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With the emergence of new intelligent sensing technologies such as 3D scanners and stereo vision, high-quality point clouds have
become very convenient and lower cost.-e research of 3D object recognition based on point clouds has also received widespread
attention. Point clouds are an important type of geometric data structure. Because of its irregular format, many researchers
convert this data into regular three-dimensional voxel grids or image collections. However, this can lead to unnecessary bulk of
data and cause problems. In this paper, we consider the problem of recognizing objects in realistic senses. We first use Euclidean
distance clustering method to segment objects in realistic scenes.-en we use a deep learning network structure to directly extract
features of the point cloud data to recognize the objects. -eoretically, this network structure shows strong performance. In
experiment, there is an accuracy rate of 98.8% on the training set, and the accuracy rate in the experimental test set can reach
89.7%. -e experimental results show that the network structure in this paper can accurately identify and classify point cloud
objects in realistic scenes and maintain a certain accuracy when the number of point clouds is small, which is very robust.

1. Introduction

Point cloud is a collection of points. It contains rich in-
formation, which can be three-dimensional coordinates X,
Y, Z, color, intensity value, time, and so on. Point clouds are
representative of geometric data structures. In this paper, we
use deep learning network structures to perform feature
extraction and recognition for each point cloud object in a
realistic scene.

Compared with other methods, most of the objects in
point cloud scene model in this paper have no repeated
occlusion. Euclidean distance clustering segmentation
methods can be used to segment objects in complex scenes.
-e samples n points require as much original feature in-
formation as possible, so the Monte Carlo method is used.
Using the deep learning network structure proposed in this
paper to directly recognition point cloud objects can greatly
reduce the amount of data calculation (compared to
mainstream methods such as converting point clouds to
regular depth maps, multiviews, or voxel grids). Point clouds
do not introduce quantization artifacts, which can better
maintain the natural invariance of data. -e experimental
results show that the network structure in this paper can

accurately identify and classify point cloud objects in real-
istic scenes and maintain a certain accuracy when the
number of point clouds is small, which is very robust.

-e deep learning network structure proposed in this
paper to identify point cloud objects is a systematic method.
-e three-dimensional coordinates of n points of a point
cloud object are input to a deep learning network, and local
features or global features are extracted and added to other
dimensions to identify and classify point cloud objects in a
realistic scene. Before the point cloud object is input into the
deep learning network structure, each point of the input is
preprocessed identically and independently, and each point
of each point cloud object includes information of only three
coordinates.

-e realistic scene in this article is shown in Figure 1.-e
point cloud diagram of the realistic scene in this paper is
shown in Figure 2. Figure 3 is a single-point cloud object
after segmenting the realistic scene in this paper using
Euclidean distance clustering segmentation. A single-point
cloud object segmented using Euclidean distance clustering
is input to the deep learning network trained in advance in
this paper, and the global features of a single point cloud
object are extracted through the max-pooling layer in the
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Figure 1: -e realistic scene in this paper.

Figure 2: Point cloud image of realistic scene.

Figure 3: Point cloud image after segmentation by Euclidean distance clustering.
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network structure. -en, the multilayer perceptron con-
nected through the fully connected layer performs classifi-
cation and recognition of the point cloud object on such
learned features.

-e input data format is easy to use rigid or affine
transformation, so the experiment results can be further
improved. For the realistic scene and network structure
adopted in this paper, this paper provides both theoretical
basis and numerical evaluation.

-e key contents of this paper are as follows:

(i) Use the Euclidean distance clustering segmentation
method to divide multiple objects in realistic scenes
into clusters and perform unified data processing.
-e same and independent processing of data is
done by the Monte Carlo sampling method, with
zero mean and normalization.

(ii) Use a deep learning network architecture that di-
rectly consumes irregular point sets to complete the
recognition task.

(iii) Provide an analysis for the accuracy of object rec-
ognition in the realistic scene using the improved
network method and to evaluate the robustness of
the network method.

-e rest of this article is organized as follows: Section 2
reviews various methods proposed in the literature for
different forms of 3D data; Section 3 describes two main
problems addressed in paper; Section 4 proposes a solution
to the first problem in Section 3; Section 5 proposes a so-
lution to the second problem in Section 3; Section 6 mainly
analyzes the experimental results and the robustness of the
proposed network method; and Section 7 illustrates the
deficiencies in the experiment and suggests work to be done
next.

