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As an indispensable key technology in 5G Internet of,ings (IoT), mobile edge computing (MEC) provides a variety of computing and
services at the edge of the network for energy-limited and computation-constrained mobile devices (MDs). In this paper, we use the
multiaccess characteristics of 5G heterogeneous networks and queuing theory. By considering the heterogeneity of base stations, we
establish the waiting and transmission consumptionmodel when tasks are offloaded.,en, the problem of jointly optimizing the energy
and delay consumption of MDs is proposed. We adopt an optimization scheme based on task assignment probability; moreover, the
task assignment algorithm based on quasi-Newton interior point (TA-QNIP) method is developed to solve the optimization issue.
Compared with the Newton interior point algorithm, the proposed algorithm accelerates the convergence speed and reduces the
complexity of the algorithm and is closer to the objective function optimal solution. ,e simulation results demonstrate that the
proposed method can reduce the total consumption of MDs effectively; furthermore, the performance of the algorithm is proved.

1. Introduction

With the widespread deployment of Internet of ,ings
(IoT) in 5G era [1], mobile applications such as natural
language processing, virtual reality, and interactive games
have greatly enriched our lives [2]. However, mobile de-
vices (MDs) with constrained computing power and bat-
tery capacity could not handle the huge amount of data
generated by mobile applications [3, 4]. To avoid this
mismatch of resources, researchers have come up with
various cloud-based solutions [5]. By utilizing the abun-
dant resources in the center cloud, the computing intensive
tasks of mobile applications can be offloaded, thus reducing
the workload of IoTdevices (smart furniture, smart glasses,
and industrial sensor, etc. [6]) and shortening the com-
puting delay [7]. However, due to the multihop structure of
the core network, the delay between theMDs and the center
cloud is too long. If a lot of IoT devices request cloud
services from the same node at the same time, the backhaul
link will be heavily burdened [8].

In order to alleviate the burden of the core network,
mobile edge computing (MEC) is gradually proposed and
brings cloud computing functions to the edge of the network
[9]. With the help of MEC,MDs can offload tasks to the edge
of the network, instead of using servers located in the center
of the network which is far away fromMDs [10].,is greatly
improves the offloading efficiency of the device, while re-
ducing the energy consumption of the device and shortening
the backhaul delay [11].

In recent years, with the progress of 5G communication,
MEC based on 5G architecture has been studied by many
scholars [12–16]. In the 5G network, a heterogeneous net-
work composed of a macro base station and a small base
station is a common form of 5G architecture [17]. Since the
macro base station and the small base station are located at
different locations and the configured hardware levels are
different, they have different effects in the small cell network.
,erefore, our goal is to improve the offloading efficiency of
MEC in 5G environments by considering the performance
differences of the base stations.
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,e MD has the offloading decision right. ,e question
of whether, how much, and what to offload is determined by
monitoring various parameters through the terminal system
parser, such as the size of the data to be offloaded, the time
delay caused by the offloading task, or the amount of energy
required to execute locally. Compared with the deterministic
task model, the average energy consumption and execution
latency of the stochastic task model system have a stronger
correlation, so designing an efficient computation offloading
scheme is more challenging. ,erefore, compared with the
computation offloading optimization scheme of the deter-
ministic task model, the design of MEC systems with ran-
dom task arrival is a less explored field.

Aiming at the problem of MDs’ consumption in MEC,
this paper designs a task offloading scheme with base station
collaboration based on 5G heterogeneous networks. ,e
purpose of this scheme is to improve the low efficiency of
task offloading caused by congestion. Different from the
existing literature which only optimizes the delay or energy
consumption, this paper reduces the overall consumption of
MDs by optimizing the energy and delay consumption of
MDs jointly.,e contributions and innovations of this paper
are as follows:

(i) In this paper, a base station cooperative task off-
loading scheme based on 5G heterogeneous net-
works is designed. By using queuing theory, the
waiting energy and delay consumption of tasks to be
offloaded are considered jointly; in addition, the
offloading decision problem is transformed into the
task assignment probability problem.

(ii) ,e optimization goal of the MDs-centered energy
and delay consumption minimization is established.
,en, the joint optimization of the total con-
sumption of MDs with different demands on delay
and energy consumption is accomplished by allo-
cating the task assignment probability.

(iii) In order to solve the problem of consumption
minimization, the task assignment algorithm based
on quasi-Newton interior point (TA-QNIP)
method is proposed. In addition, the complexity of
the proposed algorithm is discussed and the con-
vergence performance is verified.

,e rest of this paper is arranged as follows: we sum-
marize the related work in Section 2. Section 3 establishes a
complete system model. In Section 4, we formulate the
optimization problem of minimizing the energy and delay
consumption of MDs. In Section 5, the Newton algorithm is
briefly introduced; accordingly, the TA-QNIP method is
proposed, and then we analyze the algorithm complexity.
Simulation results are discussed in Section 6. Finally, we
summarize the work of the full text in Section 7.

