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Among the many deep learning methods, the convolutional neural network (CNN) model has an excellent performance in image
recognition. Research on identifying and classifying image datasets using CNN is ongoing. Animal species recognition and
classification with CNN is expected to be helpful for various applications. However, sophisticated feature recognition is essential
to classify quasi-species with similar features, such as the quasi-species of parrots that have a high color similarity. )e purpose of
this study is to develop a vision-based mobile application to classify endangered parrot species using an advanced CNN model
based on transfer learning (some parrots have quite similar colors and shapes). We acquired the images in two ways: collecting
them directly from the Seoul Grand Park Zoo and crawling them using the Google search. Subsequently, we have built advanced
CNNmodels with transfer learning and trained them using the data. Next, we converted one of the fully trained models into a file
for execution on mobile devices and created the Android package files. )e accuracy was measured for each of the eight CNN
models.)e overall accuracy for the camera of the mobile device was 94.125%. For certain species, the accuracy of recognition was
100%, with the required time of only 455ms. Our approach helps to recognize the species in real time using the camera of the
mobile device. Applications will be helpful for the prevention of smuggling of endangered species in the customs clearance area.

1. Introduction

With the development of information technology, deep
learning-based image processing and classification is widely
used in various applications [1]. In particular, the demand
for image classification is increasing [2]. Deep learning-
based classifiers, such as a convolutional neural network
(CNN), increase the classification performance for various
objects [2]. A common task in image processing is identi-
fying similar types of objects with machine learning methods
to classify and cluster animals [3]. Systems that automati-
cally identify and classify animal species have become es-
sential, particularly for the study of endangered species [4].
During the customs clearance of animals and plants, humans
can directly examine the species to identify individual
species, but this can be inefficient in terms of time and cost.

To improve the efficiency, automated classification of species
can be conducted on mobile devices. However, this would
require solving the problems of classifying species with
similar shades of colors and shapes. Hence, custom machine
learning models are needed to classify endangered species
and address the complicated characteristics of animal images
for specific applications.

Although various machine learning models can classify
images of different animals, it remains a challenge to dis-
tinguish animal species. )is is because there are some
species with a high color similarity. It is a complicated
process that requires expertise even for human beings. )e
CNN models are efficient modern recognition methods.
Unlike the traditional image classification methods [5], a
convolutional neural network uses multilayer convolution to
automatically extract and combine features. )ese
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algorithms are designed to be performed independently and
are trained to solve specific tasks. Moreover, the neural
network models have to be rebuilt once the feature-space
distribution changes. To overcome these disadvantages, we
adopted the transfer learning method to classify the en-
dangered parrot quasi-species in this study. Transfer
learning is a machine learning technique in which a model
trained for one task is reused for another related task [6].
Among many ways to deploy deep learning models in
production, one of the easiest ways is to deploy it on mobile
devices. )e advantages are that mobile devices are popular
and easy to use. Users can get an answer in a few touches.
Moreover, deep learning models can receive large amounts
of data in real time thanks to the camera of the mobile
device. When deploying a deep learning model on a mobile
device, two aspects should be considered: model file size and
process speed. If the size is too large, it is impossible to
deploy the model on a mobile device. If the process is slow, it
will cause inconvenience for the users.

In this study, a real-time mobile application was de-
veloped to classify endangered parrot quasi-species using the
CNN models based on transfer learning. To clarify the
purpose of this study, we suggested the following
hypotheses:

(i) )e designed CNN-based transfer learning models
can classify endangered parrot quasi-species with
high color similarity

(ii) )e developed application can embed the designed
CNN-based training

)e rest of this paper is organized as follows. Section 2
presents related work on transfer learning with CNN
models. Section 3 explains our real-time mobile application.
Section 4 presents the experimental results of the classifi-
cation of endangered parrot species for the designed mobile
application. Section 5 discusses the contribution of the
designed mobile application and the classification results.
Finally, Section 5 concludes this study.

