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WiFi indoor personnel behavior recognition has become the core technology of wireless network perception. However, the
existing human behavior recognition methods have great challenges in terms of detection accuracy, intrusion, and complexity of
operations. In this paper, we firstly analyze and summarize the existing human motion recognition schemes, and due to the
existence of the problems in them, we propose a noninvasive, highly robust complex human motion recognition scheme based on
Channel State Information (CSI), that is, CSI-HC, and the traditional Chinese martial art XingYiQuan is verified as a complex
motion background. CSI-HC is divided into two phases: offline and online. In the offline phase, the human motion data are
collected on the commercial Atheros NIC and a powerful denoising method is constructed by using the Butterworth low-pass
filter and wavelet function to filter the outliers in the motion data. ,en, through Restricted Boltzmann Machine (RBM) training
and classification, we establish offline fingerprint information. In the online phase, SoftMax regression is used to correct the RBM
classification to process the motion data collected in real time and the processed real-time data are matched with the offline
fingerprint information. On this basis, the recognition of a complex human motion is realized. Finally, through repeated ex-
periments in three classical indoor scenes, the parameter setting and user diversity affecting the accuracy of motion recognition are
analyzed and the robustness of CSI-HC is detected. In addition, the performance of the proposedmethod is compared with that of
the existing motion recognition methods. ,e experimental results show that the average motion recognition rate of CSI-HC in
three classic indoor scenes reaches 85.4%, in terms of motion complexity and indoor recognition accuracy. Compared with other
algorithms, it has higher stability and robustness.

1. Introduction

Benefiting from the widespread deployment of the wireless
communication infrastructure, human behavior recognition
based on wireless communication network technology has
become a core technology to promote various applications
[1, 2]. Traditionally, in order to recognize human behavior,
physical sensing devices (e.g., ultra-wideband (UWB), radio
frequency identification (RFID), and acceleration sensors)
are first required to be worn on the human body or deployed
in the environment. On this basis, the information collected
by these physical devices is read to facilitate the identifi-
cation of the person’s behavioral state. Although this tra-
ditional behavior recognition method has been widely used

and achieved good results, most of them require specific
sensor equipment. In addition, WiFi-based behavior rec-
ognition overcomes the shortcomings of traditional
methods; that is, it can automatically recognize human
behavior without the user wearing a sensor or device and has
been widely used in real life, including smart home, remote
health care, campus security, severe illness patient care, and
elderly activity detection [3].

Currently, WiFi-based human motion sensing tech-
nology has broad development prospects. Compared with
the human behavior recognition of the motion sensor and
optical camera, the advantage of WiFi-based human motion
recognition is that the coverage of the WiFi signal is wide,
there is no sense of dead angle, and there is no sense of light
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requirement and obscurity. Not only can it run on the cheap
commercial WiFi device, but also it has lower hardware cost
and maintenance cost than the motion sensor and optical
camera. ,e traditional indoor human behavior detection
mainly depends on the received signal strength (RSS) method,
but the experimental results show that the RSS method has
poor motion recognition and low stability. Compared with
RSS, CSI is a finer measure of the physical layer, which de-
scribes the amplitude attenuation and phase shift of a wireless
signal, based on which it can effectively identify a variety of
behaviors, from vital signs to basic behavior, as well as
complex activities [4–7]. In reference [4], Liu developed a
system to track vital signs such as the heart rate and respi-
ration rate during sleep by analyzing CSI signals in real time.
,eWi-Sleep system proposed in reference [5] can extract the
respiratory information of users in various sleep positions by
identifying the rhythm patterns associated with breathing. In
reference [6], WiDraw is a hand motion tracking system,
which uses the angle of arrival (AOA) value of theWiFi signal
on the mobile device to track the hand motion trajectory. ,e
WiWho framework proposed in reference [7] can use CSI for
human gait recognition.

According to the different recognition algorithms and
application scenes, a WiFi-based human motion recognition
system can be divided into two categories: one is the model-
based recognition system and the other is the fingerprint
recognition system. ,e main difference between them is
whether a priori learning is required [8]. ,e model-based
recognition system can recognize human motion without
training. For example, the Fresnel model of WiFi human
recognition is established in reference [9]. However, the
model-based recognition system needs to access a large
number of access points (APs) to accurately identify human
behavior, which leads to a significant increase in hardware
cost andmaintenance cost. Based on the fingerprint database
recognition scheme, through offline phase training and
online phase recognition for pattern matching, human
motion recognition can be realized.

However, the existing WiFi-based human motion rec-
ognition scheme recognizes the action is relatively simple,
the actual scene availability is not strong, or it is a daily
behavior such as walking, opening the door, sleeping, or a
single human body standing, picking up, and sitting down.
Some complex motions cannot be accurately identified, and
the application scenarios are relatively simple, and the
existing application scenarios are diversified (special scene
detection such as prison hospitals, wildlife behavior detec-
tion, indoor elderly activity detection, and construction site
safety detection). ,erefore, it is imperative to find a
complex motion recognition scheme. Considering the ap-
plication scene in real life, we use WiFi to identify the
Chinese traditional martial art XingYiQuan motion in the
indoor environment. We guide users to carry out correct
fitness motions, so as to maintain human health.

,e main contributions of our work are as follows:

(1) In this paper, a complex human motion recognition
scheme CSI-HC based on WiFi is proposed and
verified with the background of the Chinese

traditional martial art XingYiQuan. Its advantage is
that the detection motion is relatively complex and
does not need human wearing equipment. It can
work effectively on cheap commercial devices and is
of great value in guiding and monitoring human
health campaigns.

(2) CSI-HC uses the amplitude of the signal received by
the receiver array antenna to establish a mapping
relationship with the different actions of the human
body. It uses the Butterworth low-pass filter and
Sym8 wavelet function to construct a powerful
denoising method to filter outliers in motion data.
,e offline fingerprint construction is completed
through RBM training. In the online phase, SoftMax
regression is used to modify the RBM classification
to accurately sense the complex motions of different
human bodies.

(3) We analyze the key factors that affect the perceptual
effect, such as the distance between transceiver de-
vices and transmitter contracting rate, find the ap-
propriate parameter settings, and explore the impact
of user diversity on system performance through
experiments.

(4) In three scenarios where the multipath effect ranges
from weak to strong (meeting room, corridor, and
office), the performance of CSI-HC is tested. ,e
experimental results show that CSI-HC has high
robustness, and in three different scenes, the accu-
racy of the XingYiQuan motion can be more than
85%.

