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Correctly identifying human activities is very significant in modern life. Almost all feature extraction methods are based directly
on acceleration and angular velocity. However, we found that some activities have no difference in acceleration and angular
velocity. Therefore, we believe that for these activities, any feature extraction method based on acceleration and angular velocity is
difficult to achieve good results. After analyzing the difference of these indistinguishable movements, we propose several new
features to improve accuracy of recognition. We compare the traditional features and our custom features. In addition, we
examined whether the time-domain features and frequency-domain features based on acceleration and angular velocity are
different. The results show that (1) our custom features significantly improve the precision of the activities that have no difference
in acceleration and angular velocity; and (2) the combination of time-domain features and frequency-domain features does not
significantly improve the recognition of different activities.

1. Introduction

The classification of human motion based on inertial sensors
has been proven to have many important applications in the
medical and health fields. In previous studies, time-domain
and frequency-domain features are widely used for feature
calculation.

There are many studies that use wavelet transform to
extract features to classify human activities. However, the
research of Preece et al. [1] shows that the time- and
frequency-domain features often exceed wavelet features,
indicating that the wavelet feature may be not the most
effective method for calculating the human body motion
classification features.

Some time-domain features are derived to classify hu-
man activities, such as the mean, median, variance, skew-
ness, kurtosis [2], and interquartile range [3]. In order to
extract frequency-domain features, the sensor data window
is first changed to the frequency domain using discrete
Fourier Transform [4]. Then, we can extract some features
from the frequency domain to distinguish different activities,

such as power spectral density (PSD) [5], peak frequency
[5, 6], entropy [7], DC component [7], median frequency
[8], spectral energy [9], and frequency-domain entropy [10].
Of course, there are other methods that process data from
accelerometers and gyroscopes. But all in all, to the best of
our knowledge, these features are extracted directly from
acceleration and angular velocity, which inevitably have
some common drawbacks.

We studied 12 kinds of activities and found it easy to
confuse elevator up and elevator down. These two kinds of
activities do not have obvious differences in acceleration and
angular velocity, so the time and frequency-domain features
based on acceleration and angular velocity cannot achieve
good classification results. Therefore, for those motions that
have no significant difference in angular velocity and ac-
celeration, no matter how the features are extracted from the
acceleration and angular velocity, it is difficult to achieve
good results.

In addition, we begin to wonder if there is any essential
difference between time-domain features and frequency-
domain features based on acceleration and angular
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velocity. In order to solve this discredit, we have separately
tested the effects of time-domain features and frequency-
domain features. Then, we tested the combination of
the two kinds of features and found that the combination
of time-domain features and frequency-domain features
was slightly higher than only time-domain features.
From the experimental results analysis, we believe that,
for human activity classification problem, the time-
domain features and the frequency-domain features are
two aspects of the same rules, and there is no essential
difference.

Our contributions in this paper are two-fold: (1) to the
best of our knowledge, this is the first time that features of
motion classification based on velocity and displacement
have been proposed, which solve some problems that cannot
be solved by traditional time- and frequency-domain fea-
tures; (2) As far as we know, for the first time, we have
studied the difference between the time-domain features and
frequency-domain features.

2. Methods

Indeed, the time-domain and frequency-domain features
based on acceleration and angular velocity have achieved
some success. However, for activities without obvious
difference between acceleration and angular velocity, such
as elevator up and elevator down, the traditional method
of extracting features based on acceleration and angular
velocity is difficult to work. In order to solve this problem,
we carefully analyze the two activities of elevator up
and elevator down, summarize the differences between
them, and propose some new features for distinguishing
such activities. After analysis, we sum up the following
rules:

(i) When the elevator goes up, the speed is upward;
when the elevator goes down, the speed is
downward.

(ii) When the elevator just starts to move or stops
moving, its speed is small and its angular speed is
large.

(iii) When the elevator just starts to rise or fall, the
direction of the speed is the same as the direction of
the acceleration; when the elevator stops to rise or
fall, the direction of the speed is opposite to the
direction of the acceleration.