2. Related Work

At present, there are some related works focusing on MEC
under 5G architecture. Wang et al. [12] improved system
revenue by jointly optimizing computation offloading,

resource allocation, and content caching. Zhang et al.
studied how to decrease the computation offloading delay of
the MEC system in 5G architecture [13]. In order to meet the
key requirements of 5G networks for low latency and high
reliability, the authors in [18, 19] proposed a joint opti-
mization problem for computation offloading of MEC
systems based on delay and reliability. However, the above
works did not take into account the basic characteristics of
the multiaccess feature of the 5G architecture. Combining
the multiaccess characteristics of 5G heterogeneous net-
works, Zhang et al. [10] proposed the MEC energy-efficient
computing offload mechanism in 5G heterogeneous net-
works, which effectively reduced energy consumption
through joint optimization of offloading strategies and
cellular network resource allocation. Considering the con-
straints of computing ability and service delay requirements,
Yang et al. [4] developed an energy optimization scheme
based on artificial fish swarm algorithm to minimize the
entire energy consumption of the system. ,e above works
have achieved good results in the optimization of system
energy consumption when using the 5G multiaccess feature
to design scheme, but the optimization of task processing
delay is not considered at the same time.

Recent survey [20] has shown that there are two types of
computation offloading: binary offloading and partial off-
loading. Computing tasks cannot be divided into subtasks in
binary offloading. ,e entire task must be executed on the
local or MEC servers [21, 22], thus reducing the flexibility of
the task processing in practical application environments.
However, in partial offloading, subtasks can choose different
offloading ways based on different processing requirements
and optimal system efficiency [20]. In view of task separa-
bility, Guan et al. [23] designed an efficient task offloading
scheme for IoT based on cooperative communication in the
mobile cloud computing system. Pang et al. [24] studied the
problem of delay-driven collaborative task calculation in fog
wireless access network. Although previous research studies
make good use of the separability of the task to establish a
model, but did not fully utilize the small cell heterogeneous
network characteristics under the 5G architecture.

Applying queuing theory to MEC is the focus of scholars
in recent years. In [25, 26], the energy consumption, exe-
cution delay, and price cost of the offloading process in the
MEC system are studied in depth by using queuing theory.
,e authors in [27] based on Lyapunov optimization de-
veloped an online algorithm and the theoretical boundary of
the algorithm in terms of average power consumption and
average queue length was proved. In [28], different queue
models were applied to study the energy cost and delay
performance, and the optimal solution was solved by the
semismooth Newton method of Armijo line search. Yang
et al. [29] used a probabilistic optimization scheme to jointly
optimize energy costs and packet congestion and effectively
controlled congestion of edge servers by grouping with
different priorities. Li [30] established a queuing model for
oneMD andmultiple heterogeneous edge servers, and in the
past work, the heterogeneity of the edge server was intro-
duced for the first time to study the optimization of the
computational offload strategy. ,e authors in [31]
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established three different queue models based on MD,
cloudlet, and central cloud and then conducted in-depth
research on the optimization of energy consumption and
execution delay of cloudlet-assisted task offloading. How-
ever, the previous works did not consider the impact of
congestion caused by the bearer capacity of the base station
on the MEC system.

Different from previous studies, under the 5G MEC
heterogeneous networks, we proposed the object that jointly
optimizing the energy and delay consumption of MDs.
,rough queuing theory, we comprehensively considered
the differences of heterogeneous base stations and estab-
lished the waiting consumption and transmission con-
sumption model during task offloading. A task assignment
algorithm based on quasi-Newton interior point method is
proposed. MDs can reasonably assign offloading tasks
according to the congestion degree of the system to mini-
mize the total consumption. Finally, the complexity of the
proposed algorithm is discussed and the convergence is
verified.

3. System Model

In this part, we first establish the system model, including
network model, local model, transmission model, and edge
cloudmodel, and then, the problemmodel to be optimized is
established.

3.1. Network Model. In the edge cloud network, the pro-
cessing tasks generated by each MD can be executed locally
or offloaded to the MEC server for computing. In order to
save energy consumption and shorten time delay, we design
an uncertain task offloading model based on queuing theory.
As shown in Figure 1, we consider a set of MDs in the
system, which is denoted by MDi (i� 1, 2, 3 . . . N), a macro
base station (MBS) equipped with MEC servers and a small
base station (SBS).,eMBS and SBS are connected by a fiber
link. Due to the different types of tasks generated by each
MD, the generated task requests are random. We assume
that a task consists of multiple subtasks. In general, the
computing tasks randomly generated by MDs can be pro-
cessed locally, or some tasks can be offloaded toMEC servers
through MBS for processing. In this model, MDs can also
offload some tasks to MEC servers through SBS, thus re-
ducing the processing pressure of MBS. Based on the
queuing theory [32], we consider that the processing model
of the local is the M/M/1 queue, and the model of the task
transmission is the M/M/c queue. Figure 2 shows the task
queuing process. Suppose the task generation rate of the
MDi is λi (measured by the number of generation tasks on
per unit of time, e.g., second), the size of request data is θi.
,e probability that the task generated by the MDi is locally
executed is pl

i, the probability that the task is processed by
the edge cloud is pc

i , and pm
i and ps

i are the probability that
theMDi offloads the task through the macro base station and
the probability that the task is offloaded through the small
base station, respectively, where pc

i � ps
i + pm

i . Due to the
nature of Poisson distribution, we assume that the service

request offloaded to the MEC servers follows the Poisson
process with an average rate of pc

iλi, and the locally pro-
cessed service request follows the Poisson process with an
average rate of pl

iλi.

