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.e demand for autonomous vehicles is increasing gradually owing to their enormous potential benefits. However, several
challenges, such as vehicle localization, are involved in the development of autonomous vehicles. A simple and secure algorithm
for vehicle positioning is proposed herein without massively modifying the existing transportation infrastructure. For vehicle
localization, vehicles on the road are classified into two categories: host vehicles (HVs) are the ones used to estimate other vehicles’
positions and forwarding vehicles (FVs) are the ones that move in front of the HVs..e FV transmits modulated data from the tail
(or back) light, and the camera of the HV receives that signal using optical camera communication (OCC). In addition, the
streetlight (SL) data are considered to ensure the position accuracy of the HV. Determining the HV positionminimizes the relative
position variation between the HV and FV. Using photogrammetry, the distance between FV or SL and the camera of the HV is
calculated by measuring the occupied image area on the image sensor. Comparing the change in distance between HV and SLs
with the change in distance between HV and FV, the positions of FVs are determined..e performance of the proposed technique
is analyzed, and the results indicate a significant improvement in performance..e experimental distance measurement validated
the feasibility of the proposed scheme.

1. Introduction

Localization refers to the process of identifying the location (x
and y coordinates in two-dimensional (2D) space and x, y,
and z coordinates in three-dimensional (3D) space) of an
object in a certain point in space at a specific time. Several
studies are contributing to the development of accurate lo-
calization schemes owing to increased demand for Internet of
.ings (IoT) applications. .e necessity of a localization
scheme is integrated within the requirement of IoT. IoTrelies
on an enormous number of physical objects (e.g., sensor
nodes and sensor networks) that are connected via the In-
ternet [1]. .ese objects can be interconnected to each other
either via wire or wireless mediums. A localization scheme is
an important concern for connecting sensor nodes in remote
location. A node cannot access or wirelessly communicate
with other nodes without accurately positioning itself. .e

characteristics of localization schemes vary with the features
of indoor and outdoor environments [2].

It is well known that localizing sensor nodes indoor can
be a crucial obligation for modern businesses and com-
merce. However, issues related to outdoor localization,
particularly vehicle localization, are prioritized over indoor
localization. Recently, following road traffic safety [3] has
become important owing to the increasing number of fatal
road accidents. World Health Organization statistics [4]
show that traffic-related accidents worldwide resulted in 1.3
million deaths of people between 15 and 29 years, and the
number of nonlethal injuries is 15–40 times greater (between
20 and 50 million). .us, traffic fatalities rank among the 10
top causes of death, comparable to suicide, HIV/AIDS,
homicide, and other diseases. .e most common cause of
traffic fatalities (around 60%) is high vehicle speeds (above
80 km/h) on the road [5]. Autonomous vehicles can help
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minimize traffic deaths. Meanwhile, the demand for au-
tonomous vehicles has been rising dramatically to avoid
accidents [6]. Furthermore, outdoor localization is of prime
importance in the transportation domain, particularly, for
autonomous vehicles, which requires localizing other ve-
hicles from the host vehicle (HV) in road environments such
as highways. For autonomous vehicles, the features of lo-
calization are classified as active and passive. Active features
include setting region of interest (ROI) and measuring the
possibility of communicating with other vehicles and
maintaining safe distance from other vehicles to avoid
unwanted collisions by measuring spatial and temporal
scenarios [7]. Passive features include obtaining localization
information from individual vehicles, which can then be
accumulated by a traffic control center and utilizing in ef-
fective way to mitigate traffic congestion.

1.1. Existing Solutions, Limitations, and Current Trends in
Vehicle Localization. Global positioning system (GPS) is
considered as the most prominent solution for outdoor lo-
calization scheme. GPS provides a line of sight vehicle local-
ization solution using the sensor information from [8–10] and
data from a satellite orbiting at an altitude of approximately
20,000 km. GPS uses the radio frequency (RF) band for po-
sitioning the HVon road. However, theHV cannotmeasure its
own distance from other vehicle, such as the forwarding vehicle
(FV), via GPS; it offers only the current location of the HV.
Moreover, this localization scheme is fraught with several
challenges, such as GPS signals being blocked by obstacles such
as buildings, subway, tunnels, and trees. Localization usingGPS
can generate a localization error of up to 1mwithin 10 s [11]. A
wireless network standard for vehicle states, called IEEE
802.11p [12, 13], is available; this is referred to as wireless access
in vehicular environments (WAVE) [14]. .is standard is used
to maintain a communication network among vehicles within
vehicular ad hoc networks (VANETs) [15] and to support
intelligent transport system applications. RF signals in VANET
systems are used for communication and vehicle localization
[16]. Owing to various environmental effects and themultipath
nature of the network, non-Gaussian noise is included with the
transmitted signal, whose strength shows nonlinear charac-
teristics over distance. .e WAVE standard uses a license-free
RF band (i.e., 2.4GHz) [17], which is open to interference from
other signal sources, thusmaking the entire network vulnerable
from the viewpoints of both communication and localization.
Other existing technologies for vehicle localization include light
detection and ranging (LiDAR) [18–20] and the time-of-flight
(ToF) camera technique [21–24]. Light-emitting diodes
(LEDs) and cameras or photodiodes are embedded in LiDAR
and ToF system infrastructures; however, they are used only
for detection and ranging. .ese equipment are not useful
for vehicle-to-vehicle or vehicle-to-infrastructure communi-
cations [25–29] and are expensive to be used in a vehicular
environment.