2. Related Work

-ere are three main methods for 3D object recognition,
which are based on 3D voxel grid, collections of images, and
point cloud data.-e point cloud learning-based approach is
currently getting more accurate as shown in Figure 4, and
the number is growing dramatically as shown in Figure 5. In
addition to these methods, there are some other methods
such as spectral convolutional neural network (CNN),
feature-based deep neural network (DNN), etc.

Methods based on collections of images data are as
follows.-emain research is to use the geometric method to
transform a three-dimensional object into several multiview
geometric two-dimensional images and retain as much
feature information as possible. In addition, in recent years,
many deep learning algorithms are mostly based on two-
dimensional images, and many excellent research results
have appeared in two-dimensional images. Qi et al. and Su
et al. [1, 2] attempt to convert a 3D point cloud object into
multiple different 2D images and then design a new con-
volutional neural network algorithm structure to integrate
the view information of multiple 2D images into a compact
shape descriptor. Yi et al. [3] uses multiple views to represent

local information on the graph by parameterizing kernels in
the spectral domain spanned by the characteristic roots of
the graph. Experiments have shown that all benchmark
datasets in each task achieve state-of-the-art performance.

Methods based on the 3D voxel grid data are given as
follows: this method works by meshing or voxelizing various
3D data and then designing the corresponding 3D con-
volutional neural network for feature extraction and rec-
ognition. References [1, 4–7] is a series of convolutional
neural network algorithms whose input data is a voxel grid,
but these algorithms all consume a lot of computational
costs because of the sparseness of the data and the features of
convolution in 3D.-e requirements for resolution are high.
FPNN [8] and Vote3D [9] have proposed different solutions
to the problem of sparsity of voxel grid data. However, these
two schemes are not very ideal, and the experimental results
are not very satisfactory, so it is still a very big challenge to
process point cloud data with a very large amount of data.

Methods based on the point clouds. -is method mainly
includes two types. One is to convert the point cloud data
into a multiview, polygon network, or voxel grid and then
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Figure 4: -e average accuracy of various methods value with the
year (the data is from http://www.cvlibs.net).
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Figure 5: -e relative number of methods varies with time and the
trend of the number of point clouds (the data is from http://www.
cvlibs.net).
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use deep learning networks for feature extraction and rec-
ognition (as described above). -e other part is to directly
process the point cloud data. -e recognition accuracy is
high and there is development in speed in the last three
years. Qi et al. [10] are the first to directly process the point
cloud data, avoiding the unnecessary huge problem of the
data and well respecting the replacement and deformation of
the input points. Based on this, they proposed a new neural
network structure PointNet [10] and PointNet++ [11] to
directly process point cloud data. Based on the principle of
kdtree, Klokov and V. Lempitsky [12] propose a network
algorithm Kdnetwork that is different from the current
mainstream convolution structure. It uses rasterization on a
uniform two-dimensional or three-dimensional grid to
avoid bad scaling behavior for 3D models and point clouds.
Identifying tasks is explained as follows. Zaheer et al. [13]
mainly propose a series of permutation invariant functions
that can be run on a set. -is series of permutation invariant
functions can be used in various positions. Among the
various algorithms that process point cloud data, the best
and the most accurate are PointCNN [14] proposed by
researchers at Shandong University based on convolution
operators in convolutional neural networks. PointCNN uses
χ transform to weight the input features associated with
points, which works very well in classification and seg-
mentation scenes.

For spectral CNN [15–17], at present, this series of
methods is only applicable to convolutional neural networks
such as organic matter. Feature-based DNNs (deep neural
networks) [18,19] usually convert a series of 3D data features
into appropriate features and then use a fully connected layer
to classify and recognize the point cloud data. In summary,
CNN can extract high-level semantic information from the
original data through a series of operations such as con-
volution and pooling and finally generate a valid feature. It
aims to improve the classification accuracy of large-scale
multicategory complex 3D models. Firstly, the three-di-
mensional polygon mesh model is discretized into three-
dimensional point cloud data, and then the deep feature of
the model is extracted by convolution and pooling of the
deep point cloud convolutional neural network, and the
model is classified and identified by using multilayer
perceptron.