Based on the above evidences, we propose four fea-
tures to distinguish these activities on each axis of the
accelerometer. First, according to the first rule, we in-
troduce three features, namely, the starting speed, the
ending speed, and the displacement. Second, according to
the second and third rules, we introduce the fourth fea-
ture. As some activities have just started and are about to
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stop, their speed is small and difficult to distinguish.
Therefore, we extracted another feature to enhance the
difference between two activities. When the velocity di-
rection is the same as the acceleration direction, we use
v+ a as the feature; otherwise, we use v—a as feature. In
order to describe the movement of the human body in
different directions as much as possible, we have in-
troduced the following twelve new features to enhance the
difference between different activities. These features are
summarized in Table 1.

Suppose the time window we choose is T, the sampling
frequency is n, then the total number of samples is Tn. In
the experiment, the time window we selected was two
seconds. The displacement, time, and acceleration corre-
sponding to the ith sampling interval are x(i), #(i), and a(i).
The speed corresponding to the sampling point is v (i). Data
section of one time window is shown in Figure 1. The
gravity acceleration is g. Due to the high sampling fre-
quency, the time interval between each sample point is
short. At the same time, in order to simplify the calculation,
we believe that there is uniform linear motion between each
sampling point. Now, we derive the speed and displace-
ment formula.

We think these sampling points are equally time-
distributed, so we have the following conclusions.

) =t(2) =t(B) = =t(T) = =L (1)
Tn n

First, we derive the formula for the end speed of each
axis. According to the kinematics formula, we can easily get
the following formula and simplify it by combining it with
Equation (1).

Tn
v(Tn) = v(0) + Y (a(i)— g (@)« (i)

i=1
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Next, we introduce the determination of the starting
speed. If this window is the first window, we default to
a starting speed of zero. Otherwise, the starting speed is the
end speed of the previous window marked as v_; (Tn):

{ 0, the first window,

v(0) = (3)

v_;(Tn), not the first window.

As for the displacement of each axis, since we think that
there is uniform linear motion between each sampling point,
the displacement formula can be derived as follows.
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TaBLE 1: Custom features.

Feature name

Description

End velocity along X
End velocity along Y
End velocity along Z
Starting velocity along X
Starting velocity along Y
Starting velocity along Z
Displacement along X
Displacement along Y
Displacement along Z

Velocity plus acceleration along X
Velocity plus acceleration along Y

Velocity plus acceleration along Z

End speed along the x-axis
End speed along the y-axis
End speed along the z-axis
Starting speed along the x-axis
Starting speed along the y-axis
Starting speed along the z-axis
Displacement along the x-axis
Displacement along the y-axis
Displacement along the z-axis
v+ a if the product of v along the x-axis and a is
positive, v —a otherwise
v+ a if the product of v along the y-axis and a is
positive, v —a otherwise
v+ a if the product of v along the z-axis and a is
positive, v —a otherwise

t(1) £2)
‘ a() ‘ a(2) ‘

E

t(i) t(Tn)
a (Tn)

v (0) v (1) v(2)
x (0) x (1) x(2)

v(i-1) v (i)
x(i-1) x (i)

y(Tn - 1)
x(Tn-1)

v (Tn)
x (Tn)

F1GURE 1: Data section of one time window.
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In the experiment, in order to calculate the last three
features we defined in Table 1, that is, Velocity Plus Accel-
eration Along X, Velocity Plus Acceleration Along Y, and
Velocity Plus Acceleration Along Z, our speed takes the end
velocity of the two-second time window, and the acceleration
takes the difference between the average acceleration of the
two-second time window and the gravitational acceleration in
each axis. In this way, we can calculate the last three features,
and the expression is shown in (6), in which Velocity Plus
Acceleration Alongs stands for the last three features.

1
2n* -

1 2 Tn-1
(v«)) Fv(0)+ Y (@@ - g(NEE) +v(0) + Y (i)~ gD +---+v(0)+ Y (a(i)—g(i))t(i))
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(4)
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-9) -9)>0,
Velocity plus acceleration along * = va=g) vx(a-g)
v—(a—g), v=(a-g)<O0.

