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+is study aims at the great limitations caused by the non-ROI (region of interest) information interference in traditional scene
classification algorithms, including the changes of multiscale or various visual angles and the high similarity between classes and
other factors. An effective indoor scene classification mechanism based on multiple descriptors fusion is proposed, which
introduces the depth images to improve descriptor efficiency.+e greedy descriptor filter algorithm (GDFA) is proposed to obtain
valuable descriptors, and the multiple descriptor combination method is also given to further improve descriptor performance.
Performance analysis and simulation results show that multiple descriptors fusion not only can achieve higher classification
accuracy than principal components analysis (PCA) in the condition with medium and large size of descriptors but also can
improve the classification accuracy than the other existing algorithms effectively.

1. Introduction

With the rapid development of the Internet and the in-
creasing demand for applications based on location
awareness, location-based services are getting extensive at-
tention. Most people cannot live without the location service
and the navigation system based on GPS (Global Position
System) in their daily life. Obviously, outdoor localization
technology has been relatively mature, and many mobile
devices also refer to outdoor location technology [1, 2, 3, 4].
Due to the particularity of indoor environment, the GPS
signal cannot directly meet the requirements of indoor lo-
calization service. At present, there are many indoor lo-
calization methods [4–6], mainly including WiFi, RFID,
Bluetooth, Ultrawide band, and so on. Nowadays, the visual
indoor localization system [7–9] is attracting more andmore
attentions of the researchers all over the world due to the
advantages of low deployment cost, strong autonomy, and
high localization accuracy.

A large visual database, namely, Visual Map, has oc-
casionally been established at offline stage to achieve ac-
curate indoor visual localization. Visual Map may contain a
large number of images or image features of different scenes

and corresponding location information, which is the
foundation of visual indoor localization. When the user
performs a location query online, the image will be retrieved
in the Visual Map. Traditional image retrieval algorithms
rely on pixel point matching [10, 11], which can only give the
results of image matching but does not contain the visual
image location information. In addition, existing image
retrieval algorithms often carry out global traversal search,
which leads to excessive time overhead and is not conducive
to real-time localization of mobile users. +erefore, an ef-
fective indoor scene classification mechanism is proposed in
this paper based on multiple descriptors fusion. +e images
in Visual Map will be classified according to the scenes, so as
to reduce the time overhead of visual images retrieval at
online stage and improve the efficiency and accuracy of
indoor scene classification. In this paper, both the visual
information and the depth information of an image are
fused. +e visual image mainly contains color information,
and each point on the depth image corresponds to the visual
image and contains position information. Both types of
images are captured by Microsoft Kinect 2.0.

In the indoor scene classification mechanism, the initial
descriptor set containing two kinds of image descriptors will
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be generated by the existing spatial pyramid model (SPM)
[12, 13].+en, the greedy descriptor filter algorithm (GDFA)
will be proposed to find out the valuable descriptors.
Multiple fusion descriptors will be generated by homologous
and nonhomologous combination to further enhance the
effectiveness of descriptors. Finally, support vector machine
(SVM) will be adopted for classification. +e overall
framework of the indoor scene classification mechanism is
shown in Figure 1.

+e remaining of the paper is arranged as follows:
Section 2 reviews the research progress of scene classification
techniques and their applications in indoor scenes. Section 3
describes the generation of the initial descriptor set and the
descriptor filtering in detail. Section 4 introduces the ex-
perimental database of this paper and shows descriptor
evaluation results. In Section 5, two combinations of ho-
mologous and nonhomologous will be realized and the
combination results will be evaluated. Section 6 concludes
the article.

2. Motivation

At the Scene Understanding Symposium held at MIT in
2006, an important point was clearly stated for the first time,
namely, scene classification is a new promising research
direction for image understanding. Although existing
classification methods claim to be able to solve any scene
classification problems [14, 15], the experimental outcome
shows that only the outdoor scene classification can be ef-
fectively solved by these methods, while the indoor scene
classification problems may still be a challenging task. In
addition, [16] shows that the classification accuracy of the
indoor scene is far lower than that of the outdoor scene
adopting the same feature extraction and classification
recognition methods. +erefore, it is important to improve
the classification accuracy of the indoor scene.