On the Generation of Point Cloud Data Sets: Step One in
the Knowledge Discovery Process [20], Andreas Holzinger
et al. describe the case for natural point clouds and then
provide some fundamentals of medical images, particularly
dermoscopy, confocal laser scanning microscopy, and total-
body photography; they describe the use of graph theoretic
concepts for image analysis, give some medical background
on skin cancer, and concentrate on the challenges when
dealing with lesion images and the discussion of related
algorithms. -e point cloud data is extracted from different
weakly structured sources and topologically analyzed to
produce feasible results. -e quality of these results depends
not only on the quality of the algorithm itself, but also to a
large extent on the quality of the input maps they receive, so
point clouds are a necessary preprocessing step and affect the
quality of the experimental results.

3. Problem Statement

In order to complete the recognition of point cloud objects
in realistic scenes, two key problems need to be solved. -e
first key question: how to separate multiple point cloud
objects in a realistic scene. Since the object input to the deep
learning network is a complete point cloud object, and each
point cloud object in the realistic scene is clustered together,
an algorithm needs to be designed to segment multiple point
cloud objects in the scene into a single. It is mainly based on
the information that each point cloud object has different
textures and colors to segment and save to each separate file
and then input each individual point cloud object to the
trained deep learning network for classification and
recognition.

-e second key issue is to design and propose a new deep
learning network structure for point cloud data to process it
directly. After solving the first critical problem mentioned
above, we will obtain a single point cloud object for pre-
processing, and then input each point of the point cloud
object to the trained deep learning network for classification
and recognition. Point cloud is a collection of x, y, and z
coordinates, as well as color, normal vectors, and other
feature channel feature information. For the convenience of
processing and clarity, this article only uses the three co-
ordinates (x, y, z) of each point as the input of the deep
learning network.

4. Euclidean Distance Clustering Segmentation
and Data Preprocessing

Euclidean distance clustering segmentation and data pre-
processing are divided into two parts. First, the working
principle of Euclidean distance clustering segmentation
algorithm is introduced (Section 4.1). -e method has a
better effect in a realistic scene with less overlap. Second, all
point cloud objects are processed identically and indepen-
dently. -ese processing methods mainly include Monte
Carlo sampling, zero mean, and normalization (Section 4.2).

4.1. Euclidean Distance Clustering Segmentation. Euclidean
clustering algorithm is an important classification method in
multivariate statistics, which can be applied to the seg-
mentation of point cloud data in the field of surveying and
mapping. -is method essentially uses Euclidean distance as
the distance between neighborhoods to complete the clus-
tering segmentation. Since the point cloud data is three-
dimensional data, more paired information of three-di-
mensional objects can be extracted. -e Euclidean distance
in n-dimensional space is

ρ �
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(1)

In this article, point cloud data is three-dimensional
data, so you need to calculate the Euclidean distance in
three-dimensional space, as shown in the following formula:
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-is paper first calculates the Euclidean distance between
two points in the point cloud data and uses the distance less
than the specified threshold as a criterion for classification.
-en iteratively calculates until the distance between all
classes is greater than the specified threshold and completes
Euclidean clustering.-e specific steps are (1) use the Octree
method to establish the topological organization structure of
the point cloud data; (2) perform a k-nearest neighbor search
on each point, calculate the Euclidean distance between the
point and k neighboring points, and classify the smallest
class; (3) set a certain threshold and iteratively calculate Step
(2) until the distance between all classes is greater than the
specified threshold. For a real scene, calculate the distance
dij from each point in the scene to all other points, and then
calculate the density, ρi � 􏽐 β(dij − dc). -e Euclidean
distance of the maximum density point is δi. Compare ρi and
δi values, with a larger value as the center point in a series of
point cloud objects. Choose the appropriate threshold r
according to the different scenes that need to be segmented,
(1) use the above method to find the center point p1 in space,
and compare the distance between n and p1, put the points
p2, p3, . . . whose distance is less than the threshold r into
class A; (2) find any point p2 in A\p1, repeat Step (1) again;
(3) then A\p1p2 find a dot, repeat Step 1) again, find
p7, p8 . . . and put in A; (4) when A no longer changes, the
entire search process is complete. -e segmentation result of
the realistic scene is shown in Figure 3.

4.2. Data Processing. After performing Euclidean distance
clustering and segmentation on a realistic scene, there will be
many different point cloud objects, and these point cloud
objects are composed of different numbers of points. Be-
cause of the premise of a network that recognizes point cloud
objects: each point cloud object has the same number of
points, so you need to use the sampling method to sample
each point cloud object into n points. -e n points after
sampling are zero-mean and normalized. Each object is
processed into a uniform format and entered into a network
algorithm. -e choice of sampling method is crucial. -e
sampling methods mainly considered in this paper are
Monte Carlo sampling, downsampling, and uniform sam-
pling. -ese three methods are used to sample the same
object into 1024 points. -e results after sampling and the
time spent sampling are shown in Figure 6.-e figure clearly
shows that the Monte Carlo sampling method and uniform
sampling can better show the contours and shapes of point
cloud objects. However, when there are a large number of
point clouds and each point contains more dimensional
information, the unified sampling method requires greater
computational cost and time cost. Taking the above two
points into consideration, the method of sampling point
cloud objects in this paper uses the Monte Carlo sampling
method.