Optical wireless communication (OWC) is an emerging
and promising technology [30] that is viable for handling
scenarios wherein RF faces challenges. OWC is not intended
to replace RF; however, the coexistence of both can provide

a better solution [31] for communication and localization.
Optical camera communication (OCC) [32] is a subarea of
OWC that uses a camera as a receiver to decode signals from
a modulated light source, for example, LEDs, by varying the
state of the light source to transmit binary data via optical
channels. It is a secure, safe, reliable, and fast method for
communication as well as localization [33]. A unique feature
of OCC is that the camera used for vehicle localization can
simultaneously be used to communicate with other vehicles
that transmit signals using modulated lights. With little
modifications, LEDs in existing infrastructure, that is, ve-
hicles and streetlights (SLs), can be used for communication
(e.g., bidirectional communication between two vehicles or
between vehicles and infrastructure) [34–40].

To better communicate in outdoor environments, ve-
hicles around the HV must be localized precisely. More
importantly, multiple-input and multiple-output (MIMO)
features of OCC [41] should allow the HV to simultaneously
communicate with more than one vehicle. In [42], author
presents a received signal strength-based visible light
communication localization scheme, but it could not im-
prove localization performance such as more complex
models of the environment or additional hardware are re-
quired for localization. .e localization of multiple vehicles
would require incorporating OCC and photogrammetry
technologies [43]. Photogrammetry [44, 45] deals with
a branch of geometry wherein an image sensor (IS) is used to
measure an object by quantifying the photon intensities of
different wavelengths of light incident on an area, that is,
a unit pixel of a camera. Photogrammetry helps accumulate
information on semantic and geometric properties and
variation of relative distances of objects, which refers to
vehicles in this context. .is vehicle location information
can be shared with following vehicles with the help of OCC
and rear-facing LED lights. Figure 1 shows a vehicle lo-
calization scheme combining OCC and photogrammetry.

A vehicle localization technique, wherein each FV
broadcasts its identity (ID) to the HV as FV-ID, is proposed
herein. After extracting the unique ID from the received
signal, the HV can distinguish an FV from other FVs. Since
the HV and FV simultaneously change their positions over
time, location of the HV should be normalized based on the
location of a fixed object, for instance, an SL. Comparing
the locations of more than one SL relative to the HV, a
virtual location of the HV can be temporarily generated.
.is HV location information acts as the origin of a Car-
tesian coordinate system that allows determining the FV
location relative to the HV.

For autonomous vehicle localization, infrared LED
array can be attached at the SLs and back side of the FVs to
clarify the area of the LED array. .ough the near-infrared
(NIR) source is visible to the camera, it is possible to receive
data from the FVs and SLs. Detecting light intensity for the
nearest light sources is much higher on the IS of the camera
of HV rather than far distance light source. Compared with
visible light-based communication, NIR-based communi-
cation is influenced by the optical channel. Under daylight,
it is challenging to receive data from an NIR-based trans-
mitter. Importantly, a recent development of high-dynamic
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range imaging technique reduces noise and enhances the
image quality under daylight [46, 47]. �erefore, it is ex-
pected that ambient light no longer poses a problem for
OCC, even when the transmitter possesses an NIR-optical
band. Simulation results show vehicle localization accuracy
with considering the impact of several parameters including
signal-to-interference-plus-noise ratio (SINR), IS resolu-
tion, camera exposure time, and the distance between two
SLs.

�e remainder of this paper is organized as follows:
Section 2 explains a detailed theoretical and mathematical
model of our proposed scheme. Experimental setup for
distance measurement is shown in Section 3. In Section 4,
the simulation results associated with vehicle localization
studies are presented. Finally, Section 5 presents a summary
of lessons learned and concludes this study.