In early studies, low-level features of images were usually
extracted to classify scenes, such as color, texture, and shape
[17–19]. However, these methods based on low-level features
have not been a hot topic in the field of scene classification
due to its unsatisfactory classification effect. In order to
overcome such problems, the methods based on middle-
level features of image are proposed. +e global feature Gist
is adopted and improved in [20]. +e good identification
ability of scale invariant feature transform (SIFT) makes it
always be adopted as the local features with the highest
priority in many scene recognition algorithms [21]. Shi et al.
[22] proposed an indoor scene classification algorithm based
on the enhancement of visual sensitive area information.
And local features and global features are integrated by the
visual sensitive area information.

With the rise of Kinect, the scene classification algorithm
based on depth information [24, 25] has received more and
more attention. +e histogram of oriented gradient (HOG)
algorithm [26] is adopted to classify depth images and visual
images, respectively [28]. SIFT is adopted to extract features
of depth images and color images, and SPM coding is
adopted to classify images after feature fusion [29]. SIFT of
visual images and speeded up robust features (SURF) [27] of

depth images are fused to classify images [30]. Five deep core
feature extraction algorithms are designed in [31] to extract
the size, edge, and shape information of visual images, re-
spectively, and the extracted information is fused for
classification.

As research continues, the model based on the con-
volutional neural network (CNN) [16, 23] has attracted the
researchers. However, massive training sets are required in
CNN, which may result in relatively long training time. In
addition, CNN usually has high computing requirement on
the platform, so it is difficult to realize indoor scene clas-
sification on the platform with limited computing resource.

3. Multiple Image Descriptor Generation
and Filtering

Inspired by [28–31], visual information and depth infor-
mation will be fused in this paper. +e higher accuracy
indoor scene classification effect will be achieved by the
spatial 3D information contained in the depth image, which
is insensitive to light and reflects the position relationship
between objects. Features of the original images will be
extracted by D-SIFT (Dense SIFT) [32], and similar features
will be clustered to form BoW (Bag-of-Words) [33–35] by
K-means [36, 37]. Based on BoW, the initial descriptors set
including visual image descriptors and depth image de-
scriptors will be generated with the construction of SPM. It is
true that the number of initial descriptors is large and the
quality is uneven. In addition, combining directly with
unfiltered initial descriptors will lead to an explosion of the
combined results. +erefore, a simple and effective de-
scriptor filtering algorithm ought to be proposed to obtain
those valuable descriptors.

3.1. Initial Descriptors Generation. +e descriptor generated
expression could be derived from the following procedure.
Let I be any input image and x be a descriptor generated by
the image. L is a set of predefined class tags, and l is one of
them. +e function of generating descriptor x from image I
can be expressed as g(I) � x, and the probability of suc-
cessfully matching descriptor x to class tag l is Pl | x.
+erefore, the expression of the most appropriate class tag 􏽥l

will be
􏽥l � argmax

l∈L
P(l | g(I)). (1)

+e key to the research will be turning the initial de-
scriptors into valuable descriptors with high classification
accuracy. In order to find such descriptors, equation (1) will
be further optimized. On the premise of the best descriptor
filtering and combination methods, a correct class label
assigned to input image I will be􏽢l (􏽥l≠􏽢l) andX is adopted to
express a set of multiple image descriptors. +en, the op-
timized descriptor generation expression will be

􏽥g(I) � arg max
g(I)∈X

P(􏽢l | g(I)). (2)

According to equation (2), the initial descriptors gen-
erated by the input image can only get the desired
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classification effect through filtering and combination.
Initial descriptors are large in number and poor in quality,
while descriptor filtering can discard worthless descriptors
and descriptor combination can improve the effectiveness of
descriptors. +e descriptor generation process based on
SPM will be described as follows.