-e main content of the Monte Carlo sampling method
is to use Monte Carlo ideas to maximize the approximation
of a series of data.-at is, the point cloud is sampled, and the

sampled points must retain the information of the original
point cloud to the greatest extent. -e larger the number of
sampling points, the more accurate the approximation result
is and the more it matches the distribution of the points in
the original point cloud. For the theory of Monte Carlo
sampling in this paper, the proof and algorithm are
implemented as follows.

For any given function h(x), it can also be said that any
point cloud object needs to be sampled. We need to ap-
proximate the value of this function. -e first integral to be
calculated is

􏽚
b

a
h(x)dx � s. (3)

Since there is no way to solve this equation using
mathematical derivation, it should be noted that for all x
values on the interval, the product of the function f(x) and
the probability density function p can be used instead of the
function h(x). So the entire integral can be written as

s � 􏽚
b

a
f(x)p(x)dx � Ep[f(x)], (4)

where p’s expectations are Ep, probability distribution p for
random variable x. So the mean of f(x) on the p distribution
is equivalent to the original integral. At this time, a series of
sampling sample points x(1), x(2), . . . , x(n) is used to ap-
proximate s. From these points, the empirical average is
calculated as

􏽢sn �
1
n

􏽘

n

i�1
f x

(i)
􏼐 􏼑, (5)

and the collected sample points are used to approximate the
average mean:

s � 􏽚
b

a
h(x)dx � Ep[f(x)] ≈

1
n

􏽘

n
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(i)
􏼐 􏼑. (6)

-e following theories can clearly prove the legitimacy of
this approximation. It is clear that the estimate of 􏽢s is
correct and without bias,
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that is,

lim
n⟶∞

􏽢sn � s, (8)

and the above formula only needs to satisfy that the variance
of each individual variable Var[f(x(i))] is bounded. Further,
when we consider that the n increases, as long as the variance
of 􏽢sn satisfies Var[f(x(i))]<∞, the variance Var[ 􏽢sn] will
decrease and must converge to 0:

Var 􏽢sn􏼂 􏼃 �
1
n2 􏽘

n

i�1
Var[f(x)] �

Var[f(x)]

n
. (9)

For a random variable X, if there is a defined function F,

F(x) � P X≤x{ }, −∞< x< +∞. (10)
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Regarding the continuous random X as the cumulative
distribution function of F(x), if there is a function f(x)

defined on the real axis and is nonnegative, for any real
number x, the following formula is established:

F(x) � 􏽚
+∞

−∞
f(t)dt. (11)

-erefore, the cumulative distribution function of the
probability distribution can usually be obtained by inte-
grating the probability density function. If you need to get n
samples, repeat the following steps n times. (1)-e computer
can randomly sample a value from the point cloud data,
expressed in μ. (2) Calculate the value x of F−1(u), where x is
a sample point derived from f(x).

Zero mean and normalization (which can get better
experimental performance) is a necessary step before
training the neural network. Generally, the sample data
obtained has multiple dimensions. -at is, one sample is
represented by multiple features.-e original data is directly
used in training, and their influence on train results is
different. By zero mean and normalization, different features
can have the same scale. When the gradient descent method
is used to update the parameters, different types of features
have the same level of influence on parameters. Zero mean
and regularization can accelerate the convergence of weight
parameters during training. Zero mean is a set of data, each
of which is subtracted from the average of this set. Assume
that a series of samples of the data is xi. -e zero mean of the
data is as follows:

xi
′ � xi( 􏼁 − μ, i � 1, 2, 3, . . . , n. (12)

In order to bring all data under a unified standard, we
use min-max scaling to normalize all data to [−1, 1]:

Xnorm �
X − Xmin

Xmax − Xmin
, (13)

where the normalized data is Xnorm, the original data is X,
the maximum value of the raw data is Xmax, and the
minimum value of the raw data is Xmin. -e results after
zero-mean and normalization are shown in Figure 7.