2. Related Work

2.1. CNN Models and Image Classification for Animals.
Many well-known CNN model architectures exist for var-
ious applications. In 2016, Microsoft Research presented a
solution for the problem of building deep models with
shortcut connections [7]. Zoph and Le also presented a
method to automatically find a new, optimized model ar-
chitecture based on policy gradients called neural archi-
tecture search at ICLR 2017 [8]. Szegedy et al. have won the
ILSVRC 2014 with a top-5 test error of 6.7% with a model
built on the concept of “network in network.” )e idea of
this model is to reduce the computing cost using dimen-
sionality reduction, constructing the network by stacking
convolution operations, using filters of various sizes, and
then combining them later [9]. Another model created by
Szegedy et al. is Inception-ResNet, which combines the
residual connections presented by Microsoft Research [10].

Many relevant studies exist to preserve the diversity of
species. To acquire the data necessary for these studies,

unmanned cameraswere installed to acquire images of the
creatures. However, human resources are wasted on pro-
cessing the obtained data. Because human’s judgment is
subjective, the accuracy is inevitably deteriorated. )erefore,
it is essential to create a system that automatically processes
and classifies animal images. Norouzzadeh et al., in the
“Snapshot Serengeti Project,” said that processing of in-
formation from animal image datasets by human beings is
time-consuming; hence, much data remains unprocessed.
)ey presented a system in which a machine can determine
where the images belong to and check the number of entities
and their behaviors in images [3]. Nguyen et al. also created a
CNNmodel to classify three of themost commonly observed
animal species in Victoria, Australia, and showed the real
test results [11]. Zhuang et al. introduced a deep learning
model that automatically annotates marine biological image
data without relying on human experts. )ey experimented
with their model with data from SeaCLEF2017 [12]. In this
study, we also propose a system to classify image data ac-
quired in real time using the camera of a mobile device.

2.2. Transfer Learning. Transfer learning is a state-of-the-art
technique in deep learning research. Before the advent of
this technique, people had to create and train a model from
scratch. It was difficult to invent a model with remarkable
performance on a specific task because of the lack of
computing infrastructure. Moreover, it was impossible to
collect enough meaningful data required to train a model,
although many researchers attempted to gather them.
However, various transfer learning methods have been
proposed for transferring knowledge in the context of
features, instant weights, parameters, or relationship in-
formation between data samples in a domain [13–16].

Figure 1 shows four steps of creating a complete model
using transfer learning. First, we build an architecture of the
model and train it on a large representative dataset. Second,
we delete the final layer (known as “loss output”). )ird, we
replace it with another layer whose job is to finish the specific
task. Fourth, we train a new model with a relatively small
dataset suitable for the purpose. Transfer learning is literally to
transfer the job of extracting features from data to the pre-
trained model. For example, a model pretrained on the
ImageNet dataset can detect low-level features on a bird image
(such as curves, outlines, and lines) because these low-level
features are almost the same in other animal images. )e
remaining task is to tune the high-level layers of the feature
extractor and the final layer that classifies the bird (the process
is called fine tuning). Some studies have already applied
transfer learning [17, 18]. Transfer learning is expected to
compensate for the lack of data, time, and computing.

3. Implementation of a Real-Time Mobile
Application to Classify Endangered
Parrot Quasi-Species

3.1. SystemDesign and Image Classification inMobileDevices.
)e system is divided into four parts, as shown in Figure 2.
First, we preprocess the data to prepare it for deep learning.
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Second, we create and train a classifier using the pre-
processed data.)ird, we convert the generated model into a
file that can be deployed on a mobile device. Finally, we
deploy the model. In this section, we describe data pre-
processing and the process of creating and training the deep
learning model.

In our study, we used Python (Anaconda) for the third
step and Android Studio for the final step. Data were pre-
processed using a Python library called “imgaug” [19] that
provides image preprocessing methods (“Image-
Transformation,” “AdditiveGaussianNoise,” “CoarseDrop-
out,” “BilateralBlur,” etc.). We imported the “imgaug”
library into our project in the Anaconda Jupyter notebook
environment and performed data augmentation for the
original images. )e obtained images were saved in the
folders together with the original images.

To develop an application, TensorFlow Lite provides a
method that converts the generated model into a Tensor-
Flow Lite FlatBuffer format file (.tflite), which can be
deployed on a mobile device. According to the official
TensorFlow Lite website, FlatBuffer is an open-source cross-
platform serialization library that serializes data efficiently.
TensorFlow Lite supports the conversion of files created by
TensorFlow, concrete functions, and Keras [20]. We inserted
this converted file into the demo project provided by
TensorFlow Lite and then built the project. After this step,
we created an Android package file (APK) and installed the
application on a device. Figure 3 shows the overall process.
Li et al. developed an optimized modeling technique for
mobile devices using their reduction module, group con-
volution, and self-attention module. )ey claimed that this
model was efficient for mobile applications compared with
other models [21]. Subsequently, we explain how to deploy a
CNN model created by TensorFlow Lite on a mobile device.