3.2. Spatial PyramidModel. In recent years, the BoW model
has been widely adopted in computer vision. It takes the
image features as visual words and classifies images by
counting the number of visual words in each image. However,
the traditional BoW lacks the spatial position information
[29]. In this research, SPMwill be established to cut the image
into scale cells, then the number of visual words will be
counted in each cell and the histograms can be drawn. Finally,
histogram features at all scales will be linked together to form
an eigenvector. We assume that a part of visual words has
been selected as basic features. +e steps of descriptor gen-
eration based on SPM are described in detail as follows:

(i) Extracting the D-SIFT feature.

(ii) Mapping each feature point to the corresponding
visual word.

(iii) Cutting the image and constructing spatial pyramid
hierarchy (three cutting methods, such as vertical
cutting method, horizontal cutting method, and
grid cutting method, are adopted in this paper, as
shown in Figures 2(a)–2(c), respectively).

(iv) Counting the number of visual words in each cell
and plotting histograms for each cell.

(v) Connecting all histograms to form a feature vector
as the image descriptor.

+e SPM-based descriptor generation process is
shown in Figures 2(a)–2(c), and each cutting type will be
divided into three columns for clear explanation. As
shown in Figure 2(a), the first column shows the cutting
type of the initial image, the second column represents the
statistical results of visual words for each cell, and the
initial descriptors formed by connecting the second
column histograms are shown in the third column. +e

image contains 5 visual words; three pyramid hierarchies;
and vertical, horizontal, and grid, the three cutting
methods. +e descriptors generation based on SPM
mainly depends on three important parameters: BOW size
(S), pyramid hierarchy (H), and cutting method (C). H � 0
represents the first hierarchy, and the image is cut 0 times.
H � 1 represents the second hierarchy, and the image is cut
1 time; H � 2 represents the third hierarchy, and the image
is cut 2 times. +erefore, the number of cutting depends
on H. In other words, when H � h, the image will be cut h
times, and the number of cells generated after cutting is
2HC. Finally, seven different descriptors are obtained in
Figure 2, whose size increases exponentially with the
number of H and C and has a linear relationship with
dictionary size S. +e calculation formula of descriptor
size η is as follows:

η � S · 2HC
. (3)

As we know, image descriptors contain semantic and
spatial distribution information of the scene. S will deter-
mine the semantic meaning of descriptors, while H and C
will focus on the spatial distribution of descriptors, ensuring
that more detailed information can be provided.+e larger S
will provide more detailed semantic information, making
features more obvious and more representative. However, if
there are a lot of visual words, the histogram will become
longer, which will affect the image retrieval and matching
process, subsequently. Analogously, a higher pyramid hi-
erarchy contains more detail, while a lower hierarchy is more
general.

As can be seen from [12, 13, 38], the standard values of
the three parameters are S� 20, 50, and 100; H� 0, 1, and 2;
and C� 1 (horizontal and vertical segmentation) and 2 (grid
segmentation), respectively. 21 different visual image de-
scriptors and 21 depth descriptors can be obtained by
combining these standard values. +e reason why the
number of descriptors is 21 instead of 27 (33) is that H� 0 in
the pyramid model does not cut the image, with no demands
for combination indeed. In other words, for any S, the first
pyramid hierarchy will deal with only one descriptor, while
the second and third pyramid hierarchies will deal with three
descriptors.
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Figure 1: +e indoor scene classification mechanism.
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Figure 2: Continued.
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3.3. Descriptors Filtering. In this section, the greedy de-
scriptor filter algorithm (GDFA) will be proposed to find the
most valuable descriptors in the initial descriptor set. Since η
of the initial descriptors mainly gathered in (0, 400] (as
shown in Figure 3), η is divided into three continuous in-
tervals (0, 150], [150, 350],and[350,∞) for the convenience
of descriptor filtering. We assume that large, medium, and
small intervals are suitable for our data-gathering platform
with small, medium, and high computing power configu-
rations, respectively.+e descriptor weight α is related to the
descriptor classification accuracy ζ and descriptor size η . In
order to obtain descriptors with smaller size and higher
accuracy, the calculation formula of the weight α could be
defined as follows:

α �
ζ

log η
. (4)

+e greedy descriptor filtering algorithm (GDFA) flow is
given in Algorithm 1.