3.2. Local Model. ,e consumption of MDs performing
tasks locally is divided into two parts: computation and task
response consumption. In order to simplification, we only
consider the task response consumption. uD

i represents the
execution capability of MDi, and lDi represents the pro-
portion of CPU occupied by MDi. Since the generation of
tasks is distributed negatively exponentially, the task pro-
cessing model is considered to be M/M/1 queue on the MD
side. By Little’s Law [33], the local task response time is
T � (1/u)/(1 − η), and the queuing efficiency is η � λ/u,
where λ and u are task arrival rate and device service rate,
respectively. ,erefore, the average response time and en-
ergy consumption of locally executed tasks are as follows:

T
D
i �

1
uD

i 1 − lDi(  − pl
iλi

, (1)

E
D
i � ξiT

D
i � ξi

1
uD

i 1 − lDi(  − pl
iλi

, (2)

where ξi represents the response energy consumption co-
efficient of MDi.

3.3. Transmission Model. In the edge heterogeneous net-
work, in addition to MBS, the SBS is regarded as the co-
operative base station within the MBS coverage. In order to
effectively utilize the spectrum resources, both MBS and SBS
work in the same frequency band [10]. It is assumed that the
bandwidth of the channels in the system is the same, which is
denoted by B. Since this paper mainly researches task as-
signment problems and alleviates system congestion, in
order to simplify the model, we assume that the interference
can be negligible because channels allocated to MDs for
computation offloading are all orthogonal [34, 35]. ,ere-
fore, we can calculate the uplink transmission rate of the
MDi offloading tasks to the MBS:

R
m
i � Blog2 1 +

Pm
i Hm

i

σ2
 . (3)

Similarly, the uplink transmission rate of the MDi off-
loading tasks to the SBS is given by

R
s
i � Blog2 1 +

Ps
i H

s
i

σ2
 , (4)

where σ2 is the Gaussian white noise power and Pm
i and Ps

i

denote the transmission power of MDs to MBS and SBS,
respectively. ,e transmission power can be determined by
the power control mechanism of MBS and SBS [36]. In
addition, Pmax

i is the maximum transmission power of the
MDi, Hiis the channel gain between the MDi and base
stations, Hi � 127 + 30 × logdi, and di is the distance be-
tween the MDi and base stations [37].
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For MBS and SBS, the maximum acceptable task arrival
rate is λm

max and λs
max, respectively, and the sum of all task

request rates from different MDs is expressed as follows:

λm
total � 

N

i�1
λip

m
i , (5)

λs
total � 

N

i�1
λip

s
i . (6)

,en, the actual task arrival rate on the MBS is
λm

p � min[λm
total, λ

m
max], and the actual task arrival rate on the

SBS is λs
p � min[λs

total, λ
s
max]. Assume that the service rate of

MBS is um and the service rate of SBS is us. According to the
M/M/c queuing model definition, the queue strengths of the
tasks to the MBS and the SBS are as follows:

ρm
�

λm
p

cum
, (7)

ρs
�

λs
p

cus
. (8)

Queue strength is a parameter to measure the stability of
the system. When ρm < 1 and ρs < 1, the average amount of
tasks arriving at the system is less than the average amount of
tasks leaving the system; therefore, the task waiting time will
not be too long caused by the lengthy queue, and at this time,
the system is stable. In order to offload computing tasks to the
MEC servers, wireless uplink transmissions generate extra
energy and delay overhead. ,e total transmission time in-
cludes the transmission time of the uplink and the waiting time

Mobile devices

Small BS

Backhaul

Macro BS

MEC server

Figure 1: Base station cooperative task offloading model based on 5G heterogeneous networks.
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Figure 2: Queuing model of task request processing.
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for the task to be offloaded. ,erefore, when the MDi offloads
its tasks to the MEC servers through MBS, the transmission
delay and energy consumption can be calculated as follows:

T
m
i P

m
i(  �

pm
i λiθi

Rm
i

+ W
m
i �

pm
i λiθi

Blog2 1 + Pm
i Hm

i /σ2( ( 
+ W

m
i ,

(9)

E
m
i P

m
i(  � P

m
i T

m
i P

m
i(  � P

m
i

pm
i λiθi

Rm
i

+ ciW
m
i

� P
m
i

pm
i λiθi

Blog2 1 + Pm
i Hm

i /σ2( ( 
  + ciW

m
i ,

(10)

where ciis the waiting energy coefficient of MDi. Similarly,
whenMDi offloads its tasks toMEC servers through SBS, the
transmission delay and energy consumption can be calcu-
lated as follows:

T
s
i P

s
i(  �

ps
iλiθi

Rs
i

+ W
s
i �

ps
iλiθi

Blog2 1 + Ps
i H

s
i /σ2( ( 

+ W
s
i ,

(11)

E
s
i P

s
i(  � P

s
i T

s
i P

s
i(  � P

s
i

ps
iλiθi

Rs
i

+ ciW
s
i

� P
s
i

ps
iλiθi

Blog2 1 + Ps
i H

s
i /σ2( ( 

  + ciW
s
i ,

(12)

where Wm
i is the waiting time for the task generated by the

MDi to be offloaded toMBS. According to the Little formula,
the queuing system with an average arrival rate of λ, in the
average sense, the waiting time under the M/M/c queuing
system is as follows:

W
m
i �

Lm
q

um
�

cρm( 
c− 1ρm/c! 1 − ρm( 

2
 pm

0

um
, (13)

where the idle probability of MBS is as follows:

p
m
0 � 

c− 1

k�0

cρm( 
k

k!
+

cρm( 
c

c! 1 − ρm( 
⎡⎣ ⎤⎦

− 1

. (14)

Similarly, the waiting time for the task generated by MDi
to be offloaded to SBS is given by

W
s
i �

Ls
q

us
�

cρs( 
c− 1ρs/c! 1 − ρs( 

2
 ps

0

us
, (15)

where the idle probability of SBS is as follows:

p
s
0 � 

c− 1

k�0

cρs( 
k

k!
+

cρs( 
c

c! 1 − ρs( 
⎡⎣ ⎤⎦

− 1

, (16)

where Lm
q and Ls

q are the average waiting queue length of the
task. In addition, the backhaul link rate between SBS and
MBS is much higher than that of the wireless link, so the rest
of the paper simply omits the backhaul delay [29].

3.4.EdgeCloudModel. After receiving the offloaded task, the
MEC server performs the calculation immediately. ,e
maximum workload of the MEC system is limited to the
maximum receiving rate, which is expressed as λc

max. In the
system, the total request rate from different MDs is
expressed as follows:

λD
total � 

N

i�1
λip

c
i � 

N

i�1
λm

p p
m
i + λs

pp
s
i . (17)

When the MEC servers perform the offloading task
completely, the calculated result will be returned to the MD.
We omit the time and energy consumption of MDs to re-
ceive and process the result, which is similar to [38].

4. Problem Formulation

In the 5G MEC network environment, under the conditions
of meeting the maximum task arrival rate limit and task
assignment probability constraints, and comprehensively
considering the waiting consumption of MDs, we propose
the problem of minimizing the delay and energy con-
sumption of MDs based on multi-base station cooperation.
Similar to the work in reference [39], the total delay con-
sumption of the user’s task processing can be obtained:

Ti p
l
i, p

m
i , p

s
i  � T

D
i p

l
i  + T

m
i p

m
i(  + T

s
i p

s
i( , (18)

and the total energy consumption of task processing can be
obtained:

Ei p
l
i, p

m
i , p

s
i  � E

D
i p

l
i  + E

m
i p

m
i(  + E

s
i p

s
i( . (19)

,erefore, in the system, the average execution delay and
energy consumption of MDs are expressed as follows:

T p
l
i, p

m
i , p

s
i  � 

N

i�1
Ti p

l
i, p

m
i , p

s
i , (20)

E p
l
i, p

m
i , p

s
i  � 

N

i�1
Ei p

l
i, p

m
i , p

s
i . (21)

Since this paper considers the multiobjective optimi-
zation of MDs’ energy and delay consumption, the trans-
mission consumption between base stations is ignored.
Considering that MEC servers have powerful computing
ability, the computing energy and delay consumption of the
MEC are ignored in this paper. ,erefore, the objective
function and the restriction conditions are as follows:

P1: min
pl

i
,pm

i
,ps

i{ }
T p

l
i, p

m
i , p

s
i , E p

l
i, p

m
i , p

s
i  ,

C1: p
l
iλi < u

D
i 1 − l

D
i  (i � 1, 2, 3 . . . N),

C2: λD
total < λ

c
max,

C3: 0≤P
m
i + P

s
i ≤P

max
i (i � 1, 2, 3 . . . N),

C4: p
s
i + p

m
i + p

l
i � 1 (i � 1, 2, 3 . . . N),

C5: p
l
i > 0, p

m
i > 0, p

s
i > 0 (i � 1, 2, 3 . . . N),

C6: 
N

i�1
λip

m
i < λ

m
max (i � 1, 2, 3 . . . N).

C7: 
N

i�1
λip

s
i < λ

s
max(i � 1, 2, 3 . . . N).