,e main contents and organizational structure of this
paper are as follows: We first introduce the related work in
Section 2, and then we describe the proposed research
methodology in Section 3. ,e specific implementation
process of the method is provided in Section 4. Section 5
explores parameter settings and demonstrates performance.
Finally, we summarize all the work of this paper in Section 6.

2. Related Works

In this section, we introduce the advantages and disad-
vantages of existing motion recognition works from two
perspectives, that is, device-based and device-free.

2.1. Device-Based Human Motion Recognition. As we all
know, most human perception systems need additional
hardware support to complete the recognition of related
motions. ,ese hardware devices are divided into four
categories: special sensors, infrared devices, optical cameras,
and smartphones. ,e special sensor realizes the perception
of different actions by collecting the relevant physical in-
formation of human body movements. Skinput [10] uses a
wearable bioacoustic sensor array to analyze the mechanical
vibrations that travel in the body to identify themovement of
the arms and fingers. FEMO [11] is a human motion de-
tection system based on RFID, which uses the backscattering
signal of the passive RFID tag installed on the training
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equipment to detect the motion state of the user. eFisio-
Track [12] is a telemedicine assistance system that detects
patients’ rehabilitation training movements by using the
accelerometer equipment. ,e GrandCare [13] system
detects patient behavior by calling a motion sensor installed
on the door. Although the special sensor can realize the
high-precision perception of the fine-grained movement of
the human body, users need to wear sensors or deploy
special equipment, and it is difficult to carry and invade the
privacy of users. ,e infrared device images the human
body through infrared rays to realize the perception of an
independent light source. ,e representative product is
Microsoft’s Kinect [14]. Infrared rays have a limited de-
tection range due to problems such as their frequency
bands and transmission distances and require expensive
additional equipment, and it is difficult to achieve large-
scale deployment. ,e optical camera captures the image
sequence of the human motion through the camera, an-
alyzes the human motion characteristics and the motion
trajectory in the image sequence, and senses the state of the
human body. ,e method based on optical cameras can be
used in many scenes, such as gesture recognition [15], gait
recognition [16], and target tracking [17]. However, this
method still has shortcomings, and it cannot work in low-
light conditions and where privacy is involved. Smart-
phones use the built-in sensors (accelerometer, gyroscope,
magnetometer, and pressure gauge) to detect human ac-
tivities. ,ey have the advantages of being easy to use and
not disturbing the user’s normal activities. Smartphones
also have some research results in detecting human mo-
tions. Gu et al. [18] combined the accelerometer and
pressure gauge in a smartphone to monitor 7 different
states of motion. PerFallD [19] uses the accelerometer in
the smartphone to detect the fall of the human body.
Unfortunately, although smartphones have become pop-
ular and have many advantages, they are not applicable in
some scenarios. In particular, when it comes to detecting
falls among the elderly, it is often impractical to have them
carry around smartphones.

2.2. Device-Free Human Motion Recognition

2.2.1. RSS-Based Human Motion Recognition. In the past
few decades, due to the rapid development of sensing
technology, device-based human perception has been
widely used in daily life. However, device-based perception
requires special equipment because of its high hardware
and maintenance costs. It is difficult to deploy effectively on
a large scale. To solve this problem, researchers have begun
to focus on device-free human perception technology, that
is, the detection of human behavior without the need for
the human body to wear any physical device [20]. ,e
widespread deployment of wireless networks makes it
possible to realize device-free human perception based on
WiFi signals. Seifeldin et al. [21] realized simple human
motion detection by analyzing RSS changes in WiFi signals
caused by the human motion, and Sigg et al. [22] used a
software-defined radio to transmit RF signals and to

determine the human motion based on changes in the
received RSS. With the maturity of this technology, the
human body motion that the WiFi signal can detect is more
and more detailed. Wi-Vi [23] and WiSee [24] systems use
the WiFi signal to realize gesture recognition. Although
RSS-based technology has made great progress, the essence
of RSS is to reflect the strength of signal reception, espe-
cially susceptible to multipath effects and narrowband
interference, resulting in its own flaws with low accuracy.
In order to overcome the inherent defects of RSS, a finer
granularity WiFi channel feature CSI based on the physical
layer is discovered. Compared with RSS, CSI can estimate
the channel characteristic information on each subcarrier
by orthogonal frequency-division multiplexing (OFDM)
technology. ,e frequency attenuation variation of the
WiFi channel can be better described to reduce the in-
fluence of multipath components and narrowband inter-
ference. In addition, CSI contains rich frequency-domain
information such as amplitude and phase, which can better
reflect the influence of the human body on the WiFi signal
to achieve higher sensing accuracy.

2.2.2. CSI-Based Human Motion Recognition. ,e research
of human motion perception based on CSI originated from
a tool, CSI Tool [25], which can obtain CSI information
from the commercial WiFi network card. CSI Tool greatly
facilitates the extraction of CSI sensing data so that the use
of more fine-grained CSI signals for sensing has become a
new trend. Since CSI has excellent characteristics of being
relatively stable in an indoor environment and sensitive to
human motions, CSI signals are widely used in various
motion recognition scenarios, and FIMD [26] attempts to
use CSI to detect user location changes without actively
carrying any physical devices. DeMan [27] is a noninvasive
detection scheme which can judge the motion and static
state of the human body. ,e motion state is judged by
amplitude combined with phase information, and the
static state of the human body is judged by the periodic
model caused by human respiration in the wireless signal.
R-PMD [28] is a passive motion detection scheme that uses
PCA to extract the covariance of CSI data as a motion
feature, and the human motion state is judged by the
mapping between covariance and human motion. CRAM
[29] constructed a CSI speed model, which correlates the
movement speed of different parts of the human body with
the dynamic changes of CSI and detects specific human
activities such as walking, running, and sitting down. RT-
Fall [30] is a device-free fall detection system based on CSI
data, which can effectively identify the normal walking
state and abnormal fall state of the human body. Wi-Finger
[31] recognizes finger gestures by establishing user ges-
tures and CSI signal changes caused by different gestures
(for example, numbers 1 to 9 in ASL). E-eye [32] is a
device-independent activity detection system, which dis-
tinguishes a large number of daily activities by matching
the measured values of CSI with known features and re-
alizes the recognition of different actions such as sleeping,
cooking, and watching TV.
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3. Preliminaries and Program

In this section, we introduce the WiFi-based recognition
model and the reasons why CSI can perform human motion
perception and give the specific solution and the overview of
this solution.