At first, the weight of all descriptors is calculated
according to equation (4). Next, the descriptor size is divided
into (0, 150], [150, 350], and [350,∞) three continuous
intervals, and then the descriptors are sorted in order of
weight values from the largest to the smallest. +e descriptor
with the largest weight inNi is filtered and added to the first
position in F. If the descriptor weight is greater than 95% of
the weight of the previous selected descriptor, that is,
(αi > 0.95αi−1), the descriptor is filtered out; otherwise, the
next descriptor will be compared. GDFA not only could find

out the most valuable descriptors in each interval, but also
could filter out descriptors with similar weights.

4. Descriptor Evaluation

4.1. Experimental Database. In order to study the indoor
scene classification mechanism, as shown in Figure 4(a),
the indoor image data gathering platform with Microsoft
Kinect 2.0, independently developed by the laboratory, will
be adopted to carry out image data gathering in the
Heilongjiang University physical laboratory building. +e
database contains visual and depth images captured in 9
indoor scenes under different lighting conditions. To cite
some examples, Figure 4(b) shows part of the database
images.

+e database images will be randomly divided into 5
sequences, namely, Training 1, 2, and 3 and Test 1 and 2.+e
image number for 9 scenes in 5 sequences is listed in Table 1.

4.2. Evaluation Results and Analysis. K-fold cross-validation
could be a common accuracy test method, which can effec-
tively avoid over-learning and under-learning. 10-CV (10-fold
cross-validation) will be adopted to evaluate the classifier
model in this section. To ensure that each cross-validation
image is similar, a subset of 30 consecutive images will be
randomly assigned to Fold1–Fold10 (represents 10 subsets of
the 30 images), which effectively prevented any deviation
caused by the time continuity in the data set. Figure 5 shows
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Figure 2: Construction of SPM and generation of the initial descriptor set. (a) Vertical cutting. (b) Horizontal cutting. (c) Grid cutting.
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the distribution of each scene in the data set in each fold of 10-
CV and global distribution. It is worth noting that scenes in
the data set are not evenly distributed in Fold1–Fold10.

Table 2 shows the classification accuracy of initial de-
scriptors of 42 visual image descriptors and depth image
descriptors after 10 times of cross-validation. In SPM, when
H� 0, for any kind of segmentation type, there is no image
cutting and the generated descriptors are identical, so the
evaluation results are identical too. By comparing the results
of visual images and depth images, we can find that the
classification accuracy of depth images is significantly lower
than that of visual images. +e reason may be that the visual
coding technology (visual coding is the mapping between

data and visual results) of the depth image is not accurate
enough to obtain fine-grained data.

GDFA can find the valuable descriptors from the initial
descriptor set, which will facilitate the descriptor combination
work in Section 5. Table 3 shows the internal parameters and
classification accuracy of the 4 visual image descriptors and 7
depth image descriptors filtered by GDFA, analogously, and
the evaluation data are from 10-CV. In other words, the 42
initial descriptors given in Table 2 are reduced to 11 through
the filtering of GDFA.+ese descriptors may have the highest
weight in(0, 150], [150, 350], and [350,∞)intervals.

PCA is one of the classical and widely algorithms in
current data preprocessing algorithms. Dimensionality
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Figure 3: Greedy descriptor filtering algorithm versus PCA.