(22)

Here, C1 indicates that the local arrival rate of the task
should be less than the remaining execution capacity of the
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local device. C2 ensures that the total task arrival rate off-
loaded to the edge cloud system does not exceed the
maximum acceptable rate of the servers. When MDs offload
the task, the transmit power strength should satisfy C3. ,e
probability of offloading in different ways for different tasks
should meet C4 and C5. C6 and C7 prevent the base station
from being overloaded and maintain the stability of the
system.

Notice that P1 is a multiobjective nonlinear optimization
problem with multiple constraints. In order to satisfy the

different demands of MDi in various application environ-
ments, we introduce the delay weight factor α, and then the
energy consumption weight factor is (1 − α), where
0≤ α≤ 1, so P1 can be transformed into the following form:

P2: min
pl

i
,pm

i
,ps

i{ }
αT p

l
i, p

m
i , p

s
i  +(1 − α)E p

l
i, p

m
i , p

s
i , (23)

subject to C1∼C7, where

T � 
N

i�1

1
uD

i 1 − lDi(  − pl
iλi

+  N
i�1

pm
i λiθi

Blog2 1 + Pm
i Hm

i /σ2( ( 
  + Wm

i + 
N

i�1

ps
iλiθi

Blog2 1 + Ps
i H

s
i /σ2( ( 

  + Ws
i ,

E � 
N

i�1
ξi

1
uD

i 1 − lDi(  − pl
iλi

+ 
N

i�1
P

m
i

pm
i λiθi

Blog2 1 + Pm
i Hm

i /σ2( ( 
   + ciW

m
i + 

N

i�1
P

s
i

ps
iλiθi

Blog2 1 + Ps
i H

s
i /σ2( ( 

   + ciW
s
i .

(24)

5. Problem Solution through TA-QNIP Method

,e interior point method is an optimization algorithm for
solving the constraint problem. ,e basic idea is to convert
the constraint optimization problem into the noncon-
strained problem by introducing a penalty function method
and then use the nonconstrained optimization method to
iteratively solve the target value and continuously update the
penalty function, then approach the optimal solution of the
objective function. Since the Newton algorithm has the
advantages of fast convergence, etc., when the interior point
method is applied in the past work, most of the optimization
iterative processes adopt the Newton method. ,e flow of
the Newton algorithm is shown in Algorithm 1.

In this paper, the quasi-Newton method is used to solve
the optimization problem, and different objective functions
can be solved by different quasi-Newton methods [40]. In
order to solve this nonlinear optimization problem better,

we adopt quasi-Newton algorithm based on Broyden–
Fletcher–Goldfarb–Shanno optimization algorithm (BFGS)
with the best performance to design the TA-QNIP method.
,rough the interior point method, the constraint problem
is transformed into an unconstrained problem at first. By
adopting the BFGS quasi-Newton optimization algorithm to
approximate the optimal value and using the gradient vector
information, a positive definite symmetric matrix that ap-
proximates the Hessian matrix is constructed. Because it is
not necessary to solve the second partial derivative of the
objective function, the difficulty in the calculation is greatly
reduced. ,erefore, the P2 can be transformed into a
nonconstraint problem of minimizing penalty function:

P3: min
pl

i
,pm

i
,ps

i
,∇(k){ }

ϕ p
l
i, p

m
i , p

s
i ,∇

(k)
 , (25)

where the penalty function can be expressed as follows:

ϕ p
l
i, p

m
i , p

s
i ,∇

(k)
  � αT p

l
i, p

m
i , p

s
i  +(1 − α)E p

l
i, p

m
i , p

s
i   − ∇(k)

ln 
N

i�1
u

D
i 1 − l

D
i  − p

l
iλi 

− ∇(k)
ln λc

max − 
N

i�1
λi p

m
i + p

s
i( ⎡⎣ ⎤⎦ − ∇(k)

ln 
N

i�1
P

max
i − P

m
i − P

s
i( 

− ∇(k)
ln 

N

i�1
p

l
i − ∇(k)

ln 
N

i�1
p

m
i − ∇(k)

ln 
N

i�1
p

s
i

− ∇(k)
ln 

N

i�1
λm

max − 
N

i�1
λip

m
i

⎛⎝ ⎞⎠ − ∇(k)
ln 

N

i�1
λs

max − 
N

i�1
λip

s
i

⎛⎝ ⎞⎠

+
1
����
∇(k)

 

N

i�1
1 − p

l
i − p

m
i − p

s
i 

2
.