5. Deep Learning on Point Sets

Deep learning on point sets are divided into two parts. First,
Section 5.1 introduces two main problems, solutions and
proofs, in the process of deep learning processing point sets.
Second, Section 5.2 introduces the improved network
structure for identifying objects.

5.1. Problems of Point Sets inRn. All data in the point cloud
are a collection of points from European space. -e point
set of these Euclidean spaces will encounter two key
problems: the disorder of the point cloud and the invari-
ance of rotation and translation during the processing of
the algorithm. -is article gives corresponding solutions to
these two problems.

5.1.1. Unordered. Affected by the acquisition equipment and
the coordinate system, the same object is scanned using
different equipment or positions, and the order of the three-
dimensional points varies greatly. -e point cloud data is

Method
Time

Down sampling
14ms

Monte Carlo sampling
17ms

Uniform sampling
20ms

(a)

Method
Time

Down sampling
16ms

Monte Carlo sampling
18ms

Uniform sampling
23ms

(b)

Figure 6: Comparison of three sampling methods.
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very different from the pixel arrangement in the two-di-
mensional image or the voxel arrangement in the voxel grid.
Point cloud is a set of points without a fixed order. When
using a deep learning network to perform different tasks on a
point cloud, no matter in what order it is input to the
network, the same results must be output. In RGB-D or
grayscale images, the relative position of each pixel is fixed,
and there is no problem of disorder. However, for point
cloud data, there are N! types for entering points into the
network using a different order. -erefore, the input point
cloud data needs to be processed accordingly.

-ere are three solutions to the disorder of point cloud
data. (1) Input the point cloud data in a certain order. (2)
With the help of recurrent neural network, increase the
training data by adding various permutations. (3) Aggregate
the information of each point with the help of some com-
mon symmetric functions. Suppose there is such a sorting
strategy, which will define a mapping graph in one-di-
mensional space and high-dimensional space. It is easy to see
that when the size is reduced, both the sequence stability and
the point perturbation are required to maintain the prox-
imity of the space, which is an impossible task in practical
situations. -erefore, strategy one cannot solve the disorder
problem of point cloud data. With the idea of recurrent
neural networks and hope to train recurrent neural networks
by randomly permuting sequences, the author has already
stated that order is very important in OrderMatters, and it
cannot be ignored, although recurrent neural networks have

a good effect on relatively small sequences, but scaling to
thousands of input elements is difficult. For using the
symmetric function to solve the disorder problem of point
cloud data, this strategy has been verified in the PointNet
classification network [10] and has a good effect. -erefore,
the solution adopted in this article is to solve the disorder
problem of point cloud data by using a symmetric function.
-e symmetric function used is the following formula:

f x1, . . . , xn􏼈 􏼉( 􏼁 � c ∘g h x1( 􏼁, . . . , h xn( 􏼁( 􏼁( 􏼁( , (14)

where f 2R⟶ R, the feature extraction layer is represented
by h, the symmetric method using the max-pooling layer is
represented by g, higher-dimensional feature extraction is
represented by c. -e symmetric function used in this paper
has simple modules: a multilayer perceptron to approximate
h, a maximum pooling function, and a variable function to
approximate f. By collecting h, the deep learning network
can learn various feature attributes of different objects
through f. In other words, the feature of the last higher
dimension is to choose the largest feature value in each
dimension to solve the disorder problem of the point cloud
data, that is, g.

Theorem 1. Suppose f is a continuous set function about
Hausdorff distance dH, ∀ε> 0, ∃ a continuous function h and
asymmetric function g(xi, . . . , xn � c ∘Max), such that for
any W ϵQ,

Bounding Box
Min: 23.3959 39.0840 -0.1996
Max: 41.5061 57.8111 29.9091
Size: 18.1102 18.7271 30.1087
Center: 32.4510

Mesh: chair.ply
Vertices: 4000
Faces: 0
Selection: v : 0 f : 0

48.4475 14.8548

(a)

Bounding Box
Min: –0.6016 –1.0000 –0.6220
Max: 0.6016 1.0000 0.6220
Size: 1.2031 2.0000 1.2441
Center: 0.0000

Mesh: chair.ply
Vertices: 2048
Faces: 0
Selection: v : 0 f : 0

0.0000 0.0000

(b)

Figure 7: Comparison before and after data preprocessing (after processing on the right, before processing on the left).
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f(W) − c max
xiεW

h xi( 􏼁􏼈 􏼉􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< ε. (15)

Formally, letQ � W: W⊆ [0, 1]m and |W| � n{ }, f: Q

⟶ R is a continuous set function on Q about Hausdorff
distance dH, ∀ε> 0, ∃δ > 0, for any W, W′ϵQ, if
dH(W, W′)< δ, then |f(W) − f(W′)|< ε.