Input: descriptor list---L
descriptor classification accuracy list---ζ
descriptor size list---η

(1) for j ∈ ⌈0, size(L)⌉ do
(2) α[j]⟵ ζ[j]/log(η[j])

(3) end
(4) Divide the descriptor size into(0, 150], [150, 350], and [350,∞) three continuous intervals
(5) for i ∈ ⌈1, 2, 3⌉ do
(6) Divide L into new lists Ni

(7) Sort the descriptors in Ni in order of weight values from largest to smallest
(8) for j ∈ [0, len(Ni)] do
(9) Filter the descriptor Ni [1] with the largest weight in Ni and add Ni [1] to Φi
(10) if Ni [j− 1] is filtered and

α[j]> 0.95∗ α[j − 1] then
(11) Add Ni [j] to αi
(12) else
(13) end
(14) end
(15) end

Output: filtered descriptor list---α

ALGORITHM 1: Greedy descriptor filtering algorithm.
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reduction with PCA can preserve the most important
features in high-dimensional data and remove noise and
worthless features, which could improve data quality and
data processing speed. Figure 3 shows the comparison
between the filtering result of GDFA and the dimensional
reduction result of PCA (the solid point in Figure 3 is the
descriptor obtained by the GDFA, and the dotted line

separates three intervals). As observed, when descriptor
size is in (0, 150], PCA outperforms both visual descriptors
and depth descriptors. But when descriptor size is in
[150, 350] and [350,∞), the performance of PCA begins to
decline, which may indicate that GDFA performs better
than PCA, especially when the descriptor size is medium or
large.

(a)

Scene1 students laboratory

Visual image Depth image

Scene2 professor office

Scene3 classroom

Scene 4 ping pong room

Scene 5 conference room

Scene 6 corridor

Scene 7 lobby

Scene 8 elevator room

Scene 9 staircase

(b)

Figure 4: Indoor image data gathering platform (a) and part of database (b).
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5. Descriptor Combination

+e most valuable descriptors have been selected by GDFA
in Section 4. In order to further obtain the high-quality and
highly efficient final descriptor, this section will propose a
multiple descriptor combination algorithm (this section
only combines two descriptors) although this step might
increase the running time of scene classification. +ere will
be two descriptor combination levels, as shown in Figure 6.

One is the descriptor level (DL), which can be input to SVM1
after the descriptors of Image1 and Image2 have been
connected into one combination descriptor, as shown in
Figure 6(a). +e other one is the classifier level (CL), which
weights the different response results after Image1 and
Image2 have been input to SVM1 and SVM2 separately, as
shown in Figure 6(b). Also, this section will discuss ho-
mologous combinations (V+V or D+D) and nonhomol-
ogous combinations (V+D).

Table 1: +e number of images of 9 scenes in 5 sequences.

Scene
Frame

Training 1 Training 2 Training 3 Test 1 Test 2
1 438 498 444 511 319
2 140 152 84 95 147
3 119 80 65 109 229
4 421 452 376 392 442
5 408 336 247 307 942
6 664 599 388 692 1287
7 126 79 60 95 223
8 153 96 118 140 193
9 198 240 131 104 241
All 2267 2532 1913 2445 4023
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Figure 5: Distribution of each scene in Fold1-Fold10 and the global data set.

Table 2: Evaluation results of initial descriptors.

C H
Visual Depth

S� 20 (%) S� 50 (%) S� 100 (%) S� 20 (%) S� 50 (%) S� 100 (%)

Vertical
0 48.13 58.75 66.20 37.07 42.49 50.06
1 51.84 63.36 69.53 37.23 48.83 52.55
2 56.38 65.88 72.09 41.03 50.51 55.44

Horizontal
0
1 52.51 64.68 72.01 40.93 47.53 51.78
2 60.73 72.36 77.81 47.39 53.65 59.40

Grid
0
1 56.25 69.02 74.34 41.82 52.95 57.07
2 67.53 75.26 77.24 52.76 58.37 60.86
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+e combined sequences of training 1, 2, and 3 given in
Table 1 will be used as the training set, while Test 1 and Test 2
will be used as the test set. +ese 5 sequences have the same
scene. But it is noted that the light variation in Test 1 is
stronger than that in Test 2.

