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Along with the advancement of wireless technology, indoor localization technology based on Wi-Fi has received considerable
attention from academia and industry. ,e fingerprint-based method is the mainstream approach for Wi-Fi indoor localization
and can be easily implemented without additional hardware. However, signal fluctuations constitute a critical issue pertaining to
the extraction of robust features to achieve the required localization performance. ,is study presents a fingerprint feature
extraction method commonly referred to as the Fisher score–stacked sparse autoencoder (Fisher–SSAE) method. Some features
with low Fisher scores were eliminated, and the representative features were then extracted by the SSAE. Furthermore, this study
establishes a hybrid localization model constructed with the use of the global model and the submodel to avoid significant
coordinate localization errors attributed to subregional localization errors. Combined with three accessible fingerprint-based
positioning methods, namely, the support vector regression, random forest regression, and the multiplayer perceptron classi-
fication, the experimental results demonstrate that the proposed methods improve the localization accuracy and response time
compared to other feature extraction methods and the single localization model. Compared with some state-of-the-art methods,
the proposed methods have better localization performances when large number of features are used.

1. Introduction

Following the rapid development of wireless communication
technology in recent years, location-based services (LBS) [1] in
indoor environments, such as departments, shopping malls,
hospitals, and airports, has become increasingly popular [2].
Accordingly, the context in which positioning technology had
been used to obtain accurate position estimates has received
widespread attention. Generally, the positioningmethod can be
classified into outdoor and indoor positioning types. Tradi-
tional satellite positioning technologies, including the global
positioning system (GPS) and the BeiDou navigation satellite
system (BDS), are utilized in outdoor positioning applications
to meet the needs for outdoor activation. Nevertheless, in
indoor environments, the signal from global navigation satellite

systems (GNSSs) is limited [3]. Accordingly, it is necessary for
researchers to seek positioning indoor localization methods
with a higher accuracy.Many indoor localizationmethods have
been proposed in academia as well as in industry. Typical
indoor localization methods like Wi-Fi [4–9], Bluetooth [10],
ultrasound (US) [11], infrared (IR) [12], radio frequency
identification (RFID) [13, 14], magnetic field (MF) [15], and
ultra-wideband (UWB) [16] methods, have been investigated.
Indoor positioning systems estimate the location by using
different types of measurements, such as angle of arrival
(AOA), time of arrival (TOA), time difference of arrival
(TDOA), and received signal strength (RSS). ,e AOA-based,
TOA-based, and TDOA-based systems have serious limita-
tions, including their fragility in dynamic environments and
their increased costs.
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Hence, wireless localization technology based on RSS
measurements still constitutes the mainstream research
method for these types of applications [17]. Its positioning
accuracy can reach 1–10m [18]. More importantly, the
proliferation of smart mobile devices facilitates the devel-
opment of indoor localization based on WLAN. Wireless
positioning methods include two mechanisms, namely, the
ranging-based and the fingerprint-based methods. ,e
ranging-based localization method builds the propagation
model between RSS and the distance to the access point
(AP). Accordingly, the user’s location can be calculated once
the distances to the multiple APs are estimated. ,e method
can be easily implemented, yet complex indoor environ-
ments induce complex reflections to the signal propagation
model, thus leading to the production of multipath signals.
Interfered by fading and shadowing, the construction of
accurate propagation models is challenging, and the pro-
posed ranging-based approaches generally achieve a rela-
tively poor accuracy.

At present, Wi-Fi fingerprinting localization technology
is a popular method implemented in indoor positioning.,e
fingerprinting approach consists of two phases: the offline
training and the online localization phase. During the
training phase, the RSS measurement of APs at different
reference points (RPs) is collected, after which a radio map is
constructed with features extracted from the measured RSS.
During the localization phase, the current RSS measurement
is captured to map the corresponding location by matching
the most relevant RSS fingerprint with entries in the fin-
gerprint database.