(6)

Finally, we introduce the calculation method of gravity
acceleration we used in the experiment. Since the tester is
just wearing the device for data acquisition, it is generally at



a standstill and the starting speed is zero, which is used in
our experiments. Therefore, for the sake of convenience, in
the experiment, we believe that the initial acceleration of
each axis is the component of gravity acceleration and as-
sume that the component of gravity acceleration in each axis
remains unchanged. We take the average of the first 10
sampling points of each axis as the component of gravity
acceleration in each axis, recorded as g.

3. Experiments and Results

3.1. Datasets. In order to illustrate the validity of our custom
features, we have selected the USC_HAD of University of
Southern California as the verification dataset [11]. They use
an off-the-shelf sensing platform called MotionNode to
capture human activity signals and build their dataset.
MotionNode is a 6-DOF inertial measurement unit (IMU)
specifically designed for human motion sensing applica-
tions, which integrates a 3-axis accelerometer and, 3-axis
gyroscope. They selected 14 subjects (7 male; 7 female) to
participate in the data collection. The sampling frequency is
100 Hz. Twelve kinds of activities collected are Walking
Forward, Walking Left, Walking Right, Walking Upstairs,
Walking Downstairs, Running Forward, Jumping Up, Sit-
ting, Standing, Sleeping, Elevator Up, and Elevator Down.

3.2. Results. In order to verify the validity of our custom
features, we extracted some common time- and frequency-
domain features. In the time domain, we chose the mean,
median, variance, skewness, kurtosis, and interquartile range
as time-domain features. In the frequency domain, we
choose peak frequency, median frequency, power spectral
density, DC component, spectral energy, and information
entropy as frequency-domain features. Then, we added our
custom features to these time- and frequency-domain fea-
tures and compared their results. In the experiments, we
adopted the two commonly used models, SVM and random
forest. For SVM, the kernel function we use is a polynomial
kernel function. For RF, the number of decision trees we
choose is 50.

First, in order to check whether the distinction between
the lift of the elevator and the descending of the elevator is
achieved, we tested the precision and recall of our custom
teatures on both models. Precision and recall are often used as
performance measures for classifiers in classification prob-
lems. Table 2 shows the precision and recall of the models’
identification of elevators up when adding custom features to
time- and frequency-domain features and the combination of
time and frequency-domain features without custom features.
Table 3 shows the precision and recall of the models’ iden-
tification of elevators down when adding custom features and
no custom features. The left column below each model is the
precision rate, and the right column is the recall rate. From
Tables 2 and 3, we can see that, after adding the custom
features, the model has significantly improved the recognition
rate of the elevator up and the elevator down.

Also, we use the ROC (receiver operating characteristics)
curve and corresponding AUC (area under the ROC curve)
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TaBLE 2: Precision and recall of the identification of elevators up
when adding custom features and no custom features.

SVM (%) RF (%)
No custom features 50.60 55.23 56.82 52.08
Adding custom features 74.01 74.50 78.05 81.53

TaBLE 3: Precision and recall of the identification of elevators down
when adding custom features and no custom features.

SVM (%) RF (%)
No custom features 48.38 53.78 55.24 52.84
Adding custom features 71.38 71.61 83.23 85.67

values to check whether the distinction between the lift of the
elevator, and the descending of the elevator is achieved. For
SVM, we conducted a test. The ROC curves for the two types
of classification results for elevator up and elevator down are
shown in Figure 2.

From the above figure, we can see that in the SVM, after
adding our custom features, the ROC curves of elevator up
and elevator down completely cover the ROC curve of the
original feature. The AUC value for the no custom features’
ROC curve is 0.8572, while the AUC value for adding
custom features’ ROC curve is 0.9729. The ROC curve shows
that our custom features have achieved very good results in
distinguishing between the elevator up and the elevator
down.