We use the Keras library to create and train deep
learning models. Keras is a high-level open-source neural
network API written in Python. It was developed as a part of
the Open-Ended Neuro-Electronic Intelligent Robot Op-
erating System (ONEIROS) project. A model produced by

Keras is built using a fast and intuitive interface based on
TensorFlow, CNTK, and )eano [22]. In the field of com-
puter vision, some model architectures that can effectively
classify images have been previously introduced, and Keras
provides them as open-source code [23]. In this study, we
propose a way to customize these models, train them, and
verify their performance.

3.2. Data Augmentation. One of the biggest limitations in
deep learning model development is that it requires a large
dataset. )ousands, millions, or even more data samples are
required to create a reliable deep learning model. )ese
limitations can be overcome by manipulating and trans-
forming a small amount of data. )is is called data aug-
mentation. Data augmentation techniques have been used in
many studies [24, 25]. )e techniques include random
cropping, horizontal flipping, brightness modification, and
contrast modification. As illustrated in Figure 4, we extended
the dataset by the horizontal and vertical flipping. Figure 4
shows the extended dataset as a result of four parrot species’
data augmentation. For this task, we imported “imgaug”
Python library (as explained in Section 3.1). It contains the
“Sequential” method, and manipulation techniques can be
set as the parameters of this method [19]. In this study,
because we only wanted to augment the images by the
horizontal and vertical flipping, to check if the model can
classify the quasi-species of parrots with a high color sim-
ilarity, we inserted “Fliplr” and “Flipud” objects. Finally,
14,000 images including the original data were gathered (see
the details in Section 3.5).

3.3. Feature Extraction and theCNNModel. Nguyen et al. set
the two experimental scenarios on themodel architectures of
Lite AlexNet, VGG-16, and ResNet50 to classify wildlife
images [11]. )e first scenario was to train the model from
scratch, and the second one was to use a technique called
“feature extraction” that imports weights that had been
pretrained on large images in ImageNet. To monitor and
classify enormous animal image data, some pretraining
techniques are needed to familiarize the model with
extracting local features of a new image. Feature extraction
solves the problem. It customizes the top layer of a model
(fully connected layer) and lets the pretrained CNN extract
the characteristics of the image. For our study, we used the
feature extraction technique; we validated its performance
by comparing it with the model with randomly initialized
weights. )e first model was generated with the pretrained
weights in ImageNet. Our purpose was to verify if the model
can capture the local differences of two species which are
very similar such as “Cacatua galerita” and “Cacatua
goffiniana.”

According to Lin et al., the fully connected layer com-
monly used in traditional CNN models is likely to overfit
despite using the dropout. )ey proposed a global average
pooling (GAP) technique that inserts the average value of
each feature map into a vector and links it into the input of
the SoftMax layer directly instead of a fully connected
layer [26]:
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Figure 1: Diagram of the transfer learning.
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Formula (1) presents the approach suggested in their
study. GAP is a vector of the average values of feature maps
from the last convolutional layer. GAPi indicates an element
of the vector. Here,m is the number of rows in a feature map
and n is the number of columns in a feature map. )e
meaning of the left term is summing all values in the feature
map and then dividing them by m multiplied by n. )e
purpose is to obtain the average value of the feature map.
GAP calculates averages of feature maps that are the out-
comes of the convolutional process (Figure 5). Next, it
creates a vector that consists of the average values.

According to their proposal, GAP has the following
advantages over a fully connected layer. First, the compu-
tational cost can be reduced by decreasing the number of
parameters to be handled by a human (hyperparameters).
Second, some model parameters can be eliminated to reduce
overfitting.)erefore, there is no need to rely on dropout. In
this study, we will use GAP instead of a traditional fully
connected layer to take advantage of this technique.