Machine learning methods have been extensively used
in fingerprint-based localization. Abdou et al. [4] proposed
an efficient indoor localization system that used an affinity
propagation clustering (APC) algorithm to reduce the
computational cost and that relied on support vector re-
gression (SVR) to achieve an increased generalization
capacity. Akram et al. [5] utilized principal component
analysis (PCA) to reduce the dimension of raw data and
established a localization method based on random forest
(RF). ,e method provided 97% accuracy for room pre-
diction. Liu et al. [6] obtained the final estimated location
based on the averaging of the outcomes of three algorithms,
including forest regression, multiplayer perceptron (MLP)
classification, and MLP regression, and achieved superior
localization outcomes. Guo et al. [7] proposed an accurate
Wi-Fi localization scheme based on the unsupervised fu-
sion of an extended candidate location set (ECLS), whereby
the proposed ECLS provided a large space that likely in-
cludes the true location. Accordingly, the experimental
results showed that the algorithm was more robust to
changing environments. Cui et al. [8] proposed a random
vector functional link network (RVFL) to develop an ef-
ficient and robust indoor positioning system. Luo et al. [9]
proposed a multifloor identification model called
MA_LDA to find the floor number and LL_KNN algorithm
to obtain the location information of a target on the floor.

In this study, we propose a method for fingerprint
feature extraction and a hybrid localization model. ,e
contributions of this work include the following:

(1) Utilization of Fisher score–stacked sparse autoen-
coder (Fisher–SSAE) to extract robust features to
achieve a better localization performance.

(2) Establishment of a hierarchical model that employed
the clustering approach, constructed submodels for
subregional localization, and tested the effects of
hierarchical localization for several common local-
ization algorithms.

(3) Proposition of a hybrid localization model that can
retain the advantages of the hierarchical localization
model and that can avoid significant errors caused by
subregional positioning errors.

,e remaining parts of this study are organized as fol-
lows: Section 2 shows the related works in the Wi-Fi fin-
gerprint-based localization field. Section 3 introduces the
preliminaries for the proposed fingerprint-based localization
methods. Section 4 introduces the proposed Fisher–SSAE
and hybrid model in detail. Section 5 evaluates the per-
formance of the proposed methods in real wireless indoor
environments. Section 6 outlines the conclusions of the
study.

2. Related Studies

Fingerprint-based algorithm is classified into deterministic
and probabilistic algorithms. ,e probabilistic algorithm
utilizes the distribution of RSS measurements at RPs to
construct the probabilistic model in the offline phase and
provides confidence intervals for predicted locations in the
online phase. Castro et al. [19] described Nibble, a Wi-Fi
location service that used Bayesian networks to infer the
location of a device and discussed how probabilistic models
could be applied to a diverse range of applications that used
sensor data. Bian et al. [20] proposed the least expectation of
the positioning error (LEPE) algorithm, which utilized the
Gaussian mixture model (GMM) and the expectation-
maximization (EM) algorithm to minimize the expectation
of the positioning error. Many probabilistic algorithms give
confidence intervals for predicted locations but do not
achieve an ideal positioning accuracy.

,e deterministic algorithm exploits deterministic fin-
gerprint features to identify the target location. For instance,
the RADAR system [21] used the K-nearest neighborhood
(KNN) method to estimate the user’s location. Shin et al.
[22] proposed the enhanced weighted KNN (WKNN) which
reduced the error compared to KNN based on the adjust-
ment of the number of considered neighbors. Xu et al. [23]
treated the extracted features as inputs to SVR and estab-
lished the mapping between localization features and
physical locations. Akram et al. [24] proposed the hybrid
indoor localization based on the use of random decision
forest to achieve the room-level and latitude-longitude
prediction. Gu et al. [25] proposed a semisupervised deep
extreme learning machine, which took advantage of deep
learning and extreme learning machine methods and im-
proved the accuracy and efficiency. Zou et al. [26] matched
standardized fingerprints based on the signal tendency index
(STI) to handle device heterogeneity and environmental
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changes. Additionally, they proposed an indoor positioning
system that combined by the STI and weighted extreme
learning. Li et al. [27] proposed a SVR algorithm, whereby its
parameters were optimized for positioning by particle
swarm optimization (PSO) to improve the online localiza-
tion accuracy.