2. Development of Proposed Scheme

Almost every vehicle produced in recent years is equipped
with a camera (i.e., less than 30 frames/sec) that is used to
monitor the outdoor scenarios and to assist the drivers by
providing a view of their blind spot. Herein, the HV
communicates with the FV and measures the distance be-
tween vehicles using such a camera mounted in front of the
vehicle. Using OCC, this camera detects transmitted signal
IDs, such as FV-ID and SL-ID from each FV and SL si-
multaneously. A pair of taillight on FVs transmits ID in
di�erent phases to modulate the data using a modulation
scheme called spatial two phase-shift keying (S2-PSK) [48]
to the HV’s camera. �ese LEDs transmit at a constant clock
rate (e.g., 125 or 200Hz) to send a �icker-free signal.�e SLs
use the same modulation scheme as the FV for transmitting
the SL-ID. MIMO is a distinctive functionality of a camera
that helps distinguishing FV-ID from SL-ID. �ese IDs are

required to determine the ROI for vehicle localization. �e
ROI speci�es the camera’s viewing region within an image
and helps minimize the scope of false-position results from
the main event. On the road, an FV can move side to side or
change its direct distance with respect to the HV, which we
stated as horizontal shift and vertical shift, respectively.
�ese position shifts lead to a change in image size that can
be measured from the IS. Both the FV and HV move si-
multaneously; therefore, it is not always possible to localize
the position of the FV relative to the HV. However, if the
position of the HV is known, the relative positions of the FV
and HV can be easily compared. �e position of SL is �xed
relative to every vehicle on the road; therefore, it is necessary
to receive SL-IDs from the SLs to determine the HV position.
Figure 2 shows a �owchart of the proposed localization
scheme wherein the FV location information is compared
with the current HV location to identify special and tem-
poral cases. After receiving IDs, algorithmwill move ahead if
the size of detecting image area of FV is greater or equal to
unit pixel area. In decision symbol of the algorithm, the
threshold value indicates the minimum distance between
HV and FVs to avoid collision.

2.1. LED-ID from SL and FV. In Figure 3, the two LED pairs
�xed on the back of the FV transmit a modulated FV-ID
[48]. �e SL transmits the SL-ID using the same modulated
signal (i.e., S2-PSK) by dividing a single LED array into two
pairs of LED arrays. Depending on the input bit sequence,
the transmitting signal phases of the LED array pairs can
di�er. �e scheme uses a symmetric Manchester symbol to
map each LED symbol. Using a spatial under-sampling
approach, the LED pairs transmit in the same phase for
bit 0 and in di�erent phases for bit 1. �e bit interval s1(t)
for one of the tail LEDs is as follows:

Forwarding vehicle#2

Forwarding vehicle#1

SL-ID#1SL-ID#2
SL-ID#3

FV-ID#2

FV-ID#1

Image sensor of 
camera: HV

Camera of HV
Streetlights

Host vehicle

Figure 1: OCC and photogrammetry-based vehicles localizing by comparing relative position with the help of streetlights.
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s1(t) �∑
N

k�0
s1 tk + kT( )

where 0≤ t<Tbit, s1 tk( ) �
1, 0≤ tk <

T

2

0,
T

2
≤ tk < 0,




(1)

where k is an unsigned integer ofN bit-interval cycles, Tbit is
a bit interval, and T is the cyclic interval of signal.

�e bit interval s2(t) for other of tail LED is as follows:

s2(t) �∑
N

k�0
s2 tk + kT( )

where 0≤ t<Tbit, s2 tk( ) �
1, s1 tk( )
0, s1 tk( ).

{

(2)

From the same camera image, the S2-PSK demodulates
a bit from a pair of states of two di�erent LEDs. At
sampling time ts, the same states of two tail LEDs on the
same image resemble bit 0, otherwise bit is 1. XOR op-
eration determines the value of bit captured in the same
image as follows:

bit � s1 ts( )⊕ s2 ts( ), (3)

where s1(ts) and s2(ts) are the states of two LEDs at sam-
pling time ts.

Compared with other modulation schemes (e.g.,
undersampled phase shift on-o� keying) [49], this de-
modulation can gain a lower bit error rate (BER) within an
image. A nonlinear XOR classi�er can remove the remaining
BER. �e BER performance of this modulation scheme [41]
is stated as follows:

Pe,S2−PSK � 2αpe 1− αpe( ), (4)
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FV broadcast FV-IDs
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nIS ≥ unit pixel area Calculating nIS_FV, nIS_SLDemodulate FVs’ signal

Start
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Figure 2: Flow chart for a vehicle localization technique based on OCC and photogrammetry.
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Figure 3: Coding and decoding LED-ID using OCC.
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where pe is the bit error probability of the LED state and α is
the error rate enhancement.

Considering environmental e�ects, the SINR [50] is
expressed as follows:

SINR �
κPoptH( )

2

ι2N0B +∑ κPoptHelse( )
2, (5)

where κ is the optical-to-electrical conversion e¤ciency at
the camera, N0 is the noise power spectral density, B is the
modulation bandwidth,H is the optical channel gain,Helse is
the channel gain for interfering light sources, Popt average
optical power, and ι is the conversion between average
electrical power Pelec and average optical power Popt.