We imported the ResNet50, NASNetMobile, Incep-
tionResNetV2, and InceptionV3 models from the Keras
library for feature extraction. )e imported models used

convolutional layers initialized with weights that had been
pretrained on ImageNet. A global average pooling layer and
a dense layer with SoftMax were added after the convolu-
tional layers (Figure 6). )e experiment compared two types
of initialization: weights of ImageNet and random values.
Moreover, we use a hyperparameter search library called
“Hyperas” to optimize hyperparameters (such as optimizer
and learning rate) without the researcher’s effort.

3.4. Transfer Learning. As explained in Section 2, we can
apply the convolutional layers of a pretrained model to
another classifier. Because an image consists of pixels, the
local features of the image are almost the same as in other
images. )e convolutional layers can capture these patterns
using the pretrained weights. At this point, the model’s
ability to perform the abstraction of local parts affects the
model’s performance. According to Krizhesky et al., the test
results for the models with transfer learning showed that
their top-5 accuracy was higher than in other cases [27].
Transfer learning does not train the convolutional layers but
only lets them extract the features and then passes the
extracted features to the classification layers. Moreover,
there is an advanced technique to improve the model (called
fine tuning) that trains the high-level layers of the con-
volutional layers and the classification layer together. In our
study, we experimented with themodels described in Section
3.3 (ResNet50, NASNetMobile, InceptionResNetV2, and
InceptionV3) trained by transfer learning using the weights
of ImageNet (Figure 7).

3.5. Experiments. Parrots are among the most common
endangered species in South Korea because of social
problems such as smuggling. Moreover, parrots are included
in the list of the most endangered species by the Convention
on International Trade in Endangered Species of Wild Flora
and Fauna (CITES) (Table 1). We have previously studied
parrots of distinct colors and shapes with conventional CNN
models [28]. However, in this study, we hypothesize that the
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Figure 2: System configuration and scenario for classifying endangered parrot species using a mobile device.
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CNN models with transfer learning can classify the quasi-
species well despite similar colors and patterns. )is ex-
periment used 14420 parrot images.)e parrots were of four
species, and we used 3605 images per species. As shown in
Table 1, the four parrot species are Cacatua goffiniana,
Cacatua galerita, Ara chloroptera, and Psittacus erithacus.
Among these species, Cacatua goffiniana and Cacatua
galerita have a high color similarity. Morphological infor-
mation is very important to classify the parrot images using
CNN. )e morphological features of each species are shown
in Table 1 [29]. Parrot images were divided into three
subsets: training, validation, and test sets. )ey were crawled
from Google and YouTube. )ere were 980 images per
species originally, but we divided these into two groups and
use only 875 for training because of the information leak.
3500 images were produced by data augmentation. 2800
images were for training and 700 images were for validation.
)e test set has 420 images, including 100 crawled images
and 5 images provided by the Seoul Grand Park per each
species. Because we focused on the color similarity of two
species, we did not do any data augmentation affecting the
color of images. )us, 2800 images for the training set and
700 images for the validation set were provided to the
models for each species. )e test set did not undergo the
process of data augmentation because it is not effective to use
the augmented data not affecting the color for the actual test.
)e testing is divided into two steps. After the training, we
carried out the test of each model’s performance by com-
paring the confusion matrix and F1-score values for 420 test
samples. Next, we converted the file into a FlatBuffer format,
deployed it on a mobile device, and then verified the results
by using the video data obtained from the Seoul Grand Park.

Figure 8 depicts the entire experiment process. Original
data were augmented using the “imgaug” library, as

described in Section 3.2. )e image classifier was created
using the Keras API in TensorFlow, a powerful tool to
construct a deep learning model.We focused on a pretrained
model for transfer learning; hence, we imported the
models as shown in Figure 7. For example, “tensor-
flow.keras.applications.resnet.ResNet50” can set the
weights initialization type [30]. We can obtain the desired
results by setting the keyword parameter “weights” to
“imagenet.” )e models were completed with stacking a GAP
layer and a dense layer. Once themodels’ trainingwas complete,
we evaluated their performancewith the test data using t “scikit-
learn” Python library [31, 32]. Next, we converted it into a
“FlatBuffer” file to be deployed on a mobile device [33]. Finally,
we can see the result on a device, as illustrated in Figure 9.

