, we observe the
following: (1) the Hit(5) slightly increases with the increasing
of 𝜆 from 0.1 to 0.7 and then decreases when 𝜆 is greater
than 0.7; (2) the best performance Hit(5) = 0.281 is achieved
when 𝜆 = 7, which means a user will check in 28.1%
POIs of the recommendation list if we recommend 5 POIs
to the user. The reason is that the convergence of random
walk with restart is determined by the parameter 𝜆; that is,
a greater 𝜆 leads to faster convergence and thus can make
better recommendation. But an overlarge 𝜆 will cause a
high probability to return to the target user when selecting
recommended neighbours, thus reducing the number of high
quality recommended neighbours and further decreasing the
recommendation performance.

(2) Effectiveness of Recommendation for All Users. Figure 8
shows the recommendation hit rate of the six recommen-
dation algorithms. Note that we only perform experiments
where the recommendation list 𝑘 ∈ [1, 8], due to a greater
value of 𝑘, is usually ignored for top-k recommendation
task since there is 60 POIs in total. It is apparent that all
the six algorithms have significant performance disparity in
terms of top-k hit rate. As shown in Figure 8, the Hit(𝑘)
of our method is about 71% when 𝐾 = 1 and 35% when𝐾 = 4, which means that a user has 71% probability to
check in the recommended POI if we only recommend
one POI. Similarly, if we recommend 4 POIs to the user
each time, only 35% recommendation POIs can attract the
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Figure 7: The performance of Hit(5) with different 𝜆.
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Figure 8: The performance of top-k POI recommendation for all
users.

user’s attention. We can see that CBNN and LCCF perform
rather worse in the experiment, showing that only using
the location cooccurrence is not enough to learn user’s
preference. Item-based CF and User-based CF can achieve
better performance than CBNN, showing the advantages of
using collaborative filtering to model user’s preference and
POI’s characteristics. Obviously, our proposed method out-
performs the five recommendation algorithms significantly,
showing the advantages of our relation graph to capture
multirelation between users and POIs, which can bettermake
recommendation for “cold-start” users that only have little
historical visiting information.

Table 7 reports the results of diversity for the six rec-
ommendation algorithms. From this table, we can observe
the following: (1) Compared to recommendation algorithms
using POI correlation (such as CBNN, LCCF, and user-
based CF), item-based CF achieve much better diversity.
For example, item-based CF improves about 19% diversity
compared to CBNN, 24% diversity compared to LCCF,
and 13% diversity compared to user-based CF when the
recommendation list is 5. The reason is that user-based CF
usually recommends POIs with high popularity to users, so it
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Table 7: Recommendation diversity for all users.

Methods Length (𝑘)
3 5 7

CBNN 0.21 0.39 0.52
UBCA 0.27 0.51 0.63
LCCF 0.18 0.34 0.42
User-based 0.24 0.45 0.58
Item-based 0.31 0.58 0.71
RWR 0.27 0.52 0.64
Our method 0.29 0.56 0.67
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Figure 9:The performance of top-k POI recommendation for cold-
start users.

is insufficient to discover POIs in the long tail and thus result
in low recommendation diversity. (2) Our method achieves
slightly worse performance when compared to item-based
CF (item-based CF improves about average 2.3% compared
to our method), which is also much better than the other
four algorithms. This improvement is achieved by utilizing
random walk with restart to derive pairwise score between
each pair of users, which can solve the problem of data
sparsity to a certain extent.

(3) Effectiveness of Recommendation for Cold-Start Users.
Figure 9 reports the recommendation performance of the
six recommendation algorithms; similarly, we only perform
experiments where the recommendation list 𝑘 ∈ [1, 8]. From
this figure, we observe the following: (1) the performance of
all the six algorithms for cold-start users degrades signifi-
cantly compared to all users, showing data sparsity caused
by cold-start users bring serious challenge for indoor POI
recommendation. (2) Our method outperforms the other
five methods by improving average 6% hit rate, showing the
advantage of using random walk with restart to learn user’s
preference.

Table 8 reports the results of diversity for cold-start users
with the six recommendation algorithms. The results show
that, compared to traditional user-based models (user-based

Table 8: Recommendation diversity for cold-start users.

Methods Length (𝑘)
3 5 7

CBNN 0.11 0.18 0.3
UBCA 0.19 0.31 0.48
LCCF 0.09 0.16 0.21
User-based 0.12 0.22 0.37
Item-based 0.25 0.37 0.55
RWR 0.18 0.29 0.44
Our method 0.21 0.32 0.49
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Figure 10: The NDCG@5 for different group of users.