Meanwhile, the optical channel gain is expressed as
follows:

H �
(m + 1)Ac
2πD2 g(θ)Ts(θ) cos

m(ϕ) cos(θ){ , (6)

where m is the Lambertian index, Ac is the physical area of
IS, D is the distance between transmitter and receiver, θ is
the angle of incidence, and ϕ is the angle of irradiation.

2.2. Camera Calibration and Photogrammetry. In computer
vision applications, camera calibration is essential to de-
termine real-world coordinates from simple 2D images. �e
simplest camera calibration method involves using a pinhole
camera model to provide a perfect perspective trans-
formation [51]. In a Euclidean coordinate system, the origin
of the projected object coordinates is shifted from the
principal point of the camera’s image plane, as shown in
Figure 4. Mapping an object’s Euclidean three-space R3

coordinates (X, Y, Z)T to the Euclidean two-spaceR2 allows
for the mapping of an object from the real world to image
coordinates as follows:

(X, Y, Z)T→
FX

Z
+ px,

FY

Z
+ py( )

T

, (7)

where F is the focal length of the camera and (px, py)
T are

the principal point coordinates of the camera.
Homogeneous vectors allow us to map the coordinates

of the real world, and an image in terms of matrix multi-
plication as follows:

fX + Zpx
fY + Zpy

Z


 �

R −RC

0 1
[ ]

Fx s px 0

Fy py 0

1 0




X

Y

Z

1




,

(8)

where Fx(�Fmx) and Fy(�Fmy) represent the focal length
of the camera in terms of pixel area along the x and y
directions, respectively; s is the skew parameter, and it is
normally zero; R is the camera’s orientation relative to real-
world coordinates; and C denotes the camera’s coordinates.
Here, mx and my denote the number of pixels per unit
distance, expressed as image coordinates in the x and y
directions, respectively. Equation (8) can be expressed
succinctly as follows:

x � RK[I|−C]X, (9)

where K is the calibration matrix of the camera, X is the
coordinate matrix in a world coordinate frame, and I is an
identity matrix.

Let the distance from the LED to the camera lens be D,
and the distance from the focal point of the camera to the
projected image on the IS be e. �en, the ratio of LED
distance and image distance is distance as follows:

D

e
�
D

F
− 1. (10)

Image area calculation performance depends on F and
D, and it must satisfy the condition F< <D. �erefore,
(D−F) is equivalent to D. �e ratio of height and width
of an LED (l, r) and the same ratio of the projectile image
(li, ri) are known as the magni�cation of camera lens. �is
ratio is similar to the ratio of LED distance D and image
distance e, which is described as follows:

liri �
F2lr

D2 .
(11)

�enumber of pixel on IS for a particular object nIS is the
ratio of projected image area to the unit pixel area of the IS.
In an IS, the unit pixel length is ρ, unit pixel area is ρ2, and A
is the area of the LED light source. �us, the following
equation can be stated from (11) as follows:

Y
X

C Z

X

p

x
y x

Principal axis of camera

Image planeCamera center

Y

C
Z

X

p

fY/Z

Principal axis of cameraf

Figure 4: Camera calibration for vehicle localization.
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D �
F

ρ

���
A

nIS

√

. (12)

Distance is always an absolute value; therefore, the
negative sign in (12) can be discarded. If the camera focal
length F and unit pixel length ρ are maintained constant for
a certain camera, the distance of the LED is kept pro-
portional with respect to the square root of the LED’s area
and disproportional with respect to the square root of pixel
area of that LED on the IS [39].

2.3. Determining HV Position. �e origin in coordinate
systems, such as the Cartesian and polar coordinate systems,
is required to determine the position of one or more objects
in either 2D or 3D space. In an outdoor environment, nearly
every vehicle frequently changes its location; the measure-
ment distances from HV to FV are not always accurate
because of subsequent variations in their relative positions
over time. �erefore, the location of FV from the origin or
any stable location cannot be measured, and it is better if the
HV location is known throughout this period. �e shift in
the FV’s location can be measured by comparing is location
with the current location of the HV.

In our proposed localization scheme measures, the HV’s
location by comparing it with the location of SLs. SLs’ lo-
cation is always �xed with respect to other vehicles within
this mobile scenario. �is distance comparison yields lo-
cation information for the HV, which also represents its
virtual coordinates. To ensure the accuracy of this mea-
surement system, location information from the onboard
diagnostic II (OBD II) system and SLs is combined by the
HV. �e SL-ID should contain unique information that
helps to distinguish this ID from other transmitted signals,
such as FV-ID.�e header of the SL-ID indicates that this ID
belongs to a speci�c SL. In addition, other information, such
as height of the SL from the ground and distance between
two SLs on the same road, can be added after the header of
the ID. At the same direction, there is a similarity among all
SL-IDs of the SLs and a unique value within the IDs in-
creasing or decreasing gradually.