5.1. Homologous Combinations. +is section will combine
two descriptors extracted from the same image type, namely,
V +V or D+D, which are called homologous combination.
+e combination will be carried out at DL and CL, re-
spectively. +e test set of SVM could have been composed of
two groups of sequences with obvious light differences, Test
1 and Test 2, respectively.

5.1.1. V +V. +ere are 6 different combinations of the 4
depth image descriptors V1, V2, V3, and V4 given in Table 3,
which will be applied to DL and CL, respectively. +e
classification accuracy obtained in Test 1 and Test 2 is shown
in Figures 7(a) and 7(b), respectively.

5.1.2. D +D. +ere are 21 different combinations of the 7
depth image descriptors D1, D2, D3, . . ., D7 given in Table 3,
which will be applied to DL and CL, respectively. +e
classification accuracy obtained in Test 1 and Test 2 is shown
in Figures 8(a) and 8(b), respectively.

Comparing Figure 7 with Figure 8, we find that the
classification accuracy of D+D is generally lower than
V+V.+e highest classification accuracy in Test 1 and Test 2
achieved by the best depth image descriptor D7 is 48.79%
and 65.45%, respectively (while the highest classification
accuracy in Test 1 and Test 2 achieved by the best visual
image descriptor V4 is 74.76% and 85.78%, respectively).
When the best initial descriptor D7 acts as the parent

descriptor, the highest classification accuracy of DL is
56.07% in Test 1, while it is 71.86% in Test 2. Apparently, the
classification accuracy in Test 2 is still higher than that in
Test 1 in D+D.

Similar to V+V, DL always outperforms CL in D+D.
+e classification accuracy of combination descriptors in DL
is always higher than the parents’ descriptors (39 out of 42),
while only a few combination descriptors have higher
classification accuracy than parents’ descriptors in the CL
(16 out of 42). +e internal parameters of D7 are S� 100,
H� 2, and C� horizontal. D5+D7 (56.07%) achieves a fa-
vorable effect, and the internal parameters of D5 are S� 100,
H� 1, and C� horizontal. D2+D7 (71.86%) also achieves a
favorable effect, and the internal parameters of D2 are S� 50,
H� 2, and C� horizontal. +e similarity of the optimal
combination is C� horizontal, which is verified in Section 4.
In addition, the internal parameters of V4 and D7 are
S� 100, H� 2, and C� horizontal. So, we can speculate that
high classification accuracy could be obtained by descriptors
with such a group of internal parameters, which will be
verified in Section 6.

5.2. Nonhomologous Combinations. +is section will com-
bine two descriptors extracted from different image types,
namely, V +D, which is called as nonhomologous combi-
nation. +ere are 28 different combinations of V1, V2, V3,
and V4 and D1, D2, D3, . . ., D7 in Table 3, which will be
applied to DL and CL, respectively. +e specific evaluation
process is the same as homologous combination, and the
evaluation results are shown in Figure 9.

In Test 2, the highest classification accuracy of CL and
DL reaches 80.36% and 92.64%, respectively, while in Test 1,
it reaches 72.84% and 81.76%. +is is consistent with what

Table 3: Filtering results of GDFA.

Image type
Parameters Filtering criteria

S H C ζ (%) η (interval)
V1 20 0 — 48.13 20 (1)
V2 50 2 Horizontal 72.36 200 (2)
V3 100 1 Horizontal 72.01 200 (2)
V4 100 2 Horizontal 77.81 400 (3)
D1 20 0 — 37.07 20 (1)
D2 50 2 Horizontal 53.65 200 (2)
D3 50 1 Grid 52.95 200 (2)
D4 100 1 Vertical 52.55 200 (2)
D5 100 1 Horizontal 51.78 200 (2)
D6 50 2 Vertical 50.51 200 (2)
D7 100 2 Horizontal 59.40 400 (3)
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Figure 6: Descriptor combination level. (a) DL. (b) CL.
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Figure 8: D+D combination evaluation results. (a) Test 1. (b) Test 2.