3.1. Research 'eory

3.1.1. WiFi-Based Recognition Model. ,e principle of hu-
man motion perception of WiFi signals is depicted in
Figure 1. When a person is in a signal link, the propagation
of wireless signals will be reflected, scattered, and diffracted
by the influence of the human body. ,e signal received at
the receiving end is a composite signal that is propagated by
the direct path and the human body reflection path as well as
the reflection path of the floor ceiling. ,e influence of the
human body on the propagation of the WiFi signal will be
characterized by the wireless signal arriving at the receiving
end. Assume that the line of sight (LOS) length from the
transmitter to the receiver is d, then the distance between the
reflection point of the ceiling and the floor and the LOS is R.
Combining the Friis free-space propagation equations and
signals with the reflection scattering generated by the human
body, the impact of the human body on wireless signal
propagation can be defined as [33]

Prx(d) �
PtxGtxGrxλ

2

(4π)2(d + 4R + ε)2
, (1)

where Ptx is the transmitting power of the transmitting end,
Prx(d) is the receiving power of the receiving end, Gtx is the
transmitting gain, Grx is the receiving gain, λ is the wave-
length of theWiFi signal, and ε is the approximate change of
the path length caused by the scattering of the signal by the
human body. Because the signal scattering paths caused by
different actions are different, according to the above for-
mula, different human actions will cause the difference in
receiver receiving power, and by establishing the mapping
relationship between these differences and different human
actions, it lays the basic idea of WiFi human motion
perception.

3.1.2. Channel State Information. ,eCSI signal can achieve
universal, low-cost, fine-grained human perception, and
there are three reasons for this: (1) ,e maturity of WiFi
technology and the widespread use of WiFi devices. (2) CSI
data can be easily extracted from commercial WiFi devices
using tools released by Halperin. (3) ,e WiFi signal
transmits a modulation scheme using OFDM under the
IEEE 802.11N protocol, and OFDM can encode the CSI data
to a plurality of subcarriers of different frequencies.
,erefore, the radio channel information at the subcarrier
level can be obtained from the original CSI measured in the
WiFi data link. In OFDM transmission systems, it is as-
sumed that a general model of channel state information can
be represented as

Y
→

� HX
→

+ noise, (2)

where Y
→

and X
→

represent the received signal vector and the
transmitted signal vector, respectively; noise is additive
white Gaussian noise; andH is the channel impulse response
(CIR) complex matrix in the CSI frequency domain,
reflecting the channel gain information at the subcarrier
level. Assuming that we obtain the measured CSI values H of
the 2× 3 frames received by the Atheros AR9380 NIC (that
is, 2 transmit antennas and 3 receiving antennas) under the
condition that the channel bandwidth is 20MHz and the
time is T, we can obtain the CSI values of 336 subcarriers:

H � H f1( , . . . , H fN( , . . . , H f336(  
T
, 1≤N≤ 336.

(3)

,erefore, the CIR can characterize the frequency-do-
main information of each different subcarrier, and the i-th
subcarrier can be defined as

H(i) � |H(i)|e
j sin∠H(i)

, (4)

where |H(i)| represents the amplitude value of the i-th
subcarrier and ∠H(i) represents the phase value of the i-th
subcarrier.

3.2. Research Program

3.2.1. Specific Solution. CSI-HC proposed in this paper is a
scheme to identify complex human motions. Specifically,
CSI-HC uses CSI amplitude characteristics to identify hu-
man motions on commercial WiFi devices, filters envi-
ronmental noise through low-pass filtering and wavelet
function, and uses RBM and SoftMax machine learning
classification algorithms to identify human motions. Taking
the ancient Chinese martial art Xingyi boxing as the
background of action recognition, XingYiQuan is a tradi-
tional Chinese fitness martial art, which is composed of six
motions, such as QiShi, BengQuan, HuQuan, MaXingQuan,
ZuanQuan, and ShouShi. Each action consists of different
combinations of hands, arms, head, torso, and legs. We
collect the data of six XingYiQuan motions, as shown in
Figure 2, and show that these motions correspond to the
characteristics of CSI signals generated in the frequency
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Ceiling reflection

Ground reflection
Reflection by human
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Figure 1: WiFi human motion recognition model.
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QiShi: the body is upright and the two feet 
are close together

BengQuan: the body squats and presses 
under both palms

HuQuan: the left foot is forward and the fists are 
punched forward by the tiger’s claws

MaXingQuan: the rightfoot is half step 
forward and the two fists are up

ZuanQuan: legs are kept tight, body slightly
squats, and the left fist is up

ShouShi: both hands are everted and the 
arms are lifted up
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Figure 2: XingYiQuan motion and the corresponding amplitude feature.
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domain, from which we can see that there are differences in
CSI amplitude characteristics between different motions. By
using these differences to establish the mapping with the
action and carry on the pattern recognition, the concrete
XingYiQuan motions can be recognized.

3.2.2. Overview. We describe in detail the overall archi-
tecture of the CSI-HC system, which consists of three phases:
the data collection phase, the offline motion fingerprint
establishment phase, and the online motion recognition
phase, as shown in Figure 3. In the data collection phase, the
WiFi device with the Atheros AR9380 NIC is used to collect
CSI data of human motion perception in a variety of
scenarios.

In order to remove the influence of the multipath effect
and environmental noise, we filter the outliers of the data
obtained in the data collection phase. ,e Butterworth low-
pass filter is used to remove the high-frequency outliers and
then combined with the wavelet function of the Sym8 wave
base to filter the low-frequency outliers. ,en, we get the
CSI data which can better reflect the XingYiQuan motions,
use these data as the sample set of RBM training, adjust the
learning parameters, classify the data, and construct the
standard fingerprint information of each XingYiQuan
motion. In the online motion recognition phase, the same
exception handling and machine learning classification
methods as in the offline phase are adopted, the data
consistency is maintained, and the RBM classification re-
sults are corrected using the SoftMax classifier. ,en, it
matches the data with the fingerprint database of the
constructed motion and recognizes the specific XingYi-
Quan motion.

4. Methodology

In this section, we mainly describe in detail the two core data
processing processes in the CSI-HC method: (1) Effective

outlier filtering is performed on the collected CSI data using
a Butterworth low-pass filter and wavelet function. (2) By
constructing the RBM training model, the CSI data of
complex motions are classified and the RBM classification
result is modified by SoftMax to achieve higher precision
motion recognition.