After selecting the ROI, the distance between the
camera and LED of the SL is measured using photo-
grammetry. Figure 5 shows the change in getting an SL-ID

within the �eld of view (FOV) of the camera owing to
a change in the HV position. �e two axes are used to show
the midpoint of IS. In Figure 5(a), the ID from the SL
shows SL-ID#1∼SL-ID#4 at time t. �ese IDs vary from SL-
ID#2∼SL-ID#5 at time (t + 1), which is shown in Figure 5
(b). �e size of the projectile image area of the nearest SL
occupies a greater area on the IS compared with other SLs.
�e direct distance is calculated using (12); the distance for
SL-ID#1 is shorter compared with that for SL-ID#4, as
shown in Figure 5(a).

Using OCC, the camera decodes the SL-IDs of the SLs.
Figure 6(a) shows that the SL’s height is (SL hn), and the
constant distance between two SLs is dn, where nth(n �
1, 2, . . . ,N) is related to the number of SL. Using photo-
grammetry, DSLj−HV is determined as the measured direct
distance between the camera and SL’s LED, where jth(j �
1, 2, . . . ,N) states the number of iteration sequence over
a period.�e horizontal distance between the camera and SL
is aj. �ese horizontal distances are calculated by applying
Pythagorean theorem on a right triangle where DSLj−HV and
SL’s height are the remaining two sides of that right triangle.

From the top geometric view, a few triangulations can be
generated after decoding this distance information. At
a certain time, applying Pythagorean theorem again to
triangles CSL1Ht and CSL1SL2, we obtain

a21 � c
2 + h2, (13)

a22 �(d + c)
2 + h2, (14)

where h is the horizontal distance from the camera to the
pavement, c is the distance between the cross point of the
horizontal line and the shortest distance from the cross point
to the SL, a1 is the horizontal distance for SL1, and a2 is for
SL2 shown in Figure 6(b). In all cases, c<d. We combine (13)
and (14) as

c �
a22 − a21( )− d2

2d
. (15)

�e horizontal distance is determined from the camera
to the pavement by combining (13) and (15) as follows:

h �

������������������

a21 −
a22 − a21( )−d2

2d
{ }

2

√√

. (16)

SL-ID#1

SL-ID#2

SL-ID#4

SL-ID#3

(a)

SL-ID#2

SL-ID#3

SL-ID#5

SL-ID#4

(b)

Figure 5: SL-IDs change with the change of HV’s position from (a) at time t to (b) at time (t+ 1).
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�e position of HV is a function that varies with the
horizontal position hj, which is always positive; angular
position θSLj−HV of the SL relative to the HV; SL’s LED image
area is nIS SL on IS; and velocity of HV isVHV. When the HV

moves, the parameters related to the HV’s position change. If
the initial position is recorded at time t; after Δt, the position
of HV states as follows:

PHV(t + Δt) : hj ± Δh;ΔθSLj−HV; nIS SL ≥ ρ
2;VHV

Δ cj + dn[ ]
Δt

 



. (17)

�e horizontal distance between the HV and the pavement
is a function of the horizontal direct distance aj, distance be-
tween two SLs, that is, dn; and distance between the cross point
of the horizontal line and the shortest distance from the cross
point to the SL, that is, cj, where all these values are also changed
according to the change of the angular position θSLj−HV.

h aj, cj, dn( ) : ΔθSLj−HV{ }. (18)

�e direct distance between the SL and HV depends on
the area of the SL’s LED nIS SL on the IS and the angular
position θSLj−HV. If the value nIS SL is less than the unit pixel
area ρ2 (this will happen when the position of the SL is too far
from the HV); the value of image area is ignored from the
calculation. On the other hand, angular position θSLj−HV
changes with the bending of the road (or the edge of a road)
and DSLj−HV changes accordingly. �erefore, the following
expression is stated for measuring direct distance:

DSLj−HV nIS SL,ΔθSLj−HV( ) : nIS SL ≥ ρ
2;ΔθSLj−HV{ }.

(19)

From initial time t to Δt, the changes of angular position
is found by simply comparing current angular position with
previously recorded value as follows:

ΔθSL−HV(t + Δt) : θSL1−HV ∼ θSL2−HV{ }. (20)

�e horizontal distance hj is set as the x coordinate and
cj is set as the y coordinate for the HV with respect to the
nearest SL. �erefore, when the HV moves, this distance
information is updated. Figure 7 shows the �owchart for
calculating and correcting horizontal position information.
From (20), a considerably initial angular position θSL1−HV
compared with the conjugate angular position θSL2−HV in-
dicates the presence of a ground curvature. In such cases,
infrastructure e�ect optimization is required; otherwise, the
horizontal distance can be easily updated.