5.1.2. Rotation and Translation Invariance. Point cloud is a
geometric object. If the point cloud undergoes certain
geometric transformations (such as rotation and translation
operations), the semantic label of point cloud classification
and segmentation must be constant. -erefore, we expect
our learning of the point set to be invariant to these
transformations.

For the invariance of rotation and translation of point
cloud data, the natural solution is to align all input sets with
the canonical space before feature extraction. Jaderberg et al.
[21] introduces the idea of spatial transformer to align 2D
images by sampling and interpolation, through a specially
customized layer implemented on the GPU. -is paper uses
the adjustment network proposed by Qi et al. [10] to solve
this problem, and the effectiveness of this solution has been
proved in the paper. -e affine transformation matrix can be
predicted by adjusting the network, and the predicted affine
transformation matrix can be used for the input of the point
cloud. However, it should be noted that the transformation
matrix of the feature space has higher-dimensional features,
which greatly increases the difficulty of optimization, so it is
necessary to reduce the difficulty of optimization by adding a
regular loss:

Lreg � I − AA
T

����
����
2
F
, (16)

where the feature alignment matrix of the adjustment
network is A. -e orthogonal transformation of the above
formula can largely preserve the original information.

After adding regular terms, not only can you get a more
stable solution, but also reduce the parameters to a large
extent.

-e schematic diagram of adjusting the network
structure is shown in Figure 8. -e adjustment network is a
subnetwork used to predict the transformation matrix in the
feature space. It learns the transformation matrix that is
consistent with the feature space dimension by learning
from the input data, which multiplies the learned trans-
formation matrix with the original data. -e transformation
operation in the data feature space causes each point of the
subsequent input to be associated with each point in the
input. -rough such processing, the feature inclusion in the
input point cloud data is hierarchically abstracted. -e
adjustment network consists of three convolutional layers,
one max-pooling layer, and two fully connected layers.
Convolution layer 1 has 64 feature maps, convolution kernel
is [1 × 1]; convolution layer 2 has 128 feature maps, con-
volution kernel is [1 × 1]; convolution kernel 3 has 1024
feature maps, and convolution kernel is [1 × 1] -e full
connection layer is 512 and 256 nodes, respectively.

5.2. Network Architecture. Because PointNet’s [10] classifi-
cation and segmentation network has achieved good results
and its ability to extract features is very strong, it motivates
our recognition requirements for point cloud objects in
realistic scenes. -is article draws on the classification
network of PointNet. -e adjustment of the structure of this
network in this paper makes the network further enhance
the feature extraction ability. -e experimental results show
that the proposed deep learning network structure can
improve the accuracy of point cloud object classification and
recognition, while also greatly improving the accuracy on
the training and testing sets. -e network structure is shown
in Figure 9.-e input data is the 3D coordinates of a series of
point sets for each point cloud object.-emax-pooling layer
solves the problem of disorder of point cloud data and
adjusts the network to solve the problem of rotation and
translation invariance of point cloud objects. -e structure
of feature extraction for point cloud objects is accomplished
through a combination of multilayer perceptrons and ad-
justment networks. -e max-pooling layer can also obtain
the global characteristics of each object. -rough this pro-
cess, the point cloud object recognition in the realistic scene
is completed.

-e main part of feature extraction in Figure 9 includes
three adjustment networks, a maximum pooling layer, and
three multilayer perceptrons, which are input through the
three-dimensional coordinates of n points. -e features are
extracted, and the extracted features are mapped to a column
vector through the maximum pooling layer to complete the
feature extraction of the point cloud data. In order to
complete the task of identifying and classifying point cloud
data, it is necessary to perform probabilistic calculations on
the features extracted by the deep network architecture.
-erefore, it is necessary to connect the fully connected layer
after the maximum pooling layer to map the learned feature
representation to the sample tag space. In the figure, the first
fully connected layer contains 512 neurons, the second fully
connected layer contains 256 neurons, and the number of
the third fully connected layer neurons is the number of
categories for the classification task. -e dropout layer is set
to zero for each neuron node with a probability of 70%. At
this time, the effect is also the best. -is can alleviate the
complex collaborative adaptation between neurons, reduce
neuron dependencies, and avoid network training. Over-
fitting occurs during the process. In addition, the general-
ization ability of the model can be improved and the
complexity of the model can be reduced.