Fingerprint feature extraction has a significant impact on
positioning accuracy. Wi-Fi signals are dynamically
changing over time as a function of various situations, such
as the obstruction of humidity, the status of door, the change
of temperature, and other factors, that led to the poor feature
extraction and low localization accuracy. Additionally, the
dimensionality reduction was one of the effective strategies
used to improve the performance of the classifiers [28]. ,e
RADAR system [21] used the average value of RSS mea-
surements as fingerprint features. ,e traditional feature
extraction method does not yield a stable performance as a
result of wireless signal fluctuations. Excessive fingerprint
dimensions reduce the performance of a classifier. ,us, the
feature extraction work of fingerprint-based localization has
received extensive attention. Most fingerprint methods
generally operate on the original fingerprints based on
feature extraction or feature selections. Chen et al. [29]
proposed InfoGain which selected a small subset of the APs
as AP features based on the calculation of the information
gain. Lin et al. [30] proposed a group discrimination-based
access point selection method to improve the positioning
accuracy and to reduce the computational overhead. Jia et al.
[31] proposed a heuristic AP selection algorithm based on an
error analysis. It was demonstrated that this method sig-
nificantly reduced the redundancy of APs in fingerprint-
based localization and considerably improved the localiza-
tion accuracy. ,ese fingerprint feature selection methods
only retain features at a shallow level. Fang and Lin [32] used
PCA to extract Wi-Fi feature. Luo and Fu [33] relied on
kernel principal component analysis (KPCA) to eliminate
the issue of data redundancy and maintain useful charac-
teristics for nonlinear feature extraction. Jia et al. [34]
proposed a supervised kernel PCA (SKPCA) method to
obtain a nonlinear and optimal embedding in a low-di-
mensional subspace, whereby online RSS vectors can be
transformed within the subspace for localization. According
to the processes of these fingerprint feature extraction
methods, if the features that do not contribute to the lo-
calization performance, or are even counterproductive, are
not excluded, they affect the positioning accuracy. ,us, we
propose the use of Fisher–SSAE to obtain the robust fin-
gerprint features for classification or regression. Accord-
ingly, during the execution of this method, both the feature
selection and feature extraction processes are conducted.

Numerous efforts have been expended in fingerprint
clustering algorithms, which reduced the computational
complexity to improve the rate of matching. Chen et al.
[29] proposed the application of K-means to cluster fin-
gerprint samples. Ding et al. [35] proposed a fingerprint
clustering method based on APC to avoid an initial
starting point selection. Saha and Sadhukhan [36] pro-
posed a hierarchical clustering strategy combined with
KNN to locate the object. Zhou and Van [37] proposed a

location fingerprinting algorithm based on fuzzy c-means
(FCM) clustering. Li et al. [27] proposed an APC algo-
rithm based on the Shepard similarity metric. In this
approach, the authors calculated the Shepard similarity
among the fingerprints and eliminated the superposition
of distant signals in the estimation of the node position.
Akram et al. [5] considered the similarity between the
Gaussian distribution and the radio propagation char-
acteristics of a Wi-Fi AP and used Gaussian mixture
model (GMM) clustering to divide the fingerprint data-
base into subdatabases. ,ese methods reduced the
computational time, but the points located at the
boundary region were not considered in detail. ,us, a
hybrid positioning model—which includes the use of the
global and subregional models—is proposed for use to
avoid significant errors caused by subregional localization
errors.

3. Preliminaries

3.1. Technological Analysis. ,e positioning area is divided
into several subregions based on clustering. After the de-
termination of the subregions to which the test points (TPs)
belongs to, we can identify the candidate RPs in specific
subregions to contribute to the estimated coordinate lo-
calization. In this study, the localization method is defined as
a hierarchical localization. ,e direct positioning method
without clustering is defined as one-step localization.

Compared with the one-step model, the hierarchical po-
sitioningmethod has a better efficiency, and themodel is more
in line with the local environment. However, when the user is
in the boundary area, the localization performance is some-
times not ideal. To our knowledge, two fingerprints are
physically far apart, this does not necessarily mean they are
very far apart in the signal space. In fact, theymay be very close
[38]. As shown in Figure 1, the yellow points are the RPs with
high probability after calculation. If a suitable localization
algorithm, such as the WKNN, is adopted, the user location is
estimated in the area surrounded by these three yellow dots
and the localization performance is acceptable. When the
hierarchical approach is adopted in the subregional localiza-
tion process, the location of the user can be easily located in the
error area (Region A) adjacent to the true subregion (Region
B). Accordingly, two high-quality RPs will not contribute to
the estimation of location. Under this circumstance, the one-
step localization model is more suitable.