2.4. Determining the Position of FVs using the Position of
HV. Each vehicle has a pair of headlight and taillight.
Using OCC, taillights of FVs transmit modulated signals to
a receiver, that is, the camera of the following vehicle.
Using this modulated signal, the FV transmits emergency
information along with some basic vehicle information,
for example, the area of the single light from the rear of the
vehicle. �is transmitted signal from one pair of taillights
is noted as FV-ID, and one ID is unique compared to other
vehicles’ IDs.

For a proper communication among vehicles (i.e., FVs
and HV) on the road, the signal transmitted from both
taillights must be received by the camera.�ere are scenarios
in which signal interruption can occur; for instance, the HV
may monitor two vehicles from an angle wherein one of the
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HighwayCamera on
host vehicle
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SL1SL2 Ht

a2 a1

Highway
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Figure 6: Obtaining virtual coordinates from (a) road scenario (geometric view (side)) and (b) measuring vertical distance from the HV to
pavement (geometric view (top)).
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lights from a single vehicle is covered by the other vehicle. In
this case, data extraction is not possible although a single
light signal is received by the HV’s camera. Moreover, two
vehicles can be di�erentiated using their FV-IDs even if they
are moving in parallel. �e advantages of LED-ID-based
vehicle identi�cationmake it possible to �x the ROI, which is
the preliminary condition for successful communication and
localization. Figure 8 shows every FV broadcasting FV-IDs

along with the SL as SL-IDs. In Figure 8(a), the background
is turned black by controlling the shutter speed of the
camera, which is mounted in the HV. After demodulation
and decoding of the transmitted signal, all IDs are accu-
mulated, as shown in Figure 8(b).

�e area of taillight LED arrays on the IS changes relative
to changes in the distance between the HV and FV. By
calculating the area of these images on the IS, two types of

Start

Calculating pixel area on
image sensor

Remove from calculationηIS_SL≥ ρ2?
No

Yes
Δθ(t):

θ(t1)–θ(t2) = 0 
?

Optimizing infrastructure 
angular position

Update current position of 
HV

Yes Yes

No
Distance from cross section 

to nearest SL, cj y
HV’s horizontal distance 
from pavement, hj x

Figure 7: Flowchart of detailed development of the HV’s location information.

(a)

FV-ID#1FV-ID#3
FV-ID#4

SL-ID#1

SL-ID#2

FV-ID#2

(b)

Figure 8: Using OCC, (a) selecting region of interest and (b) receiving IDs.

(a) (b) (c)

Figure 9: A pair of FV’s taillights moves from the left to the middle and �nally to the right on the image sensor; implying that the FV is
moving right to left with respect to the HV. (a) FV at the right side of the HV. (b) FV stays straight of the HV. (c) FV at the left side of the HV.
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FV position shifts can be determined with respect to the HV,
namely, horizontal shifting and vertical shifting. Horizontal
FV shift will be visible if the vehicle changes its position from
side to side. Concurrently, the vehicle can slow down,
changing the direct distance between the FV and HV, which
is de�ned as vertical shift. Figure 9(a) shows an image of the
taillight LED that is projected on the left side of the image
after being refracted by the camera lens. �e image of the
original light source is on the HV’s right side. Furthermore,
Figures 9(a) and 9(b) show that the vehicle is moving from
the right to the middle and later to the left with respect to the
HV. By contrast, in Figure 10(a), the area of the projected
image is smaller than that of the other two Figures 10(b) and
10(c), which shows that the FV was initially far from the HV
and that this distance decreased gradually.

Generally, an IS consists of a 2D pixel array of photo-
detectors and transistors, vertical and horizontal access
circuitry, and readout circuitry. Each and every pixel is
accessed by the access circuitry, and readout circuitry helps
to read the signal value in the pixel. In dense tra¤c scenarios,
the angular position of the FV fromHV helps to alleviate the
position measurement error. �erefore, at the middle of the
IS, a plate is considered as the center plane as in Figure 11

which vertically separates the IS into two. With respect to
this plane both angular displacement θFVk of FV and hor-
izontal displacement HdIS FVk on the IS for corresponding
FV can be measured. Here, kth(k � 1, 2, . . . ,N) is the
number of received FV-ID by the HV’s camera. In Figure 11,
di�erent image colors on the IS distinguish one FV-ID from
other FV-IDs.�e angular displacement θFVk of FV is always
zero when the FV locates at center plane. Otherwise, the
numerical value of angular displacement helps us to mitigate
some challenges from FV positioning, for example, depth
estimation, lane changing information, and position esti-
mation error mitigation for left-right side of the road. �e
calculated horizontal displacement HdIS FVk on the IS for
corresponding FV is the function of FV’s taillight image area
nIS FV and depends on angular displacement θFVk of FV as
follows:

HdIS FVk nIS FV ≥ ρ
2( ) : θFVk{ }. (21)

FV’s position can be determined by comparing with the
position PHV of HV and taillight image area nIS FV of FV,
horizontal displacement HdIS FVk on the IS for corre-
sponding FV, and the speed of FV, that is, ΔVFV. Overtime,
these parameters will change, and consequently, the position
of the FV will change. If t is the initial time, then possible
position of FV at Δt is as follows:

PFV(t + Δt) : PHV(t + Δt); nIS FV ≥ ρ
2;HdIS FVk;ΔVFV{ }.