Softmax has a wide range of applications in deep
learning. Especially when solving multiclassification tasks,
the final output unit of the classifier needs to use the Softmax
function for numerical processing to convert the output
values of multiple classifications into corresponding prob-
abilities. -e definition of the Softmax function is

Si �
ebi

􏽐
C
i�1e

bi

, (17)

where bi is the output of the superior output unit of the
classifier; i is the index value of the category; C is total
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numbel of categories; Si is the ratio of the index of the output
element of the previous output unit of the classifier to the
sum of the index of all elements.

-e loss function used in this article is as follows:

L � −
1
m

􏽘

m

i�1
yilog Si( 􏼁, (18)

where yi is the true classification result; Si is output of
Softmax function. After the calculation of the cross-entropy
loss is completed through the above formula, the weight of the
network is adjusted using the back-propagation algorithm.

6. Experiment

Experiments are divided into two parts. First, Section 6.1
provides detailed training process. Second, Section 6.2 analyzes
the experimental results and tests the robustness of the network.

6.1.TrainingProcess. In this paper, in order to train the deep
learning network structure, we choose the ModelNet [22]
data set established by Stanford University as the training
set and test set for network learning. ModelNet data has 40
different kinds of 3D models and each has a corresponding
number, and there are 12,311 3D objects in total. We then
divide these models into 4 files with, 64 group per file and 32
models per group. -e remaining 2048 model files are used
as test sets.-ey were written in a file in the same way.-ese
files are entered into the network and trained. Figure 10
shows some of the model files in ModelNet40 and the point
cloud files that have been processed for training. During the
training of deep learning network algorithms, point clouds
are randomly rotated along the upper axis and point clouds
are dynamically added by adding Gaussian noise.

In addition, you need to set some basic parameters of
the network and explain the evaluation indicators of the
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Figure 9: Complete network structure diagram.
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Figure 10: Modelnet40 data set model (top) and point cloud data input to deep learning network (bottom).
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results after the training is completed. Optimize the net-
work by using a momentum-based stochastic gradient
descent method. -e momentum factor is set to 0.9, the
weight attenuation is 0.0005, the initial learning rate is
0.001, and the dropout rate is 0.7. -e network parameters
are initialized using random initialization. After the
training is completed, the trained parameters of the net-
work are obtained, and then the trained network is used to
test the data collected by the machine vision platform
through the recognition and classification task. -e per-
formance index of the test uses the accuracy rate and is
defined as follows:

accuracy �
n

N
× 100%. (19)

-e server hardware configuration for deep learning
network training is as follows: Ubuntu 18.04 system, 8-core
16-thread Inter Core i7 − 5960X processor, 2 NVIDIA
M 4000 graphics cards, 16GROM, TensorFlow 1.7.0 [23].
-e training process record of the entire deep learning
network algorithm is shown in Figure 11 below.

Due to the particularity of deep learning networks,
setting different parameters for the same deep learning
network will have different results. In order to reproduce the

experimental results, record the parameter settings of the
deep learning network before training in this paper in
Table 1.

6.2. Results and Analysis. After the deep learning network
training is completed, the preset test set is used to test the
recognition accuracy. -ere are three main indicators: av-
erage loss, average accuracy, and average classification ac-
curacy. -e test results are shown in Table 2.
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Figure 11: -e entire training process. (a) -e accuracy of the training process (which is on the training set) as a function of the number of
iterations. It appears that the accuracy of the training set increases with the number of iterations.When the accuracy finally reaches 98.8%, it can
be said that the training process has completely learned the characteristics of various point cloud data. (b) -e value of the cross-entropy loss.
-e smaller the value, the smaller the predicted deviation with the actual deviation, the better the prediction by the model, cross-entropy loss
value decreases as the number of iterations increases. (c)-e change of the learning rate during the learning rate training process. -e learning
rate is attenuated with a certain decay rate as the number of iterations increases. (d) A graph that records the decay of the learning rate as the
number of iterations increases during training. As the number of iterations increases, the rate of decay of the learning rate increases.

Table 1: -e initial and end values of some parameters during the
training process.

Initial value End value
Accuracy 0 0.988
Cross-entropy loss 1.9408 0.024
Learning rate 0.001 0.0000133
Decay rate 0.5 0.982

Table 2: Results on the test set.