4. Results

4.1. Experimental Results. Figure 10 shows the learning
curves of training accuracy for eight models: ResNet50,
NASNetMobile, InceptionResNetV2, and InceptionV3 with
two types of initialization: pretrained ImageNet weights or
random numbers (as described in the previous section). )e
horizontal axis shows the number of training iterations on
the complete train dataset. )e vertical axis shows the
training accuracy (0.5 means the model correctly classified
half of the data, and 1 means a perfect classification). As
depicted in Figure 10, performance of the models was poor
after the first epoch, but additional iterations improved the
accuracy. After approximately twenty epochs, the accuracy
of each model converged at 1, with no noticeable im-
provement afterward. Notably, the models that were ini-
tialized with the ImageNet weights and had nontrainable
convolutional layers outperformed the others (we can check
that the curves are located higher). Besides, their accuracy

Augmentation

Augmentation

Augmentation

Augmentation

Figure 4: Data augmentation for images of endangered parrot species.
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converged faster. Figure 11 illustrates the learning curves of
validation accuracy for the models. )e models were evalu-
ated on the validation data after each epoch. )erefore, the
accuracymeasures the quality of predictions for the validation
data. )e curves look relatively uneven compared with the
prior ones. )is is because the models had never seen these
data before. )e models learned some features of parrots
using the training images, and we tested what they learned
using the validation data. )e models experienced some

failures repeatedly. However, their accuracy converged to a
point of minimal error. Likewise, the accuracy of ImageNet-
initialized models is typically better than the others. Both
graphs do not show any obvious drop as time passes (look at
both graphs after twenty epochs). )us, overfitting did not
occur. Overfitting refers to the models that perform well on
the training set but not on the validation set.

)e reason why epoch number is thirty is because we
checked that it is useless to exceed thirty. We set some

[Featuremap calculation using Relu]

Featuremapa,b,c = max((Weightc)T ∗ xa,b, 0) 

where (a, b) is a pixel index and c indicates a index of the channels 

[Global Average Pooling]

where m is the number of rows, n is the number of columns in a featuremap

1 3 2
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a ∑n
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Figure 5: Concept diagram of global average pooling.
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Figure 6: Convolutional layers and feature maps for feature extraction of endangered parrot species.
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Figure 7: Convolutional layers and feature maps for feature extraction of endangered parrot species.

Table 1: Examples of four endangered parrot species.

Picture

Name Red and green macaw Sulphur-crested cockatoo Goffin’s cockatoo Gray parrot
Scientific
name Ara chloroptera Cacatua galerita Cacatua goffiniana Psittacus erithacus

Appearance

Flight feathers, back, rump:
darker red

Tail-coverts: blue
Median wing-coverts,
scapulars, tertials: green
Tail: dark red tipped blue
Bare face with conspicuous

lines of red feathers

Little yellow on ear-coverts or
bases to feathers of head and

underparts

Short, blunt bill
Lores and bases to feathers of
head salmon-pink: palest blue

Almost white eye-ring

Gray parrot with short,
squarish red tail

Cites
appendices Appendix II Appendix II Appendix I Appendix I
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Figure 9: Graphical user interface example of the designed system.
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callback functions when we called the “model.fit()” in our
experiment, “EarlyStopping()”and “ReduceLROnPlateau().”
It would have been stopped if the validation accuracy had
not been improved during five epochs. We saw that the
training epoch never exceeded twenty-five, so we set the
number of epochs to thirty. Learning rate started from 0.001
and decreased gradually by 0.03 if the validation accuracy
had not been improved during three epochs until the

termination of training. When we called “model.compile(),”
we set loss equals to “categorical_crossentory,” metrics
equals to “acc”, and optimizer equals to “Adam.”

Table 2 shows the confusion matrix for all models. A
confusion matrix is an evaluation approach that checks the
performance of a classifier for all labels. Every model in
this study is included, and each row shows the perfor-
mance of the model depending on the labels. For instance,

1

0.9

0.8

0.7

0.6

0.5

Epoch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Learning curves for validation accuracy
ResNet50 (ImageNet)
NASNetMobile (ImageNet)
InceptionResNetV2 (ImageNet)
InceptionV3 (ImageNet)

ResNet50 (random)
NASNetMobile (random)
InceptionResNetV2 (random)
InceptionV3 (random)

Figure 11: Learning curves of each model’s validation accuracy.

Table 2: Confusion matrix.