(22)

3. Experimental Distance Measurement

Distance measurement using a camera is one of the im-
portant steps in the proposed scheme. Figure 12 shows the
experimental setup and distance measurement procedure
performed using our existing facilities under an ambient
light environment. A circular LED light was used to transmit
the signal. A smartphone camera was used as the receiver.
With movement of the smartphone, the observed distance
changed. Figure 13 shows the results of experimental dis-
tance measurement.�e result shows the percentage error in
measurement with respect to the actual distance. �e error
resolution seems to remain within 1% for most distance
measurements. Although the experiment could not be

(a) (b) (c)

Figure 10: A pair of FV’s taillight increases in size gradually from left, middle, and right on the image sensor; implying that the FV is moving
closer to the HV. (a) FV keeps safe distance from HV. (b) FV stays min. distance from HV. (c) Critical distance between FV-HV.

Center plane

HdIS_FV1 HdIS_FV2
HdIS_FV4

HdIS_FV3

θFV3

θFV1

θFV4

θFV2

Different vehicle positions

Image 
sensor

Figure 11: Measurement of vehicular angular position from
horizontal displacement on the image sensor.
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performed in a real vehicle environment owing to lack of
facilities, this distance measurement experiment validated
the feasibility of the proposed scheme.

4. Simulation Results

Several factors and environmental impacts must be con-
sidered for achieving localization accuracy. We considered
a smooth surface to ignore the turbulence caused by vehicle
movements and the impacts of other bad weather conditions
(e.g., fog, snow, and rain) for generating the simulation
results. �e e�ect of a single parameter on vehicle locali-
zation accuracy was considered, whereas the other param-
eters were maintained constant. Table 1 lists the transmitter

parameters for transmitting and summarizes the speci�ca-
tions of the receiver (i.e., camera) and the optical channel
environment.

A low-pass �lter-like Gaussian �lter is used to estimate
the BER performance of the OCC system with respect to the
SINR as a blurring �lter for image processing. In this case,
the variance σ2c (� 0.5) for channel �ltering is considered
zero in ideal state. �e curves for the case of estimated
variances σc � 0.1and1.0 of the Gaussian �lter are plotted
in Figure 14 to evaluate the in�uence of the estimation error
of the channel �lter. In this regard, S2-PSK modulation
technique-based OCC system shows better BER perfor-
mance with respect to SINR.

~609 mm 600 mm

(a)

2550 mm

2548 mm

(b)

Figure 12: Experimental setup for distance measurement: (a) LED
light at the distance of 600mm and (b) LED light at the distance of
2550mm from the camera.
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Figure 13: Experimental measured distance value versus error
resolution.

Table 1: Transmitter and receiver parameters for simulation
results.

Parameter Value
Parameters for transmitter
Size of LED panel 10×10 cm2

Modulation method S2-PSK
Encoding method Manchester coding
Data rate 15 bps
Parameters for receiver
Detection distance 30–200m
Horizontal FOV 90°–120°
Image resolution 1–10 megapixels
Sensor physical size 36× 24mm2

Frame rate 30 fps
Focal length 16–25mm
Pixel size 2.5–4 µm
Lens aperture 4
Exposure time 1/2000 to 1/15 sec
Height of SL 7m
Interdistance between SL 25m
Lane width 10m
Vehicle speed 0–110 km/h
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Figure 14: SINR versus BER.
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Data rate is depending on the camera frame rate. It is
possible to detect one-bit data from one camera frame. For
instant, 30-bit data can be received from the camera which
frame per second (fps) is 30. In S2-PSK, the Manchester
coding is used for data encoding. �erefore, half of total bits
per second (bps) generates from 30 fps camera, that is,
15 bps. Figure 15 shows BER performance of the camera
receiver with varying data speed. For simulation, result is
formulated for 1 bps, 2 bps, 5 bps data speed and required
LED power is increased accordingly.