4.1. CSI Outlier Filtering. When using CSI data as a feature
of motion perception, filtering outliers due to environ-
mental noise interference and multipath components is
critical to the accuracy of motion perception. In this paper,
the amplitude of the acquired CSI data is taken as the
feature value. Figure 4 shows the original CSI amplitude
image of XingYiQuan, in which it can be seen that there are
many abnormal values. ,ese outliers may reduce the
accuracy of the recognition of the motion method. For this
reason, the Butterworth low-pass filter is used to filter the
high-frequency interference in the outliers, and Sym8 is
used as the wave-based wavelet function to filter the low-
frequency interference in the outliers. ,e collected orig-
inal CSI amplitude data are filtered by the outliers to
preserve the signal feature integrity to the greatest extent,
so as to establish the feature fingerprint information of each
XingYiQuan motion.

4.1.1. Filtering Effect Evaluation. As shown in Figure 5, we
selected four different filters to filter the abnormal data in
Figure 4(a) to evaluate the performance of different filters.
Here, Figure 5(a) shows abnormal data, which we use as the
original input data of various filters, Figure 5(b) shows the
data processed by the mean filter, Figure 5(c) shows the
data processed by the Butterworth low-pass filter,
Figure 5(d) shows the data processed by the median filter,
and Figure 5(e) shows the data processed by the threshold
filter.

By comparing the processing effects of four different
filters, we can find that the processing effect of themean filter
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Raw CSI data 

Wavelet function

6 Xingyi fist actions

Butterworth low-pass 
filter

RBM training and 
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Online collection of fist
data

Perform the same data 
processing as in the

offline phase

SoftMax classification

Match with the 
fingerprint

Establish fingerprint 
information for each fist

Data collection

Reflection

Output

Offline phase Online phase

Input

Figure 3: CSI-HC system flow chart.
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is poor and it cannot filter the anomalies effectively. ,is is
because the original data become smaller and the data
waveform changes after averaging the CSI data. However,
although the median filter and threshold filter can filter out
the obvious noise, they ignore the detailed noise in the high-
frequency part. It is obvious that the Butterworth low-pass

filter has the best filtering effect on the data. It can preserve
the integrity of the data to the greatest extent, that is, remove
the detailed noise in the abnormal data without changing the
data size and data waveform. By comprehensive comparison
and consideration, we use the Butterworth low-pass filter in
this paper to complete the data exception processing.
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4.1.2. High-Frequency Outlier Processing. ,e high-fre-
quency outliers in the CSI data of the XingYiQuan motion
are filtered by the Butterworth low-pass filter.,e processing
steps are as follows:

Step 1: the amplitude-frequency transfer function H(ε)
of the Butterworth low-pass filter is designed as
|H(jΩ)|2 � (1/(1 + (Ω/ΩC)2N)), where N is the filter
order, ΩC is the cutoff frequency (in rad/s), and j is the
denominator coefficient of each order.
Step 2: the relevant parameters of the Butterworth low-
pass filter η(fn, fs, fp, Rp, Rs) are set, where fn is the
sampling frequency, fs is the stopband cutoff fre-
quency, fp is the passband cutoff frequency, Rp is the
minimum attenuation of the fluctuation in the pass-
band, and Rs is the minimum attenuation in the
stopband. Using the influence frequency of the human
body on the signal as the passband cutoff frequency, the
part of the environmental noise higher than the average
frequency of the human body is filtered out, generating

relevant parameters suitable for processing amplitude
data.
Step 3: the amplitudematrix of XingYiQuan is regarded
as the original signal, and the Butterworth low-pass
filter designed in Step 2 is used to filter out the high-
frequency outliers in the amplitude information.

After the Butterworth low-pass filter filters out the ab-
normal XingYiQuan motion data before and after com-
parison, as shown in Figures 6(a)–6(d), it can be seen that the
CSI data become smoother and high-frequency anomalies
are filtered out.

4.1.3. Low-Frequency Outlier Processing. ,e wavelet
function is used to filter out low-frequency interference data
in the CSI data. Taking the XingYiQuan motion feature
information as the original input signal of the wavelet
transform, and Sym8 wavelet as the wave base of wavelet
transform, the CSI signal is decomposed by five layers and
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Figure 6: Data before and after comparison by the Butterworth low-pass filter: (a) channel 1 outlier 1; (b) after the Butterworth low-pass
filtering of outlier 1; (c) channel 2 outlier 2; (d) after the Butterworth low-pass filtering of outlier 2.
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the corresponding approximate part and detailed part are
obtained, which approximately represent the low-frequency
information. ,e detail represents the high-frequency in-
formation, and the sure threshold mode and scale noise are
selected for the detail coefficient.

Figures 7(b) and 7(d) are CSI amplitude diagrams
generated by Sym8 wavelet function. It can be seen that, after
filtering out low-frequency anomalies, CSI data become
more stable and retain the integrity to a large extent so that
the features of each motion can be extracted more easily, and
they can be used as the sample set of XingYiQuan data
training, so as to better realize the classification of motion
data in the next step.

4.2. XingYiQuan Motion Classification

4.2.1. Offline XingYiQuan Motion Fingerprint Establishment.
,e XingYiQuan data filtered by the outliers are used as the
training sample. ,e RBM training requires the learning
parameter θ′. It is assumed that a training set λ �

λ(1), . . . , λ(t)
  is given, where t is the number of training

samples. ,e maximum likelihood method is used to solve
the likelihood function P(v) of RBM training:

maximize L θ′(  � maximize
Wij,ai,bj 

1
t



t

i�1
ln 

h

P v
l
, h

l
 ⎛⎝ ⎞⎠

�
1
t



t

l�1
ln P v

(l)
  ,

(5)

where v is the visible layer, h is the hidden layer, Wij is the
connection weight between the visible layer and the hidden
layer, l is the number of visible and hidden layer neural
units when solving the maximum likelihood function, and t

is the number of training samples. In this paper, the k-step
contrast divergence (k-CD) algorithm is used to train the
RBM network, that is, it only needs M steps of Gibbs
sampling to obtain an approximation suitable for the
sample model to be trained. According to the establishment
of the likelihood function, when the visible layer data are
constant, the probability of the activation state of all hidden
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Figure 7: Sym8 wavelet function filters out low-frequency outliers. (a, c) After the Butterworth low-pass filter. (b, d) After the Sym8 wavelet
filter.
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layer neurons can be deduced, as shown in formula (6).
Similarly, when the hidden layer data are constant, the
activation state of the visible layer neurons can also be
deduced from formula (7).