(26)
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In the penalty function, when the arbitrary solution
((pl

i)
0, (pm

i )0, (ps
i )
0)

N

i�1 approaches the constraint boundary,
the function value will increase rapidly, forcing the optimal
value to be solved within the feasible domain. ∇(k) > 0 (k � 0,
1, 2 . . .) is penalty factor, it is a decreasing coefficient, and the
reduction factor is set to Γ. ,en, the penalty factor can be
denoted as ∇(k+1) � Γ∇(k) (k � 0, 1, 2 . . .), where
(pl

i(∇
(k)), pm

i (∇(k)), ps
i (∇

(k)))
N

i�1 is the extreme point ob-
tained by the penalty function under the TA-QNIP method.
We express gk as the gradient vector of the objective function
and Dk as the approximate matrix of the inverse of the
Hessian matrix of the objective function, so that the search
direction is qk � − Dk · gk. When solving Dk, we first need to
derive the quasi-Newton conditions that the approximate
matrix of the Hessian matrix needs to satisfy. Let the ob-
jective function be f(P), P is the set of solutions, and then
expand the Taylor series of f(P) at P � Pk+1, that is:

f(P) � f Pk+1(  + f′ Pk+1(  P − Pk+1( 

+
1
2
P − Pk+1( 

T
f″ Pk+1(  P − Pk+1(  + Rn(P)

≈ f Pk+1(  + f′ Pk+1(  P − Pk+1( 

+
1
2
P − Pk+1( 

T
f″ Pk+1(  P − Pk+1( .

(27)

Take the first-order partial derivative of f(P):

f′(P) ≈ f′ Pk+1(  + f″ Pk+1(  P − Pk+1( , (28)

When P � Pk, we can obtain: f′(Pk) � f′(Pk+1)+

f″(Pk+1)(Pk − Pk+1). ,rough conversion, we can get:
gk � gk+1 + Hk+1(Pk − Pk+1), that is, gk+1 − gk �

Hk+1(Pk+1 − Pk). To facilitate the definition, we set

yk � gk+1 − gk, (29)

sk � Pk+1 − Pk, (30)

Bk+1 ≈ Hk+1, (31)

Dk+1 ≈ B
− 1
k+1, (32)

where Bk+1 is the approximation of the Hessian matrix and
Dk+1 is the approximation of the inverse matrix H− 1

k+1 of the
Hessian matrix, then

yk � Bk+1sk, (33)

sk � Dk+1yk. (34)

,e above formula is the quasi-Newton condition, which
constrains the approximation of the Hessian matrix in the
iteration. ,en, we construct an approximation matrix that
satisfies the quasi-Newton condition by the BFGS method
instead of the original Hessian matrix. Let the iterative
formula of the approximate Hessian matrix be

Bk+1 � Bk + ΔBk. (35)
Let ΔBk � αuuT + βvvT, where vectors u and v are

undetermined vectors, and their dimensions are n × 1 (n is
the dimension of P). ,e variable quantity of matrix ob-
tained by this way must be symmetric matrix; then

yk � Bk+1sk � Bk + αuuT
+ βvvT

 sk

� Bksk + αuTsk u + βvTsk v.
(36)

Let αuTsk � 1, βvTsk � − 1, then we have
yk − Bksk � u − v; let u � yk and v � Bksk, we get
α � (1/yT

k sk), β � − (1/sT
kB

T
k sk). Finally, the correction ma-

trix is obtained:

ΔBk � αuuT
+ βvvT

�
1

yT
k sk

uuT
−

1
sT

kB
T
k sk

vvT

�
ykyT

k

yT
k sk

−
Bksksk

TBk
T

sT
kB

T
k sk

.

(37)

,e above formula can be replaced by Bk+1 �

Bk + (ykyT
k /y

T
k sk) − (Bksksk

TBk
T/sT

kB
T
k sk). We introduce the

identity matrix I, by using Sherman–Morrison formula, and
the above equation can be converted into B− 1

k+1 � (I − (skyT
k /

yT
k sk))B− 1

k (I − (yksT
k /y

T
k sk)) + (sksT

k /y
T
k sk), that is:

Dk+1 � I −
skyT

k

yT
k sk

 Dk I −
yksT

k

yT
k sk

  +
sksT

k

yT
k sk

. (38)

(1) Initial feasible point x0, define ε as a sufficiently small positive real number, k � 0.
(2) Calculate gk and Hk.
(3) If ‖gk‖< ε,

it should stop iterating;
else
determine the search direction qk � − H− 1

k · gk

(4) Calculate next iteration points: xk+1 � xk + qk

(5) k � k + 1 and turn to step 2.
where gk is the gradient vector of the objective function, H− 1

k is the inverse of the Hessian matrix, and the Newton iteration
direction is qk � − H− 1

k · gk. Each iteration of the Newton algorithm needs to solve the inverse of the Hessian matrix of the objective
function, so that the calculation is complicated.

ALGORITHM 1: Newton algorithm
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,us, the inverse of the Hessian matrix is avoided in
every iteration, and the difficulty in the calculation is
greatly reduced. By iterating the correction matrix many
times, the optimal search direction is changed continu-
ously, and the approximate optimal solution
((pl

i)
∗, (pm

i )∗, (ps
i )
∗)

N

i�1 is obtained. ,e task assignment
algorithm based on quasi-Newton interior point method is
shown in Algorithm 2.