CF, LCCF, and CBNN), item-based CF achieves better
diversity. For example, item-based CF improves about 19%
diversity compared to CBNN, 21% diversity compared to
LCCF, and 15% diversity compared to user-based CF when
the recommendation list is 5. We can see that the diversity
improvement using item-based approaches compared to
user-based CF is much more for cold-start users than for all
users. We further observe that the proposed algorithm out-
performs user-based CF, but slightly worse diversity (about
5%) compared with item-based CF.

In summary, the proposedmethod substantially improves
the coverage of existing user-based POI recommendation
approaches while maintaining a slightly better hit rate. This
improvement is achieved by exploiting random walk with
restart to construct relation graph, which can better model
the preference of users with few POI check-ins.

5.2.5. A Case Study. We perform a case study on the useful-
ness of indoor POI recommendation. A group including 25
volunteers participated in the case study.

Dataset. As mentioned above, we invited 25 volunteers
carryingmobile phones to collect 117WiFi logs for evaluating
the performance of generating indoor trajectory. We utilize
this dataset for evaluating the performance of this case study,
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Figure 11: The NDCG@𝑘 for cold-start users.

as shown in Table 9. The volunteers are divided into 5 groups
(i.e., A, B, C, D, and E) according to average visited shops per
customer; we regard the volunteers of E group that have only
an average of four visiting shops as “cold-start” users.

Evaluation Metric. We utilize NDCG@k to evaluate the per-
formance of indoor POI recommendation. Let corr𝑖 denote a
relevance value, and NGCG@k is calculated as

NGCG@𝑘 = DCG (𝑘)
IDCG (𝑘) ,

DCG (𝑘) = corr1 + 𝑘∑
𝑖=2

corr𝑖
log2𝑖 ,

(19)

where IDCG(𝑘) is the DCG(𝑘) value of ideal ranking list.
For instance, if the recommendation list of a user is[𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5] for five stores while the ideal recommen-

dation list is [𝑝2, 𝑝3, 𝑝5, 𝑝4, 𝑝1] given by the user, then we can
calculate the NDCG@5 = 0.659 according to (19).
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Table 9: Dataset for case study.

Number of
users

Number of WiFi
logs

Number of
average visited

POIs
Category

4 9 38 A
5 8 29 B
3 6 22 C
5 3 10 D
8 1 4 E

Results. Figure 10 shows the NDCG@5 for the five group
users with three recommendation models: user-based CF,
RWR, and our method. The NDCG@5 is calculated as
follows: for a specific user, the recommendation model
firstly derives his/her shopping preference from check-in
records and then generates top 5 recommendation list using
the three recommendation models, respectively. For the
recommendation results, each user has an ideal rank list
answer in his or her mind. Based on the recommendation list
from recommendation model and user’s ideal rank list, the
NDCG@5 can be calculated as (19). From Figure 10, we can
observe the following: (1) for all the five groups of users, the
NDCG@5 of our proposedmodel is better than the compared
models (user-based CF and RWR). For example, the perfor-
mance improvement for group C users is about 13% and 8%
comparedwith user-basedCF andRWR; (2) the performance
improvement of recommendation model using random walk
is significant for “cold-start” users. For example, the perfor-
mance improvement of ourmethod for group E users is about
15% compared with user-based CF. The results suggest that
our recommendation algorithm can learn user’s preference
even with few POI check-ins by using a graph-based model
to capture the latent relation between users and POIs.

To investigate the recommendation effectiveness for
“cold-start” users, we further calculate the NDCG@𝑘 (i.e.,𝑘 ∈ [3, 5, 7]) for each user of E group, as shown in Figure 11.
From this figure, we can observe that, for all cold-start users,
the NDCG@k of our proposedmodel is much better than the
compared models (user-based CF and RWR), showing again
that the advantage of our method derives user’s preference
by using a graph-based model to capture the latent relation
between users and POIs.

6. Conclusion

This paper proposed a location-aware Point-of-Interest
recommendation system for urban shopping mall that
recommends a set of POIs to a user by mining cus-
tomer’s preference towards POIs from his/her historical
indoor trajectories. For generating indoor spatiotemporal
trajectories, we propose a novel method that utilizes the
propagation characteristics of WiFi RSSI in indoor space.
The proposed recommendation system cannot only facilitate
user’s shopping experience but also help the shop owner
better understand user’s shopping preference and intent. By
constructing a relation graph model and exploiting random
walk with restart, our recommendation algorithm can learn

user’s preference even with few POI check-ins. We evaluated
the proposed recommendation model on a real dataset
collected by 468 users over 33 days. The experimental results
show that our approach significantly outperforms existing
recommendation algorithms in recommendation hit rate and
diversity.