P vi � 1 h; θ′
  � σ 

j

Wijhj + ai
⎛⎝ ⎞⎠, (6)

P hj � 1 v; θ′
  � σ 

i

Wijvi + bj
⎛⎝ ⎞⎠, (7)

σ(x) � sigmoid(x) �
1

1 + e− x
, (8)

where ai is the bias of the visible layer, bj is the bias of the
hidden layer, and σ(x) is a nonlinear sigmoid activation
function of the neuron.

After collecting a large amount of action data of the
XingYiQuan motion, the data are preprocessed. ,e data of
each motion after processing are used as the fingerprint
information S � (S1, S2, S3, . . . , SW)T, and S is used as the
sample set to be trained, and the RBM is trained. ,e
training process is as follows:

Step 1: we first initialize the RBM and assign initial
values to the visible neurons, v0 � v.
Step 2: Gibbs sampling on the training sample set S and
the M-step Gibbs sampling are carried out when the
time is l � 1, 2, . . . , M.
Step 3: the Gibbs sampling method is used to sample
the visible layer neurons and process them. By setting
up a likelihood function to sample the visible layer from
the hidden layer, we can use P(h(l) | v(l− 1)) to sample
the visible layer and calculate the corresponding vl.
Similarly, to Gibbs sampling of hidden layer neuron
data, we can use P(hl− 1 | vl− 1) to sample the hidden
layer and calculate hl− 1.
Step 4: the corresponding expected values are calcu-
lated for the hidden layer and the visible layer to
complete the training.

After the M-step Gibbs sampling of the training sample
set, the system can obtain an approximate sampling value
which is suitable for the training sample model. At the same
time, the system can also determine the activation state of
the neurons in the visible layer. In this paper, the fingerprint
information after training is recorded as S′ � (S1′, S2′, S3′, . . . ,

SW
′ )T′ to establish the characteristic fingerprint database of

each XingYiQuan motion.

4.2.2. Online SoftMax-Modified RBM Classification. In the
online phase, the data are collected in real time in the ex-
perimental environment and the same abnormal filtering
and RBM classification are carried out in the offline phase,
and the RBM is trained to get θ′ � (W, a, b) as the test input
of the SoftMax function.,e logistic regression cost function
is used as the cost function of the SoftMax classifier, and the

SoftMax function is set as Uη(θ′). ,e probability P(yi �

j | θ′i) of each class of boxing samples is given to obtain the
category label. If the input classification parameter is θ′ �
(θ1′, θ2′, θ3′, . . . , θm

′), the model parameter is η1, η2, . . . , ηk and
the sum of all probabilities is 1 by normalization.

Uη θ′(i)
  �

P y(i)(  � 1 θ′(i)
 ;η1



P y(i)(  � 2 θ′(i)
 ;η2



⋮

P y(i)(  � k θ′(i)
 ;ηk
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(9)

Next, the maximum likelihood estimation is used to
obtain the cost function of SoftMax. In order to simplify the
cost function, the indicator function ind(·) is introduced:

ind yi � j(  �
1 true

0 false
 . (10)

,en, the cost function can be expressed as

J(η) � − 
k

i�1
ind y � ji( ln

e
ηT

i
θ′


k
i�1 e

ηiθ′
⎛⎝ ⎞⎠. (11)

By constructing the SoftMax classification model, the
data sample sets of different actions are input in turn, and
each time, the data representing different actions are se-
lected, a one-dimensional matrix containing six categories is
returned, and select the category with the highest probability
each time to correspond to the six motions to be classified.
,e six motions of the classification further correct the
classification accuracy of the RBM through the SoftMax
classification function and ensure that the CSI-HC method
has higher motion recognition accuracy.

4.3. Online XingYiQuan Motion Recognition. In the online
recognition phase, the transmitter is used to collect the data
of each XingYiQuan motion to be identified, the collected
data are sent to the receiver, and the amplitude of the CSI
data is selected as the feature. And the frequency in the signal
is represented by the rate of multipath change caused by
body motion, while the amplitude represents the energy of
the signal. ,erefore, by analyzing the amplitude informa-
tion in the signal, we can obtain the amplitude character-
istics of each XingYiQuan motion and then discriminate the
different motions. ,e online phase recognition process is as
follows:

Step 1: the real-time data of the XingYiQuan motion
are collected between the receiver and the transmitter
equipped with the Atheros network card.
Step 2: the amplitude in the CSI data is selected as a
feature.
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Step 3: the outliers are filtered out by data pre-
processing, which is easy to match with the established
standard fingerprint database.
Step 4: the RBM classification model is constructed by
using the trained learning parameter θ′ � (W, a, b),
and the detection data are classified.
Step 5: the SoftMax classifier is used to modify the RBM
classification results to improve the classification
accuracy.
Step 6: the classified amplitude data are matched with
the offline fingerprint database in real time.
Step 7: according to the above steps, the specific
XingYiQuan motion performed by the tester is finally
recognized.

5. Experiments and Evaluation

In this section, in order to evaluate the performance of CSI-
HC, a large number of experiments have been carried out.
First of all, we have introduced the experimental configu-
ration in detail. ,en, combined with three typical indoor
scenarios, the key parameters that affect the recognition
accuracy and the diversity of users are analyzed, and finally,
the overall performance of CSI-HC is shown.

5.1. Experimental Design

5.1.1. Hardware Configuration. In order to verify the fea-
sibility of the CSI-HC method in the actual scenario, this
paper adopts the Atheros AR9380 network card solution
based on the IEEE 802.11N protocol. ,e required equip-
ment is two desktop computers equipped with the Atheros
AR9380 network card, CPU model is Intel Core i3-4150,
operating system is Ubuntu 16.04 LTS4.1.10 Linux kernel
version, and two 1.5m long 5 dB high-gain external an-
tennas, one of which acts as the transmitting end and the
other as the receiving end, which, respectively, connect the
antenna contacts of the Atheros NIC of the transmitter and
receiver with a 1.5m external antenna. ,e Atheros AR9380
NIC and external antenna are shown in Figure 8.