5.1. ∗Algorithm Complexity Analysis. ,e service difference
between base stations will affect the offload probability, and
the number of MDs and base stations will affect the algo-
rithm complexity. In the two comparison algorithms in this
paper, they both use the interior point method to set the
penalty function and transform the constraint problem into
a nonconstraint problem. When the task assignment algo-
rithm based on Newton interior point (TA-NIP) method
solves the optimal value in a nonconstrained problem, in
order to find the optimal search direction, the Hessian
matrix of the objective function must be solved first, and the
inverse of the Hessian matrix of the objective function is
calculated. ,e calculation complexity is exponential order.
However, the TA-QNIP method proposed in this paper only
needs to construct an approximate matrix to represent the
inverse of the Hessian matrix, thereby reducing the com-
plexity of the algorithm. In the complexity analysis, the first-
order operation of matrix is ignored and the second-order
operation of matrix is considered. Let N be the number of
users, the number of base stations is 2, and k is the number of
iterations. ,en, the complexity of the TA-NIP method is

O((2N)3∗ k), and the complexity of the TA-QNIP method
is O(2N∗ k).

6. Simulation Results

In this section, we evaluate the performance of the proposed
TA-QNIP method through simulation results. At the same
time, according to the simulation results, the advantages of
the cooperative base station model are also proved. We
consider that the distance dm between MBS and MDs is
1000m, and the distance ds between SBS and MDs is 50m
[34]. ,e task generation rate of the device λi satisfies [0.1,
1.1] MB/s and the task size randomly generated by each
device is θi � [2.5, 5] MB [41]. Local device execution ca-
pability is uD

i � 0.5GHz [10], and the CPU occupied pro-
portion lDi of MDi is randomly selected in [0, 1]. ,e
response power coefficient of MDi is set atξi � 0.1, andMDi’s
waiting power coefficient is ci � 0.01 [42]. ,e channel
bandwidth B � 5MHz [4], Gaussian white noise power
σ2 � -127 dbm, and the transmission power Pm

i and Ps
i of the

MD are randomly selected in [0.2, 0.3] w. In the following
simulation analysis, we use “total consumption” to represent
the sum of energy and delay consumption when MDs
process the task under different energy and delay con-
sumption demands. Because the total consumption reflects
the cost of delay and energy consumption when MDs
process the task, there is no specific unit, and it is only
expressed in the simulation environment.

Figures 3 and 4 reflect the convergence of the TA-QNIP
method and the TA-NIP algorithm. To facilitate the re-
search, we discuss the convergence of the algorithm at ρ< 0.8

(1) Input:
Initialize the feasible point ((1 − pm

i − ps
i )
0, (pm

i )0, (ps
i )
0)

N

i�1, initialize the penalty coefficient ∇(0), set the dropping factor Γ,
k � 0, D0 � I.

(2) Define ε1 and ε2 as a sufficiently small positive real number, where ε1 > ε2.
(3) Determine search direction qk � − Dk · gk.
(4) Find the optimal step factor:

ℓk � arg min
ℓ∈R

ϕ(((1 − pm
i − ps

i )(∇
(k)), pm

i (∇(k)), ps
i (∇

(k)))
N

i�1 + ℓqk)

sk � ℓkqk

((1 − pm
i − ps

i )(∇
(k+1)), pm

i (∇(k+1)), ps
i (∇

(k+1)))
N

i�1 � ((1 − pm
i − ps

i )(∇
(k)), pm

i (∇(k)), ps
i (∇

(k)))
N

i�1 + sk

(5) Iteration:
While ‖gk+1‖> ε1
do yk � gk+1 − gk

Dk+1 � (I − (skyT
k /y

T
k sk))Dk(I − (yksT

k /y
T
k sk)) + (sksT

k /y
T
k sk)

k � k + 1
Go to step 4
end while

output ((1 − pm
i − ps

i )(∇
(k)), pm

i (∇(k)), ps
i (∇

(k)))
N

i�1
(6) Set the algorithm termination condition:

while ‖((1 − pm
i − ps

i )(∇
(k)), pm

i (∇(k)), ps
i (∇

(k)))
N

i�1 − ((1 − pm
i − ps

i )
0, (pm

i )0, (ps
i )
0)

N

i�1‖> ε2
do

Iteration: ∇(k+1) � Γ∇(k) (k � 0, 1, 2, . . .)
((1 − pm

i − ps
i )
0, (pm

i )0, (ps
i )
0)

N

i�1 � ((1 − pm
i − ps

i )(∇
(k)), pm

i (∇(k)), ps
i (∇

(k)))
N

i�1, k � k + 1
end while

(7) Return: ((1 − pm
i − ps

i )(∇
(k)), pm

i (∇(k)), ps
i (∇

(k)))
N

i�1

(8) Output ((pl
i)
∗, (pm

i )∗, (ps
i )
∗)

N

i�1 is the approximate optimal solution of the objective function.