ResNet50 (ImageNet/random) Prediction
Actual Ara chloroptera Cacatua galerita Cacatua goffiniana Psittacus erithacus

Ara chloroptera 100/92 0/1 0/3 5/10
Cacatua galerita 0/1 98/66 6/38 1/0
Cacatua goffiniana 0/2 15/40 88/55 2/8
Psittacus erithacus 5/4 1/5 10/6 89/90

NASNetMobile (ImageNet/random) Prediction
Actual Ara chloroptera Cacatua galerita Cacatua goffiniana Psittacus erithacus

Ara chloroptera 99/95 0/1 5/1 1/8
Cacatua galerita 0/0 100/76 2/23 3/6
Cacatua goffiniana 0/3 12/32 89/54 4/16
Psittacus erithacus 3/0 0/4 1/11 101/90
InceptionResNetV2 (ImageNet/random) Prediction

Actual Ara chloroptera Cacatua galerita Cacatua goffiniana Psittacus erithacus
Ara chloroptera 103/85 0/7 1/2 1/11
Cacatua galerita 0/0 98/74 5/29 2/2
Cacatua goffiniana 0/4 8/19 95/72 2/10
Psittacus erithacus 8/5 0/4 1/4 96/92

InceptionV3 (ImageNet/random) Prediction
Actual Ara chloroptera Cacatua galerita Cacatua goffiniana Psittacus erithacus

Ara chloroptera 100/99 0/1 3/1 2/4
Cacatua galerita 0/0 94/77 3/28 8/0
Cacatua goffiniana 1/2 8/10 97/89 0/4
Psittacus erithacus 8/6 0/1 0/2 97/96
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100/92 in the first row means that the number of correct
predictions is 100 and 92 for the models initialized by the
ImageNet weights and random weights, respectively. )e
number of test images for each species is 105, as mentioned
earlier. Hence, ResNet50 with the ImageNet weights
correctly classified 100 out of 105 samples. )e confusion
matrix is an important measure of the true performance of
each model. Because the models were evaluated on

previously unseen data, we can verify whether they can
recognize general features of the species. )e results show
that the models can classify the images in the training and
validation sets with more than 90% of accuracy (learning
curves of training and validation) but it does not seem to
apply to the confusion matrix of random-number-ini-
tialized models (right-side values of the confusion matrix).
)erefore, some pieces of information for validation were

0.94

A. chloroptera C. galerita C. goffinianan P. erithacus

0.9

ResNet50

0.59

0.84
0.89

0.81

0.56

0.94

ResNet50 image
ResNet50 random

Figure 12: F1-score of RestNet50 for four different endangered parrot images.
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InceptionResNetV2

0.76

0.93 0.97

0.78
0.68

0.98

InceptionResNetV2 image
InceptionResNetV2 random

Figure 13: F1-score of InceptionResNetV2 for four different endangered parrot images.

0.95
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0.94

NASNet Mobile

0.77

0.93
1

0.83

0.65

1

NASNet mobile image
NASNet mobile random

Figure 14: F1-score of NASNetMobile for four different endangered parrot images.
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leaked out during the training; hence, the models mem-
orized the features of validation instead of general features
of species. According to our results, the models with
ImageNet weights classify the images better than the other
methods, even though the images are completely new. For
example, the results are 98/66 and 88/55 for ResNet50 in
Table 2. )is finding stands not only for ResNet50 but also
for the other models. )e number of correct predictions
for each model is 100 out of 105, 98 out of 105, and 94 out
of 105 for Cacatua galerita; 88 out of 105, 89 out of 105, 95
out of 105, and 97 out of 105 for Cacatua goffiniana,
respectively.

Figures 12–15 show F1-scores of the models. F1-score is
a way to quantify the results of the confusion matrix. F1-
score is calculated using precision and recall by

F1 � 2∗
Precision∗Recall
Precision + Recall

. (2)

Precision reflects how many predicted items are correct.
Recall reflects how many correct items are predicted. Pre-
cision can be calculated by dividing the number of true
positives by the number of positive predictions. For instance,
ResNet50 with ImageNet classified 105 images as Ara
chloroptera in the test set. )e number of true positives is
100. )erefore, the precision of ResNet50 is 100 out of 105.
Recall can be calculated by dividing the number of true
positives by the number of true cases. For ResNet50, the total
number of true cases is 105; hence, the recall of the model is
100 out of 105. We can calculate the F1-score by substitution
of the results:

2∗
(100/105)∗(100/105)

(100/105) +(100/105)
≈ 0.95. (3)

Figure 12 shows the F1-score of Ara chloroptera. )e F1-
score is more effective than simple accuracy when we
measure the model’s performance because it considers the
data distribution (unlike the accuracy). Let us suppose that
we have 90 images with the first label and ten images with the
second label. We can obtain 90% of accuracy if we classify all
images as “the first label.. F1-score avoids this problem.
Overall, we conclude that the ImageNet-based models are
superior to the random-number-initialized models for
quasi-species of parrots.

4.2. Mobile Application. )e graphical user interface of the
real-time mobile application developed in this study is
shown in Figure 9. NASNetMobile model with ImageNet
weights was converted into a FlatBuffer file (.tflite) and
added to the application. Subsequently, we used Android
Studio to edit the code and add visual elements. First, we
checked that Android Studio, SDK version, and depen-
dences were compatible with TensorFlow Lite. After the
model in a FlatBuffer file was located in a project, we built it,
and then an APK was created. Finally, the application was
installed on a device.

)e parrot images were captured by the mobile device’s
camera. Next, the trained model classified the image. Finally,
the application showed the result of the model. We can
check the result at the bottom of the screen, as seen in
Figure 9. )e first image of Figure 9 shows a preview of a
parrot image: a text line presents that this parrot is “Ara
chloroptera” as one hundred percent. “345ms” is seen at the
lowest part of the image: it means that it took 345ms to
classify this image.)e average turnaround time was 460ms,
the minimum time was 229ms, and the maximum time was
671ms for 50 iterations. According to our findings, the
application processed jobs under 1 second.

5. Discussion

In this paper, we proposed classifiers for endangered parrot
species. )e models extract the features of the parrot ap-
pearances at the convolutional layer, which has been pre-
trained on a large amount of data, and then we classify the
images at the last layer. Our proposed models require a
relatively short time to conduct their job. )ey are more
accurate than the models trained from scratch, especially for
the species that have a similar color. )is is because the
pretrained models can already extract the low-level features
of a new image. Another advantage of the models trained by
transfer learning is that the model does not need to draw a
bounding box to train the last layer. )is approach will
greatly reduce the inconvenience for humans by eliminating
manual processes. We expect that the accuracy will be in-
creased if fine tuning is applied. Finally, Tf.keras-based
model can be easily deployed on an Android mobile device
using the FlatBuffer file converter provided by TensorFlow

0.9

A. chloroptera C. galerita C. goffinianan P. erithacus

0.95

InceptionV3

0.67

0.9 0.95

0.7
0.58

0.99

InceptionV3 image
InceptionV3 random

Figure 15: F1-score of InceptionV3 for four different endangered parrot images.
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Lite. To clarify the key points of this study, we suggest the
following highlights:

(i) CNN models with transfer learning can be trained
without any special difficulty

(ii) )e designed advanced CNNmodels do not require
any manual preprocessing (such as labeling or
drawing bounding boxes on the images)

(iii) )e CNN models can be easily converted into a file
for deploying in a mobile application using Ten-
sorFlow Lite framework

(iv) )e mobile application can classify endangered
quasi-species of parrots having a high color simi-
larity in real time

6. Conclusions and Future Work

In our proposed system, the mobile application classifies the
image acquired from the device camera in real time. To sum
up, our system works as follows. We used two methods to
create a high-quality model with a small amount of original
data. First, we used data augmentation to increase the
amount of data by manipulating the original data. Second,
we used transfer learning to extract the characteristics of the
image smoothly. Specifically, we used the convolutional
layers pretrained on a large amount of data. Next, we used
the FlatBuffer file converter provided by TensorFlow Lite to
deploy this model on a mobile device. For quasi-species of
parrots, the accuracy of the classification models with
transfer learning is approximately 20% higher than that of
the models trained from scratch.

Based on this study, we also expect that further studies
on advanced topics could be explored as follows. First, the
results can be improved when a fine-tuning process is added,
as mentioned in Section 5. Second, in addition to the
classification of the four species of parrots in this study, it is
possible to carry out accurate classifications for parrots on
more than ten species.

Data Availability

)e image data used to support the findings of this study are
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