5.1.2. Experimental Scenarios. We choose the testbed in
three classical indoor scenarios, such as the meeting room
(6.5m× 10m), corridor (2m× 46m), and office
(6.5m× 13m), in order to correspond to the change of the
multipath effect from low to high. ,e experimental sce-
narios and experimental scenarios’ plane structure are
shown in Figures 9 and 10. First of all, keeping the height and
distance of the receiver and the transmitter, and the
transmitter sending a certain rate, in the three scenarios, the
testers are arranged to stand at the midpoint of the deployed
transmitter and receiver to make a fixed motion of Xin-
gYiQuan. Each motion collects 10,000 packets of CSI data
and saves them to the receiver PC. After processing by the
CSI-HCmethod, the RBM is used to train and learn the data
of each XingYiQuan motion, and the standard feature

fingerprint information of each XingYiQuan motion is
established.

In the online recognition phase, the testers stand in the
middle of the transmitter and receiver in the deployed ex-
perimental scenario to do the XingYiQuan motion, collect,
and process CSI data in real time and classify them using the
constructed RBM model. ,rough the established standard
feature fingerprint database for real-time matching, the
specific motions of the testers are identified. In Table 1, we
give the relevant steps for a XingYiQuan motion recogni-
tion, as well as the relevant hardware used in each step and
the specific time it takes to process these operations.

5.2. Analysis of Influencing Factors of the Experiment

5.2.1. TX-RX Distance Analysis. In the process of estab-
lishing the offline motion fingerprint database, two im-
portant device parameters (TX contract rate and RX and TX
distance) played a key role in the effect of online XingYi-
Quan motion recognition. In order to analyze the effect of
the distance between TX and RX on the motion recognition
method proposed in this paper, we take the method of
controlling variables during the offline fingerprint database
construction phase. For the same user, the sampling time is
kept constant (100 s), the contract rate is 10 p/s, and the TX-
RX distances of 0.6m, 0.8m, 1m, 1.2m, 1.4m, 1.6m, 1.8m,
and 2m are set in three scenarios such as the office, corridor,
and meeting room, to analyze the impact of different TX and
RX distance settings on the effect of XingYiQuan motion
recognition in the online phase during offline training, in
order to find the most suitable distance setting for offline
fingerprint training. Figure 11 shows how the recognition
accuracy of six XingYiQuan motions varies with TX-RX
distance in three scenarios.

As can be seen from Figure 11, with the increase of the
distance between the transmitter and the receiver in three
different scenarios, the accuracy of recognition of the six
XingYiQuan motions generally shows an upward trend. ,e
overall data except the MaXingQuan motion indicate when
the distance between the transmitter and the receiver is
1.4m, the accuracy of motion recognition reaches a peak,
and when the distance is between 1.4m and 2m, the ac-
curacy of motion recognition begins to decline slowly. After
the distance exceeds 1.4m, the accuracy of motion recog-
nition begins to decrease slowly. Because of the complexity
of the MaXingQuan motion and the ZuanQuan motion, the
multipath interference and the interference within the en-
vironment are large, so there are fluctuations that are in-
consistent with other XingYiQuan motions. And the
experimental results also verify the previously set multipath
effect-increasing scene, so the distance between the trans-
mitter and the receiver is 1.4m, which is most suitable for
the XingYiQuan motion recognition in this question.

5.2.2. TX Contracting Rate Analysis. ,e transmitter’s
packet rate determines the number of samples collected
during the same time period, as well as the sensitivity of the
XingYiQuan motion to be acquired in the data link. Since
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the signal propagates in the air with a certain attenuation, the
number of sample data collected at different packet rates is
different at the same time. Assuming that q is the preset
contract rate, T is the sampling time, and N is the actual
number of samples, then the estimated number of sampling
points N1 is N1 � T∗ q and the packet loss rate loss can be
defined as loss � (N − T∗ q)/N. According to the definition
of the packet loss rate, we test the packet loss number of the
transmitter under the 10 p/s, 20 p/s, 50 p/s, and 100 p/s

packet loss rates under the condition that the same user has a
sampling time of 10 s and calculate the corresponding packet
loss rate. Table 2 reflects the relationship between the
contract rate and the packet loss rate of the transmitter.

What is obvious in Table 2 is that when the contract rate
of the transmitter is 10 p/s, the actual number of packets
collected accounts for the highest proportion of the esti-
mated number of sampled packets, that is, the lowest packet
loss rate. Because the minimum packet loss rate can get the
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Figure 11: Effect of TX-RX distance on the accuracy of motion: (a) QiShi motion; (b) BengQuan motion; (c) HuQuan motion;
(d) MaXingQuan motion; (e) ZuanQuan motion; (f ) ShouShi motion.

Table 2: Relationship between the transmitter contract rate and the packet loss rate.

Contract rate (p/s) Estimated number of samples/p (10 s) Actual number of samples/p (10 s) Packet loss rate (%)
10 100 91 9
20 200 173 13.5
50 500 418 16.4
100 1000 813 18.7

Table 1: Hardware processing time design.

Related steps Data collection Offline fingerprint building Online motion recognition
Hardware type TP-Link WDR4310 PC TP-Link WDR4310 + PC
Processing time 0.28 hours 0.11 hours 0.05 hours
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most true sampling number when the total collection
number is fixed, and as many sampling points as possible can
more truly reflect the motion state of the human body and
then achieve a high-precisionmotion recognition, we choose
the contract rate of 10 p/s in the construction phase of the
offline fingerprint database.

In order to verify the effectiveness of the contract rate set
during the offline phase, we tested different offline contract
rate settings. Under the condition that the distance between
TX and RX is set to 1.4m and the total number of samples is
1000 packets, the training users in the offline phase conduct
offline training on the contract rate settings of 10 p/s, 20 p/s,
50 p/s, and 100 p/s in three scenarios including the office,
corridor, and meeting room and conduct the corresponding
XingYiQuan motion recognition test.

By analyzing and comparing the contract rate and
motion recognition accuracy data in Figure 12, we find that
the accuracy of motion recognition is the highest when the
packet rate is 10 p/s in the experimental scenario designed by
this method and the action rate is 20 p/s. When the packet
sending rate is 50 p/s and 100 p/s, the accuracy of recog-
nition action is greatly reduced because of excessive packet
loss. ,erefore, the most suitable contract rate for the CSI-
HC method is 10 p/s.

5.2.3. User Diversity Analysis. In order to explore the in-
fluence of user diversity on the accuracy of motion recog-
nition, two different testers were arranged in the experiment.
Under the condition that the distance between TX and RX
was set to 1.4m, the total number of samples was 1000
packets, and the contract rate was 10 p/s, six XingYiQuan
motions were performed many times to collect and process
data. ,en, the average recognition rates of the six Xin-
gYiQuan motions of the two testers were calculated. ,e
result of the accuracy distribution of two users’ motion
recognition is shown in Figure 13.