3.2. Fisher Score. ,e subregional localization can be per-
ceived as a multiclassification problem. Quick elimination of
the features that contribute weakly or even interfere with the
positioning task can effectively save computation resources
and improve the accuracy of classification.

,e Fisher score is a representative supervised feature
selection method and selects features with the best dis-
criminant ability [28]. ,e powerful discriminant capacity is
represented as the set of distances among the data points
with the same label such that they are as short as possible and
the distances between the data points with different labels
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such that they are as far as possible. In this study, the Fisher
score was utilized to select the suitable AP subset. ,is led to
the reduction of the fingerprint dimension.

Fingerprints of n RPs are stored in the fingerprint library.
By clustering, RPs are divided into c classes and are rep-
resented as l1, l2, . . . , lc. ,ese classes, respectively, contain
n1, n2, . . . , nc RPs. ,e Fisher score of the kth feature can be
expressed according to the following equation:

F(k) �


c
i�1 μk

i − μk( 
2
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where μ(k) is the average value of the k th dimension of the
fingerprint vector and μk

i is the average value of the k th
dimension of the fingerprint vector which belongs to the i th
cluster, and it is represented as
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1
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where vk is the k th dimensional value of the fingerprint
vector on the RP.

3.3. SSAE. Mining the intrinsic features of fingerprint data
can effectively improve the accuracy of positioning. In this
study, the SSAE was utilized to learn the intrinsic charac-
teristics of fingerprint data before training the localization
model. ,e autoencoder (AE) [39] is an extremely effective
tool for learning the essential features, which can be used for
noise reduction, dimensionality reduction, and the gener-
ation of models.

As an unsupervised learning algorithm, the single layer
AE is a neural network and includes an input, a hidden, and
an output layer. ,e number of neurons in the input and
output layers is equal. Data processing consists of two steps:
the original data are encoded from the input layer to the
hidden layer, and the feature representation is decoded from
the hidden layer to the output layer. ,e structure is shown
in Figure 2.

,e original data are represented as X � [x1,

x2, . . . , xn]T, where h � [h1, h2, . . . , hnh
]T denotes the feature

representation of the hidden layer and n, nh are the number
of neuron nodes of the input and hidden layers. In turn, W
represents the weight matrix, b represents the bias vector,
and f(x) is the activation function. ,e sigmoid function,
which is expressed as f(x) � 1/(1 + e− x), is selected as the
activation function. ,e process of encoding can be
expressed as

h � f(WX + b). (3)

In this case, X denotes the reconstructed vector and b′
represents the bias vector from the hidden to the output
layer. ,e process of decoding can be expressed as

X � f WTh + b′ . (4)

By comparing the input vector with the output vector, we
can express the cost function JAE as

JAE �
1
2
‖X − X‖

2
+
λ
2
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2
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,e first term is the error between the input and the
output. ,e second term is the weight decay term which can
solve the overfitting problem, where λ is the weight at-
tenuation coefficient and wij represents the weight corre-
sponding to the input node i and the hidden node j. ,e
goal of training is to minimize the loss function so that the
raw data are processed by the encoder and decoder to
obtain results which are almost identical with the original
data.

Adding the sparsity restrictions on the basis of AE sets
most of the nodes in the hidden layer in suppressed states
so that a combination of a small number of activated
neurons is used to represent the input. In this way, it is
easier to learn the essential features, that is, the sparse

AP AP

APAP
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AP

(a)

AP

APAP

AP
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RP in subregion A
RP in subregion B

(b)

Figure 1: Evoked outcomes based on the use of the one-step and hierarchical localization models: (a) one-step localization; (b) hierarchical
localization.
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autoencoder (SAE). ,e cost function of SAE adds a
sparse penalty term, and the loss function is expressed as

JSAE � JAE + β

nh

i�1
DKL Pi

���� Qi . (6)

,e first term is the cost function of AE, and the second
term is the sparse penalty term, where β is the weight of the
sparse penalty item and nh is the number of neuron nodes
of the hidden layer. DKL(Pi ‖ Qi) represents the KL di-
vergence between the target Pi and actual neuron sparsities
Qi. It can be expressed as

DKL Pi

���� Qi  � Pilog
Pi

Qi

+ 1 − Pi( log
1 − Pi

1 − Qi

. (7)

SSAE has a multilayer structure and stacks multiple SAE.
Training bases on a layer-by-layer basis yielded the weight
matrix and the bias vector. ,e abstract features of the input
fingerprint data were learnt. ,is resulted in the low-di-
mensional feature representation. Compared with the single
SAE, the training speed is higher, and a more effective
expression can be obtained.