Average loss 0.5014
Average accuracy 0.897
Average classification accuracy 0.873
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Table 3: Comparisons of classification accuracy (%) on ModelNet40.

Method Input ModelNet40 (%)
FPNN [8] Volume 68.20
3DShapeNets [22] Volume 77.30
VoxNet [4] Volume 83.00
Subvolume [1] Volume 86.00
PointNet(vanilla) [10] Point cloud 87.20
PointNet [10] Point cloud 89.20
-is paper Point cloud 89.70

Table 4: Results on the test set.

Bed Guitar Cup Bottle Bowl Curtain
0.99 0.94 0.70 0.70 0.99 0.90
Bookshelf Person Door Keyboard Plant Piano
0.91 0.95 0.85 0.85 0.80 0.87
Chair Laptop Lamp Sofa Desk Wardrobe
0.98 0.99 0.95 0.97 0.99 0.55

Figure 12: -e figure shows the correct instance and the wrong instance of the point cloud object in the realistic scene. -e three-point
cloud objects on the left are instances that are correctly identified, and the instance on the far right is incorrectly identified. -e identified
result is a table, but the actual label is a wardrobe. -e main reason for this result is similar external characteristics.

Instance:
0004_airplane

Predicted label:
airplane

True label:
airplane

(a)

Instance:
0036_sofa

Predicted label:
sofa

True label:
sofa

(b)

Instance:
0001_bed

Predicted label:
bed

True label:
bed

(c)
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chair
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chair

(d)
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Predicted label:
toilet

True label:
toilet

(e)

Instance:
0075_wardrobe

Predicted label:
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desk

(f )

Figure 13: Recognize objects that appear in realistic scenes. -e information of the object to be verified is given, including the instance
name, predicted label, and real label. In the figure, the red category is used to select the wrong recognition category, and the other is the
correct category. -e main reason for the wrong recognition is due to the external object. Recognition errors caused by too similar features.
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-e experimental results in this paper are compared with
the better method of idle money. -e comparison results are
shown in Table 3.

-e task of this paper is to identify point cloud objects in
realistic scenes. Table 4 below is an analysis of the accuracy of
recognition objects that may appear in realistic scenes.

Table 4 shows the method used in this paper to identify
some point cloud objects in the realistic scene and the ac-
curacy rate of recognition. It has a high accuracy rate for
some objects with obvious features. In short, the method in
this paper can accurately identify objects in realistic scenes.
Figure 12 shows an example of point cloud object recog-
nition in the real scene by the algorithm in this paper.
Recognize the objects in the realistic scene, the main in-
formation and results of the recognition are shown in
Figure 13.

In order to test the robustness of the network algorithm
in this paper, we test the accuracy of the point cloud object
recognition by gradually reducing the number of each point
cloud object. Ideally, as the number of point clouds de-
creases, the accuracy is maintained as much as possible.

-rough experiments, we find that with the reduction of the
number of point clouds, the accuracy of point cloud object
recognition gradually decreases, but the accuracy of rec-
ognition is maintained at a high level. Even with only 64
points of information, the accuracy rate remains above 60%.
-e robustness test of the deep learning network in this
paper is shown in Figure 14.

7. Conclusion

-is paper proposes a new approach to recognize point sets
objects in realistic scenes by clustering and segmenting point
cloud data in realistic scenes using on the Euclidean distance
clustering segmentation algorithm. It effectively solves the
problem of clustering and segmentation of multiple objects
in complex scenes. Using a deep learning network that
directly processes point cloud greatly reduces the amount of
data calculation. Point cloud does not introduce quantiza-
tion artifacts, which can better maintain the natural in-
variance of data. -e experimental results show that the
network structure in this paper can accurately identify and
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Figure 14: Robustness test. It can be observed that as the number of points in the input network decreases, the accuracy of the network on
the test set becomes lower and lower. As long as the number of input points is greater than or equal to 64 points, the accuracy of the test set
can be maintained above 80%. It can be seen that the robustness of the network is still very good.
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classify point cloud objects in realistic scenes and maintain a
certain accuracy when the number of point clouds is small,
which is very robust. For any point cloud object has global
features and local features, the algorithm proposed in this
paper mainly extracts global features and does not make use
of local features. In the next work, we want to further change
the network structure to extract local features and further
improve the accuracy of point cloud object recognition in
realistic scenes.
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