As future work, we plan to consider the POI semantic
information (such as POI service or online reviews) for
further improving the recommendation performance.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work has been supported by Hangzhou Key Laboratory
for IoT Technology & Application.

References

[1] Z. Zheng, Y. Chen, T. He, F. Li, and D. Chen, “Weight-
RSS: a calibration-free and robust method for WLAN-based
indoor positioning,” International Journal of Distributed Sensor
Networks, vol. 2015, Article ID 573582, 7 pages, 2015.

[2] A. W. S. Au, C. Feng, S. Valaee et al., “Indoor tracking and
navigation using received signal strength and compressive
sensing on a mobile device,” IEEE Transactions on Mobile
Computing, vol. 12, no. 10, pp. 2050–2062, 2013.

[3] L. Geng, M. F. Bugallo, A. Athalye, and P. M. Djuric, “Indoor
tracking with RFID systems,” IEEE Journal on Selected Topics in
Signal Processing, vol. 8, no. 1, pp. 96–105, 2014.

[4] R. Nandakumar, S. Rallapalli, and K. Chintalapudi, “Physical
analytics: A new frontier for (indoor) location research,” Tech.
Rep., Microsoft Research, Banglore, India, 2013.

[5] J.-B. Griesner, T. Abdessalem, and H. Naacke, “POI recommen-
dation: towards fused matrix factorization with geographical
and temporal influences,” in Proceedings of the 9th ACM
Conference on Recommender Systems (RecSys ’15), pp. 301–304,
September 2015.

[6] B. Liu, H. Xiong, S. Papadimitriou, Y. Fu, and Z. Yao, “A general
geographical probabilistic factor model for point of interest
recommendation,” IEEE Transactions on Knowledge and Data
Engineering, vol. 27, no. 5, pp. 1167–1179, 2015.

[7] T. Prentow, A. Thom, H. Blunck, and J. Vahrenhold, “Making
Sense of Trajectory Data in Indoor Spaces,” in Proceedings of the
16th IEEE International Conference onMobileDataManagement
(MDM ’15), pp. 116–121, usa, June 2015.

[8] M. Werner, L. Schauer, and A. Scharf, “Reliable trajectory
classification using Wi-Fi signal strength in indoor scenarios,”
in Proceedings of the 2014 IEEE/ION Position, Location and
Navigation Symposium (PLANS ’14), pp. 663–670, May 2014.

[9] L. Radaelli, D. Sabonis, H. Lu, andC. S. Jensen, “Identifying typ-
icalmovements among indoor objects - Concepts and empirical
study,” in Proceedings of the 14th International Conference on
Mobile Data Management (MDM ’13), pp. 197–206, June 2013.

[10] M. Dakkak, A. Nakib, B. Daachi, P. Siarry, and J. Lemoine,
“Mobile indoor location based on fractional differentiation,”
in Proceedings of the 2012 IEEE Wireless Communications and
Networking Conference (WCNC ’12), pp. 2003–2008, April 2012.



16 Mobile Information Systems

[11] S. Lee, B. Cho, B. Koo, S. Ryu, J. Choi, and S. Kim, “Kalman
filter-based indoor position tracking with self-calibration for
RSS variation mitigation,” International Journal of Distributed
Sensor Networks, vol. 2015, Article ID 674635, 10 pages, 2015.

[12] Y. Jin,W.-S. Soh, M.Motani, andW.-C.Wong, “A robust indoor
pedestrian tracking system with sparse infrastructure support,”
IEEE Transactions onMobile Computing, vol. 12, no. 7, pp. 1392–
1403, 2013.

[13] Z. Lin, Indoor Location-based Recommender System [Ph.D.
thesis], University of Toronto, 2013.

[14] P. Jin, J. Du, C. Huang, S. Wan, and L. Yue, “Detecting hotspots
from trajectory data in indoor space,” in Database Systems for
Advanced Applications, pp. 209–225, Springer, 2015.

[15] B. Fang, S. Liao, K. Xu, H. Cheng, C. Zhu, and H. Chen,
“A novel mobile recommender system for indoor shopping,”
Expert Systems with Applications, vol. 39, no. 15, pp. 11992–
12000, 2012.

[16] J. Pfeiffer, T. Pfeiffer, andM.Meißner, “towards attentive in-store
recommender systems,” in Reshaping Society through Analytics,
Collaboration, and Decision Support, pp. 161–173, Springer, 2015.

[17] M. Ruta, F. Scioscia, S. Ieva, D. D. Filippis, E. D. Sciascio et
al., “Indoor/outdoor mobile navigation via knowledge-based
poi discovery in augmented reality,” Archives of Gynecology and
Obstetrics, vol. 291, no. 1, pp. 59–66, 2015.