10 Mobile Information Systems



we found before, the classification accuracy of Test 2 is
always higher than Test 1, and DL always outperforms CL.

In CL, the combination with the highest classification
accuracy is D5+V4 (72.84%) in Test 1. In the meantime, the
classification accuracy of V4, which acts a parent descriptor, is
74.76%. +e combination with the highest classification ac-
curacy is D7+V4 (80.36%) in Test 2. +e classification ac-
curacy of V4, which acts as a parent descriptor, is 85.78%. As
shown in Figures 9(a) and 9(b), only a few combination
descriptors have higher classification accuracy than parent
descriptors in the CL (18 out of 56), the same as in homologous
combinations. It shows that the result of CL is not satisfactory.

In DL, the combination with the highest classification ac-
curacy is D7+V4 (81.76%) in Test 1. In the meantime, the
classification accuracy ofV4, which acts as a parent descriptor, is
74.76%. +e combination with the highest classification accu-
racy isD7+V4 (92.64%) in Test 2.+e classification accuracy of
V4, which acts as a parent descriptor, is 85.78%. As shown in
Figures 9(a) and 9(b), the classification accuracy of combination
descriptors in DL is always higher than that in parents’ de-
scriptors (56 out of 56).

We can conclude that DL outperforms CL in nonho-
mologous combination because most combination

descriptors in DL outperform their parent descriptor, while
the combination descriptors in CL might be difficult to
achieve. In addition, no matter in which level, the combi-
nations of the descriptor with excellent performance and the
descriptor with poor performance outperform other com-
binations. To cite some, D1+V4 precedes D1+V1, D1+ V2,
and D1+V3 in Figure 9(b).

Combining Figures 7–9, we can conclude that the overall
effect of V +V and D+V outperforms D+D. Sometimes
V+V outperforms D+V although nonhomologous com-
binations contain more comprehensive information. DL
combines descriptors before entering a classifier, which may
preserve characteristics of the descriptors completely. +is
may be the reason why DL is always better than CL. So, we
only compare the evaluation results of V+V and V+D in
DL.

Table 4 lists the best combinations of homologous and
nonhomologous in DL, as well as the highest classification
accuracy (bold data) obtained in Test 1 and Test 2. +e best
combination is V3 +V4 in Test 1, and the best combination
is D2 +V4 in Test 2. We recall that the light variation in Test
1 is stronger than that in Test 2. So V+V can be the best in
Test 1, while D+V can be the best in Test 2.
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Figure 9: D+V combination evaluation results. (a) Test 1. (b) Test 2.
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As shown in Table 3, descriptor size has 8 possible
values (including single descriptor or combination de-
scriptor), respectively: 20, 40, 200, 220, 400, 420, 600, and
800. +e maximum classification accuracy corresponding
to each descriptor size value is compared with PCA results.
Figure 10 shows the relationship between classification
accuracy and descriptor size in Test 1 and Test 2. As we can
see, the classification accuracy of the multiple descriptors
fusion mechanism can be improved significantly with the
descriptor size from small to middle. Also, the classifi-
cation accuracy gradually tends to be stable with the
descriptor size from middle to large. In Test 1, when
descriptor size equals to 400 (large), V2 + V3 (80.94%)

gets the highest classification accuracy. In Test 2, when
descriptor size equals to 600 (large), D2 +V4 (92.64%)
gets the highest classification accuracy. PCA achieves high
classification accuracy in the condition with small de-
scriptor size. +e superiority of the multiple descriptors
fusion mechanism becomes obvious with the increasing
descriptor size.