As can be seen from Figure 13, the accuracy of the
motion recognition of both testers was maintained above
80%, and the highest accuracy of the first tester’s Xingyi
action was 92.3%. ,is is because the first tester had a long
period of XingYiQuan motion practice and performed the
standard motion. In addition, the second tester, as he was a
novice, had a low degree of proficiency in the XingYiQuan
motion. ,e lower the accuracy of the motion due to the
nonstandard motion (80.8%), the higher the standard of the
motion performed by the tester in the box diagram and the
shorter the length of the box, such as the BengQuan and
ShouShi motions of tester 1. ,e lower the standard of the
tester’s motion, the longer the length of the box, such as the
BengQuan and ShouShi motions of tester 2.

5.3. Overall Performance Evaluation

5.3.1. Robustness Testing. In order to test the robustness of
the CSI-HC method, we cut through the environment and
the user and arrange two different testers. First, let a tester do
the same XingYiQuan motion in the meeting room, cor-
ridor, office, etc. ,e CSI data of the action are collected, the

data processing is trained, and the difference of CSI-HC
recognition accuracy in different scenarios is analyzed, and
then another tester is arranged to do the same motion in the
three scenarios. ,e motion data are collected and processed
and compared with the CSI characteristics of the previous
person. Figure 14 shows the amplitude of the QiShi motion
of the two testers in the meeting room, corridor, office, etc.
Table 3 shows the specific accuracy of motion recognition.

,e amplitude features of CSI motions of different
testers in three scenarios (taking the QiShi motion as an
example) are compared, as shown in Figure 14. On the one
hand, according to the similar amplitude trend of (a), (c),
and (e) in Figure 14, it is shown that CSI-HC is less affected
by environmental factors and can have higher performance
even in the case of serious multipath interference. On the
other hand, by comparing (a) with (b), (c) with (d), and (e)
with (f) in Figure 14, we can see that the trend of amplitude
characteristics collected by different people in the same
environment is approximately the same. Since the principle
of motion recognition of CSI-HC is based on the motion and
the corresponding amplitude characteristics, the amplitude
change trend of different testers is consistent, which shows
that CSI-HC is not sensitive to user differences and has high
robustness.

Table 3 shows the accuracy of the CSI-HC detection of
six motions of XingYiQuan in three different scenarios. ,e
average detection accuracy in the meeting room is 89.33%.
However, the average detection accuracy in the office is only
81.23%. In addition, the average detection rate in the cor-
ridor and meeting room is higher than that in the office
because there are more multipath components and human
interference in the office.

5.3.2. Overall Performance. In order to evaluate the overall
performance of the CSI-HC proposed in this paper, we
define the following three metrics, compare them with two
classic human motion detection methods: R-PMD and
FIMD, and compare their detection results in the meeting
room, corridor, and office. ,e experimental results are
shown in Figure 15 and Table 4.

(i) Precision: precision � TP/(TP + FP) (also defined
as sensitivity) refers to the probability of correctly
recognizing the human motion.

(ii) Recall: recall � TP/(TP + FN) (also defined as
particularity) refers to the probability of correctly
identifying nondetected human motions.

(iii) F1 score: F1score � 2∗precision∗ recall/(precision
+recall). ,e F1 indicator is a comprehensive
evaluation standard combining precision and recall.
By calculating the F1 score index of different
methods, the stability of the method can be effec-
tively evaluated.

Here, TP � true positives, FP � false positives, and
FN � false negatives.

Figure 15 shows the comparison of CSI-HC, R-PMD,
and FIMD methods in terms of precision, recall, and F1
score. From Figure 15, we can see that the precision, recall,

14 Mobile Information Systems



QiShi BengQuan HuQuan  MaXingQuan ZuanQuan ShouShi
80

82

84

86

88

90

92

94

96

M
ot

io
n 

ac
cu

ra
cy

 (%
)

(a)

QiShi BengQuan HuQuan  MaXingQuan ZuanQuan ShouShi
72

74

76

78

80

82

84

86

88

90

92

M
ot

io
n 

ac
cu

ra
cy

 (%
)

(b)

Figure 13: User diversity and recognition accuracy analysis. (a) Tester 1. (b) Tester 2.

10 20 50 100
Contract rate (p/s)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

QiShi
BengQuan
HuQuan

MaXingQuan
ZuanQuan
ShouShi

(a)

10 20 50 100
Contract rate (p/s)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

QiShi
BengQuan
HuQuan

MaXingQuan
ZuanQuan
ShouShi

(b)

10 20 50 100
Contract rate (p/s)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

QiShi
BengQuan
HuQuan

MaXingQuan
ZuanQuan
ShouShi

(c)

Figure 12: Effect of the contract rate on motion accuracy in three testbeds: (a) meeting room; (b) corridor; (c) office.
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and F1 score index of CSI-HC are obviously better than
those of the other twomethods.,is is because the denoising
method of CSI-HC is a combination of low-pass filtering and

wavelet transform, which greatly filters multipath interfer-
ence and compares the complete retention of the motion
features. However, R-PMD uses low-pass filtering and
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Figure 14: Amplitude characteristic maps of two testers performing the QiShi motion in three scenarios. (a) Meeting room (tester 1).
(b) Meeting room (tester 2). (c) Corridor (tester 1). (d) Corridor (tester 2). (e) Office (tester 1). (f ) Office (tester 2).

Table 3: Robustness evaluation of CSI-HC in three scenarios.

Different scenarios
Detection accuracy of different XingYiQuan actions (%)

QiShi BengQuan HuQuan MaXingQuan ZuanQuan ShouShi
Meeting room 88.2 89.6 91.0 87.8 87.1 92.3
Corridor 84.3 85.9 86.6 83.6 85.5 88.0
Office 80.9 80.1 81.0 81.0 81.2 83.2
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principal component analysis (PCA), filtering out more
motion features, retaining only a few representative features,
and affecting the recognition accuracy. However, FIMD
adopts the method of false alarm. ,is method can only
eliminate the erroneous data with large deviation from the
CSI feature and cannot filter out some interference data with
small deviation.

Table 4 shows the motion detection accuracy of CSI-HC,
R-PMD, and FIMD in the three scenarios of this paper. ,e
experimental results show that the detection accuracy of
CSI-HC in the meeting room reaches 89.3%. ,e approach
has high environmental adaptability and robustness.