�e distance error occurs when there is a discrepancy
between actual and measured values of distance. �e sys-
tematic error caused by environmental facts, surveillance
approaches, and tool leads to this mismeasurement in such
dynamic vehicular environment and needs to be minimized
to achieve better positioning accuracy. �e average error
takes from series of repeated measurements, whereas the
maximum error generates from single measurement. �e
association of the distance error with di�erent camera pa-
rameters in the point of average and maximum errors helps
us to improve the performance of distance measurement
approach. IS resolution is an important camera parameter
which is de�ned by the number of total pixels and has an
impact on distance calculation. It is possible to calculate the
area of LED array more precisely if the camera resolution is
higher. Higher resolution provides the detail about the
detected LEDs to measure their area on the IS. Lower res-
olution will cause more errors in distance measurement. In
Figure 16, at 1 megapixel, both maximum and average
distance calculation errors are higher, that is, 17.5 cm and
13.3 cm, respectively. From 5 to 10 megapixels, the maxi-
mum distance measurement error is varying linearly,
whereas the average error is �xed.

In our proposed scheme, the camera should receive
signal from LEDs at very high speed moving scenario.
During this dynamic scenarios, the IS should completely
expose under the illumination with every detail of the

targeted LEDs, that is, streetlights and taillight of for-
warding vehicles. �e exposure time (or shutter speed) of
the camera will ensure a period when the amount of light
will be exposed on the IS. In the high-speed vehicular case,
large exposure time of the camera will cause a blurred
image and short exposure time will allow us to capture
detailed �ashes of light from a target object. Due to the
dependency on the received image quality at IS, exposure
time has an impact on evaluating the performance of
distance calculation. Both average and maximum distance
measurement errors show equivalent evolvements with the
exposure time of camera IS in Figure 17. Localization
accuracy is better at lower exposure time (i.e., 1/2000).
However, when the exposure time is 1/15 in a second, the
distance measurement error is maximum (i.e., 18.8 cm) at
maximum error case.

In the mobile environment, speed and position shift;
these are two important factors that cause e�ect on vehicle
distance measurement. We are considering zero shifting of
FV with respect to HV to simulate the e�ect of speed of FV
on the distance calculation error. �e speed of FV is varying
from 0 to 110 km/h within 200m distance, whereas the speed
of HV is considered constant, that is, 30 km/h, during
simulation period which is plotted in Figure 18.�erefore, at
the very beginning, the distance measurement error will
occur due to the speed of HV with respect to the FV. With
the increase of the FV’s speed, both average and maximum
distance measurement errors are increased gradually up to
110 km/h speed. �is distance measurement error occurs
due to the execution time required for position calculation
by the HV.

At constant vehicular speed (i.e., 50 km/h), position
accuracy of HV is measured wherein the distance between
SLs varied from 10 to 150m. From Figure 19, it can be seen
that as the internal distance between the SLs increases,
the accuracy decreases. Moreover, at the beginning, the
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Figure 16: Image sensor resolution of the camera with respect to
the distance measurement error.
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simulation results show that the distance measurement
accuracy is relatively lower owing to the speed of the HV and
data extraction from the SLs. At 50 km/h, the distance be-
tween two conjugate SLs is very small, that is, 10m.
�erefore, within a very short period, the number of SLs
crossed is greater compared to the case wherein the distance
between two SLs is 40m. At the highest point of the graph, it
simpli�es that the distance between SLs and receiving SL-
IDs well execute to get better distance measurement accu-
racy, that is, nearly about 90%. In addition, the number of
SLs in�uences the performance calculation. Performance
improves as the number of SLs increases. �is ensures the
possibility of obtaining a greater number of SL-IDs at the

same time and calculating the position of the HV more
precisely. Furthermore, as the distance between SLs in-
creases, the chance of comparing the location information of
the SLs for accurate HV positioning is minimized. As
a result, the slope of distance measurement accuracy moves
downward. �e variation of the lines maintains a constant
margin of up to 150m because SL-IDs have not been ob-
tained yet.

5. Conclusions

A vehicle localization technique in an outdoor environment
is proposed herein. �e technique employs photogramme-
try, which is a novel idea for localization. Implanted OCC
with photogrammetry improved vehicle localization per-
formance. �e proposed technique was used to measure the
distance between HVs and FVs by calculating the image area
on the IS. Beforehand, the HV receives FV-IDs from each FV
and uses OCC to decode these IDs. �e HV’s current lo-
cation information helps mitigate the possibilities of relative
position shifts among the HV and FV.�e SL communicates
with the HV in the same way as the FVs. Location in-
formation of the HV is accumulated by comparing the lo-
cation of SLs with the HV’s OBD II system. Experimental
distance measurement con�rmed the feasibility of the
proposed scheme. Overall distance measurement errors
were within 12–20 cm, wherein a change in one parameter
was considered. �e sizes of the tail LEDs of FVs are dif-
ferent; recognition of such LEDs is out of the scope of this
study. A deep learning-based algorithm will be required to
boost the performance of this single camera to overcome all
challenges related to vehicle detection and localization.
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