ALGORITHM 2: Task assignment algorithm based on quasi-Newton interior point method
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and α � 0.5. Figure 3 shows the influence of the number of
MDs on the iterations; when the algorithm precision is 10− 5,
the iterations of the two algorithms increase with the in-
crease of the number of MDs, but the TA-QNIP algorithm
shows better convergence performance, especially when the
number of MDs increases significantly. Figure 4 shows the
effect of algorithm precision on the iterations when N � 50,
and it can be seen that, under different algorithm precision,
the iterations of the proposed TA-QNIP algorithm are lower
than those of the TA-NIP algorithm. Based on the verifi-
cation of the above simulation results, the TA-QNIP algo-
rithm has better convergence performance.

As shown in Figure 5, different schemes are applied to
optimize the total consumption of MDs. In order to reflect

the advantages of the proposed scheme in this paper, based
on the TA-QNIP algorithm, the TA-NIP algorithm, random
task assignment algorithm [4], and task assignment algo-
rithm under a single base station were also proposed for
analysis and comparison. It is noted that as the quantity of
MDs increases, the trend of MDs’ total consumption will
increase under different allocation algorithms. It shows that
the total consumption of MDs optimized by the TA-NIP
algorithm is slightly higher than that of the proposed al-
gorithm because every step of the algorithm needs to solve
the inverse matrix of the Hessian matrix of the objective
function. When Hessian matrix is not positive, the cor-
rectness of the descent direction could not be guaranteed, so
it could not converge at the approximate optimal solution.
When using random task assignment algorithm, with the
increase of MDs, the total consumption of MDs does not
show stable optimization results. ,e reason is that random
task assignment algorithm cannot produce a good allocation
mechanism to ensure system performance, so the algorithm
is the worst in the cooperative base station model. When
applying the task assignment algorithm based on single base
station, it can be seen that when the number of MDs is small,
the single base station can meet the task requirements of
fewer MDs at the same time, so the total consumption of
MDs under the cooperative model is not much different.
However, when the number of MDs increases, it is difficult
for a single base station to meet the demands of multi-MD
and multitask processing at the same time; therefore,
compared with the cooperative model, the total consump-
tion of MDs is more.

Figure 6 shows the effect of total consumption on dif-
ferent queue strength. We discuss the situation when the
delay weight coefficient α � 0.5. It can be seen that the total
consumption increases as the quantity of MDs increases.
When the number of tasks is small, the allowable queue
length does not reach saturation, and the tasks that need to

60

50

40

30

Ite
ra

tio
ns

20

10–10 10–9 10–8 10–7 10–6

Precision

TA-QNIP algorithm
TA-NIP algorithm

10–5 10–4 10–3 10–2

10

0

Figure 4: ,e effect of algorithm precision on the iterations.

Ite
ra

tio
ns

45

TA-QNIP algorithm
TA-NIP algorithm

40

35

30

25

20

15

10

5

0
10 20 30 40 50

Number of MDs
60 70 80 90 100

Figure 3: ,e influence of the number of MDs on the iterations.

25

20

15

To
ta

l c
on

su
m

pt
io

n

10

5

0 10 20 30 40 50 60 70 80 90 100
Number of MDs

0

TA-QNIP algorithm

TA-NIP algorithm

Random task assignment
algorithm
Task assignment algorithm
under a single base station

Figure 5: ,e impact of the number of MDs.

Mobile Information Systems 9



be offloaded are successfully entered into the queuing se-
quence. ,erefore, under the constraint of different allow-
able queue strength, the growth trend of total consumption
is almost the same. It should be noted that, with the increase
of the number of MDs, when the queue strength meets the
limits of ρ< 0.4 and ρ< 0.6, respectively, the growth trend of
the total MDs’ consumption is significantly faster than that
of ρ< 0.8, because the allowable queue length of the off-
loading task is reduced, and the tasks to be offloaded cannot
successfully enter the queuing sequence, resulting in addi-
tional consumption due to system congestion.

Figure 7 shows the influence of different delay weight
coefficients α on the total consumption of MDs. It can be

seen that when the number of MDs is constant, with the
increase of delay weight and the decrease of energy con-
sumption weight, the types of tasks thatMDs need to process
tend to be more sensitive to delay. ,erefore, most tasks are
executed on local devices, which will increase the overall cost
of MDs. On the contrary, with the increase of energy
consumption weight and the decrease of delay weight, it
means that the target MDs pay more attention to the de-
mand of energy consumption, so most tasks of MDs choose
to be offloaded to the MEC for execution, thus reducing the
total consumption of MDs.

7. Conclusion

In this paper, a base station collaborative task offloading
scheme in 5G MEC networks is established. First, we use
queuing theory to model the process of task processing, and
then the problem of minimizing the total consumption of
MDs is formulated. We establish the probability-based
optimization scheme. In order to solve the objective
equation effectively, we propose the TA-QNIP method with
lower computational complexity. Simulation results show
that compared with the TA-NIP algorithm, the proposed
algorithm can accelerate the convergence speed and reduce
the total consumption of MDs more effectively. When the
number of MDs and the task processing demands is massive,
the proposed scheme is more effective. In addition, con-
sidering user task-intensive scenarios, this work can be
extended to large-scale heterogeneous network for future
research to greatly improve the offloading experience of user
groups.
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