[18] M. Das, G. De Francisci Morales, A. Gionis, and I. Weber,
“Learning to question,” in Proceedings of the the 19th ACM
SIGKDD international conference, p. 203, Chicago, Illinois,
USA, August 2013.

[19] M. Paschou, E. Sakkopoulos, A. Tsakalidis, G. Tzimas, and E.
Viennas, “Intelligent mobile recommendations for exhibitions
using indoor location services,” Smart Innovation, Systems and
Technologies, vol. 25, pp. 19–38, 2013.

[20] H. Shin, Y. Chon, Y. Kim, and H. Cha, “A participatory service
platform for indoor location-based services,” IEEE Pervasive
Computing, vol. 14, no. 1, pp. 62–69, 2015.

[21] Z. Zheng, Y. Chen, T. He, L. Sun, and D. Chen, “Feature learn-
ing for fingerprint-based positioning in indoor environment,”
International Journal of Distributed Sensor Networks, vol. 2015,
Article ID 452590, 2015.

[22] A. B. M. Musa and J. Eriksson, “Tracking unmodified smart-
phones using wi-fi monitors,” in Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems (SenSys ’12),
pp. 281–294, ACM, Ontario, Canada, November 2012.

[23] H.Nurminen, J. Talvitie, S. Ali-Loytty et al., “Statistical path loss
parameter estimation and positioning using RSSmeasurements
in indoor wireless networks,” in Proceedings of the International
Conference on Indoor Positioning and Indoor Navigation (IPIN
’12), pp. 1–9, Sydney, Australia, November 2012.

[24] S. Lee, S.-I. Song, M. Kahng, D. Lee, and S.-G. Lee, “Random
walk based entity ranking on graph for multidimensional
recommendation,” in Proceedings of the 5th ACMConference on
Recommender Systems (RecSys ’11), pp. 93–100, October 2011.

[25] H. Zhou, Z. Deng, Y. Xia, and M. Fu, “A new sampling method
in particle filter based on Pearson correlation coefficient,”
Neurocomputing, vol. 216, pp. 208–215, 2016.

[26] M. Jamali andM. Ester, “TrustWalker: a randomwalkmodel for
combining trust-based and item-based recommendation,” in
Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’09), pp. 397–
405, July 2009.

[27] H. Yildirim and M. S. Krishnamoorthy, “A random walk
method for alleviating the sparsity problem in collaborative fil-
tering,” in Proceedings of the ACM Conference on Recommender
Systems, pp. 131–138, New York, NY, USA, October 2008.

[28] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-
based user location and tracking system,” in Proceedings of
the 19th Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE INFOCOM ’00), vol. 2, pp.
775–784, Tel Aviv, Israel, March 2000.

[29] F. Dong, Y. Chen, J. Liu, Q. Ning, and S. Piao, “A calibrationfree
localization solution for handling signal strength variance,” in
Mobile Entity Localization and Tracking in GPS-Less Environ-
nments: Second International Workshop, MELT 2009, Orlando,
FL, USA, September 30, 2009. Proceedings, pp. 79–90, Springer,
Berlin, Germany, 2009.

[30] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh,
“Indexing multi-dimensional time-series with support for mul-
tiple distancemeasures,” inProceedings of the 9thACMSIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD ’03), pp. 216–225, August 2003.

[31] M. Clements, P. Serdyukov, A. P. de Vries, and M. J. Reinders,
Personalised Travel Recommendation Based on Location Co-
Occurrence, 2011.

[32] M. Deshpande and G. Karypis, “Item-based top-n recommen-
dation algorithms,” ACM Transactions on Information Systems,
vol. 22, no. 1, pp. 143–177, 2004.

[33] V.W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang, “Collabora-
tive FilteringMeetsMobile Recommendation: AUser-Centered
Approach,” AAAI, vol. 10, pp. 236–241, 2012.

[34] M. Ye, P. Yin, and W.-C. Lee, “Location recommendation
for location-based social networks,” in Proceedings of the 18th
ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (ACM SIGSPATIAL GIS ’10),
pp. 458–461, November 2010.

[35] L. Page, S. Brin, M. Rajeev, and T. Winograd, “The pagerank
citation ranking: bringing order to the web. technical report,
Stanford InfoLab,” Tech. Rep., Stanford InfoLab, 1999.

[36] L. Wu, Q. Liu, E. Chen, N. J. Yuan, G. Guo, and X. Xie,
“Relevance meets coverage: a unified framework to generate
diversified recommendations,” ACM Transactions on Intelligent
Systems and Technology, vol. 7, no. 3, article no. 39, 2016.



Submit your manuscripts at
https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