5.3.3.'e Impact of Sample Size. We find that the number of
training samples affects the detection accuracy of the motion
recognition method. To this end, we test different sample
sizes in the real environment we have built, and the ex-
perimental results are shown in Figure 16.

Figure 16 reflects the relationship between the recog-
nition accuracy of the three motion detection methods and
the number of training samples. It can be seen that the
detection accuracy of the motion recognition methods in-
creases with the number of training samples. Compared with
the other two methods, the CSI-HC method has a high
motion recognition rate. ,e motion detection accuracy of
the R-PMD method is slightly lower than that of CSI-HC,
and FIMD has the worst effect. ,is is because CSI-HC uses
the RBM training method based on contrast divergence.

After setting the training weight and learning rate, it can
quickly fit with the sample by adjusting the weight pa-
rameters, reduce the system overhead by repeated reuse,
improve the classification training efficiency of motions, and
increase the accuracy of motion recognition. However,
R-PMD uses the PCA approach. It means that, with the
increase of data, principal component analysis should be
carried out on all data to select characteristic data, which
increases the system overhead. In contrast, FIMD uses the
density-based spatial clustering of applications with noise
(DBSCAN) method to determine the clustering center. By
constantly calculating the Euclidean distance between
sample points and updating clustering points, the time
complexity of the algorithm is greatly increased, and with the
increase of the number of training samples, the
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Figure 15: Comprehensive evaluation of three methods.

Table 4: Motion detection method performance in three indoor
environments.

Method Meeting room (%) Corridor (%) Office (%)
CSI-HC 89.3 85.7 81.2
R-PMD 88.2 84.0 80.5
FIMD 76.1 71.8 70.6
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Figure 16: Impact of the number of samples.
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Figure 17: Impact of the number of features.
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computational burden of the system continues to increase,
and the training and recognition effects on the motion data
are not good.

5.3.4. 'e Impact of the Number of Features. As shown in
Figure 17, the motion detection accuracy increases as the
number of features used increases. Specifically, when the
number of features increases, the detection accuracy of the
CSI-HC method proposed in this paper will also increase.
When the number of feature values reaches 6, the detection
accuracy reaches the highest and remains stable. In contrast,
the accuracy change trend of the R-PMD method is roughly
the same as that of CSI-HC, but it is significantly lower than
that of CSI-HC. However, the turning point of FIMD de-
tection accuracy is 5, and the detection rate decreases sig-
nificantly when the number of features is 2–4.

,e test results in Figure 17 show that the detection rate
of our proposed CSI-HC method is higher and more stable.
,is is because the CSI-HC method uses the RBM network
to train the model suitable for CSI data, and the charac-
teristics are concentrated in the training data set, which
preserves the data integrity to a large extent, so it has a high
detection rate and stability. However, the R-PMD method
uses the PCAmethod to extract the most representative data
as features. ,e data integrity is not as high as that of CSI-
HC, which causes the detection accuracy to decrease. ,e
FIMD method uses the correlation matrix of CSI data as the
feature and uses the DBSCAN method for clustering. ,e
data are scattered in the feature, which makes it unstable,
and the detection accuracy is low.

5.3.5. Comparison with the Optical Sensor Method. We
compare the CSI-HC method proposed in this paper with
the optical sensor-based method. ,e CSI-HC method uses
CSI data as a recognition feature, while the optical sensor-
based method generally uses an optical signal composed of
inherent characteristics of light as a feature for motion
recognition.,e average detection accuracy of our proposed
CSI-HC for the motion is 85.4%, while the accuracy of
motion detection based on optical sensor-based methods is
as high as 98.9% [34]. Although in terms of recognition
accuracy, the CSI-HC method is lower than the optical
sensor-based method. However, in terms of application
scenarios, the optical sensor-based method does not work
properly in low-light and dark environments or in scenarios
involving privacy. ,e CSI-HC method overcomes this
defect and can be used in all indoor environments. In the
future research, we will further improve the accuracy of the

CSI-HC method to make up for its lack of recognition
accuracy.

5.3.6. Comparison with Previous Motion Recognition
Methods. In order to reflect the unique advantages and
comprehensive performance of the CSI-HC method pro-
posed in this paper, we compare the CSI-HC method with
the previous three human motion recognition methods
(computer vision method, infrared method, and special
sensor method) on multiple parameters [35]. ,e results are
shown in Table 5.

As can be seen from Table 5, the CSI-HCmethod has the
advantages of non-line-of-sight, low deployment cost, not
limited by environmental conditions, and low algorithm
complexity, while the other three methods have high de-
ployment cost and computational complexity. Among them,
computer vision methods cannot work effectively in dark
and privacy-related scenes. However, although the infrared
method and the dedicated sensor method have achieved
high motion detection accuracy, the deployment cost is too
high and they are not suitable for widespread deployment in
indoor scenarios.

6. Conclusion

In this paper, we propose a new complex human motion
recognition method, namely, CSI-HC, which is verified by
the XingYiQuan motion which is a complex motion. ,e
core part is the denoising of CSI signals and the classification
of complex motions. We collect CSI amplitude data in the
offline phase, use the Butterworth low-pass filter combined
with the Sym8 wavelet function method to filter the outliers,
and use the RBM to train and classify the XingYiQuan
motion to establish standard fingerprint information for the
XingYiQuan motion. Next, in the online phase, the Xin-
gYiQuan motion is collected in the experimental scenarios
to collect real-time data, the abnormal value filtering and
RBM training classification are performed, the SoftMax
classification model is constructed to correct the RBM
classification result, and the offline phase XingYiQuan
motion fingerprint database is used for data matching to
achieve recognition of different XingYiQuan motions.
,rough a large number of experiments, this paper explores
the influence of parameter setting and user diversity on the
accuracy of motion recognition. ,e experimental results
show that the CSI-HC achieves an average motion recog-
nition rate of 85.4% in three practical scenarios. It has good
performance in robustness, motion recognition rate, prac-
ticability, and so on.

Table 5: Comparison of parameters between CSI-HC and various human motion recognition methods.

Parameters
Methods

CSI-HC Computer vision Infrared Dedicated sensor
Perceived distance Non-line-of-sight Line of sight Non-line-of-sight Short distance
Deployment costs Low Medium High High
Environmental limitations No Yes No Yes
Computational complexity Low High High Medium
Motion detection accuracy Relatively high High High High
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