5.3. Execution Time. Indoor scene classification is divided
into two stages: offline training and online testing. It is as-
sumed that the construction of BoW and classifier training has
been completed at the offline stage. +erefore, what affects the

Table 5: Indoor scene classification execution time.

Step Parameters Time (s)

Descriptor generation

Extracting D-SIFT feature imageSize� 640∗ 480 0.0840

Mapping feature point
S� 20 0.0096
S� 50 0.0140
S� 100 0.0218

Counting histograms

H� 0 0.0006
H� 1,C� 1 0.0004

H� 2, C� 1 or H� 1, C� 2 0.0003
H� 2, C� 2 0.0002

Descriptor classification Classifying the input descriptor

η � 20 0.0010
η � 50 0.0016
η � 100 0.0029
η � 200 0.0062
η � 400 0.0131
η � 800 0.0291

Table 4: +e best combination.

V +V ζ (%) D+V ζ (%)
Test 1 V3+V4 82.09 D7 +V4 81.76
Test 2 V2 +V4 91.60 D2+V4 92.64
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Figure 10: Descriptor size versus classification accuracy and PCA. (a) Test 1. (b) Test 2.
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running time of the online stage is the generation and clas-
sification of descriptors, including 4 steps, as shown in Table 5.

It is worth noting that step 1 adopts
imageSize� 640∗ 480. Step 2 is related to BoW size (S), so
S� 20, 50, and 100 are studied, respectively. Step 3 depends
on the size and number of image cells, which is related to
pyramid hierarchy (H) and cutting method (C). Step 4 is
determined by η.

5.4. Algorithm Analysis and Comparison. Under the same
database, the classification accuracy obtained by our
mechanism will be compared with other fusion methods, as
shown in Table 6.+e classification accuracy obtained by the
algorithms with single feature fusion [28–30] tends to be low
for the indoor scene, largely because these algorithms do not
filter descriptors. So it seems that the algorithm with single
feature fusion is suitable for indoor scene classification.
Higher classification accuracy is obtained by the algorithm
with multiple features fusion [31], which extracted five
different kernel descriptors from the images. After inte-
gration, they are trained and classified by Linear SVM,
Kernel SVM, and Random Forest, respectively, and obtained
89.6%, 90.0%, and 90.1% accuracy in this experiment. 92.6%
accuracy is achieved by our classification mechanism, which
has a 2.5% higher value than in [31]. Above all, multiple
descriptors fusion mechanism has good performance in
indoor scene classification.

6. Conclusion

Aiming at the actual demands for indoor positioning ap-
plications, a multiple descriptors fusion model is established
and an image classification strategy is proposed to improve
the quality and efficiency of descriptors so as to achieve a
better indoor scene classification effect. Firstly, the initial
descriptor set is formed based on the established SPM.+en,
the greedy descriptor filtering algorithm is adopted to select
the descriptors with high weight in each descriptor size
interval and a valuable descriptor set is obtained. Finally, the
multiple descriptors combination algorithm is proposed to
obtain high-quality and highly efficient multiple descriptors
by combining homologous and nonhomologous images at
DL and CL, respectively.

+e generation, filtering, and combination of multiple
descriptors proposed in this study improve the performance
of the classifier. +e evaluation results reflect that the
multiple descriptors fusion mechanism proposed in this
study outperforms the well-known PCA dimensionality

reduction technology, especially for the condition with
medium or large descriptor size. +is strategy not only
achieves better results than other feature fusion algorithms,
but also solved the limitations of existing scene classification
algorithms applied to interior scenes.

Future research will focus on the improvement of the
image feature extraction algorithm and the efficiency of
constructing visual words by clustering features in the visual
BoW model by other clustering algorithms. More attention
will be paid to enhance the effectiveness of descriptors when
describing image information. At the same time, the im-
provement of the quality of the depth image will be taken
into account so as to make more efficient use of depth data in
the process of descriptor filtering and descriptor combination.
Alternatively, a more complete data set can be adopted.
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