In order to further explain the significance of our custom
features we have extracted and verify the difference between
time-domain features and frequency-domain features, we
have compared our custom features with the time-domain
features and frequency-domain features. We performed
comparative experiments on four combinations of features
over SVM. We conducted five experiments for each ex-
periment. The detailed experimental results are summarized
in Table 4. The accuracy in the table is the total classification
accuracy of the 12 activities. For convenience, we denote the
time-domain feature as 1, the frequency-domain feature as 2,
and the custom feature as 3.

From the experimental results, we can see that individual
frequency-domain features and time-domain features can
achieve good results. However, when frequency-domain
features are combined with time-domain features, no sig-
nificant improvement is obtained, indicating that there is no
essential difference between features extracted from the
frequency domain and features extracted from the time
domain. The superposition of the two did not achieve better
results. The time-domain feature is better when combined
with our custom features than combined with frequency-
domain features. Based on the comprehensive analysis, we
believe that our custom feature is a supplement to traditional
time-domain features rather than a redundant feature.

The traditional time-domain features and frequency-
domain features are all based on the acceleration and an-
gular velocity but there is no essential difference, so the
superposition of the two will not bring significant im-
provement. Our custom feature is the mining of the rules of
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ROC curve for classification by SVM
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FI1GURE 2: ROC curve of elevator up and elevator down over SVM.

TaBLE 4: Classification accuracy of 12 activities on four combi-
nations of frequency-domain features, time-domain features, and
custom features over SVM.

1 (%) 2 (%) 1,2 (%) 1, 3 (%)
First experiment 89.67 83.93 90.46 92.21
Second experiment 90.52 84.11 90.80 92.17
Third experiment 89.78 83.07 91.27 91.94
Fourth experiment 89.34 83.50 90.62 92.61
Fifth experiment 89.29 83.93 90.21 92.25

speed and displacement, which is very different from the
traditional mining of acceleration and angular velocity. So,
when these features are introduced in the time-domain
feature, we can obtain certain promotion. Especially for
those motions which have no obvious difference between
angular velocity and acceleration but there is a clear dif-
ference in speed and displacement, we can achieve good
results with these custom features. For example, there is no
obvious difference in acceleration and angular velocity in the
smooth upward movement of the elevator and the smooth
descending of the elevator, but there is a clear difference in
speed and displacement. So, when introduce our custom
feature, we can obviously increase the recognition rate of the
two kinds of motions.

To calculate these features we define, we must know the
initial state of motion, especially the initial state of speed. In
our experiment, we assumed that the initial state is zero. In
the database we use, most of the data are collected after the
tester reaches a steady state of various motion postures,
which does not satisfy our assumptions. If we can record
data when the tester just wears the inertial sensors, so as to
meet our assumptions, we believe we can achieve better
results. For other types of sports, such as running, walking,
and station, there is a difference in speed, which will bring
a higher recognition rate.

4. Discussion

In this article, we begin with the elevator up and elevator
down, which are indistinguishable based on the existing
feature extraction methods and analyze the differences and
rules between these two types of movements. Then, we have
proposed four features on each axis of the accelerometer that
have significantly improved the distinction between the two
types of movements, elevator up, and elevator down. In the
experiment, we found that the combination of frequency-
domain features and time-domain features does not sig-
nificantly improve the distinction of activities. The two kinds
of features are two different aspects of acceleration and
angular velocity, and there is no essential difference. From
the experimental results, the time-domain features are better
than the frequency-domain features and can more fully
reflect the differences between different activities. Our
custom features are not another response to acceleration, but
instead, these features can be used to distinguish movements
that differ in the speed of movement. In particular, it is of
great significance to distinguish between movements that do
not have a significant difference in acceleration and angular
velocity but have a significant difference in speed.

In the experiment, for the sake of convenience, we as-
sumed that the component of the gravitational acceleration
remains unchanged, which is obviously not in line with the
actual situation. Next, related personnel may consider in-
troducing some basic theories of motion analysis in order to
accurately calculate the components of the gravitational
acceleration and thus more accurately calculate the features
we introduce. We believe that when the features of velocity
and displacement are introduced, we can make a great
breakthrough in the existing human motion classification
problem and to some extent get rid of the dilemma that some
motions cannot be accurately identified on the features of
acceleration and angular velocity.
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