4. Proposed Localization Methods

4.1. Preprocessing. For the purpose of feature extraction and
training of the hybrid model, the fingerprint data pre-
processing, including the zero-mean normalization and
FCM clustering, was utilized. Zero-mean normalization was
applied as

x
∗
i �

xi − μ
σ

, (8)

where μ is the mean and σ is the variance.
,e FCM clustering algorithm was applied in this study.

Collection of fingerprint data of n RPs, which are repre-
sented as X � x1, x2, . . . , xn , achieves the goal of their
division into c classes. By continually updating the cluster
center and the membership matrix, the objective function is
minimized. ,e objective function is defined as

J(U, C) � 
c
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Accordingly, the restriction is represented as
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where U � [uij] is the membership matrix, C � [ci] is the
clustering center, and m is the weighted index. Based on the
Lagrange function, the updating of the clustering center can
be expressed as
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In addition, the updating of the membership matrix can
be expressed as

uij �
1


c
k�1 xj − ci

�����
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�����
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.
(12)

4.2. Fisher–SSAE. ,is study proposed the fingerprint fea-
ture extraction algorithm known as Fisher–SSAE.We expect
that the representative features can be obtained to improve
the positioning performance. ,e Fisher–SSAE algorithm is
described in Algorithm 1. It is worth mentioning that dhmax
is set to control the upper dimension bound, leading to the
function of dimension reduction, whereas depthmax is set to
control the depth of SSAE, thus minimizing model
complexity.

4.3. Proposed Hybrid Localization Model. ,e hybrid lo-
calization model proposed herein was divided into the
training and localization phases. We need offline fingerprint
features extracted by Fisher–SSAE to train the localization
model and online fingerprint features (which were extracted
in the same manner), to identify the candidate location.
,erefore, feature extraction should initially be completed
both in the offline phase or online phase. Hierarchical lo-
calization methods allow the construction of one submodel
for each subregion. Based on this positioning approach, the
global localization model was used to predict the location of
TPs which were likely located at the boundary areas. Cor-
respondingly, we expect to avoid the significant errors
caused by subregional positioning errors. Based on the above
considerations, in the training phase, four classifications or
regression models need to be trained, including (a) the
boundary classification which relied on the determination on
whether the TP was a boundary point, (b) the subregional
classification which was utilized to locate to subregion in which
the TP belonged to, (c) the precise localization classification (or
regression) for high-accuracy positioning in every subregion,
and (d) the global localization classification (or regression).,e
training phase can be summarized as follows:

(1) Prepare all the training data and mark them with
subregional, boundary, and location labels.

x̂1x1 h1

x2 h2 x⌃2

xn hnh x⌃n

Figure 2: Structure of an autoencoder (AE) neural network.
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(2) Extract features using the Fisher–SSAE.
(3) Train four classifications (regressions): the bound-

ary, the subregional, the precise localization, and the
global localization classifications (regressions).

,e process of offline training is illustrated in Figure 3.
,e localization phase can be summarized as follows:

(1) Collection of online fingerprint data.
(2) Extraction of fingerprint features using the same way

as the training phase.
(3) Determine if the TP is a boundary point based on

boundary classification.
(4) If the TP is a boundary point, the location can be

estimated by the global model.
(5) If the TP is a nonboundary point, the strategy of

hierarchical localization is adopted.,e subregion to
which the TP belongs to is determined first, and the
precise coordinate location can be estimated
subsequently.

,e online process is illustrated in Figure 4.

5. Experimental Work

5.1. Experimental Environment. To test the performance of
each algorithm in a real environment, all of the data originated
from an actual environment.,e experimental Wi-Fi corridor
was considered as the experimental area. ,e scope of the

experimental environment included the corridor and stairway.
,e layout of the 84 RPs is shown in Figure 5. ,e RP interval
was designed to have the dimensions of 2.4m× 1.2m. In this
environment, we collected 30 s of fingerprint data at each RP,
and the sampling interval was 500ms.

5.2. Fingerprint Data Labels. By clustering, 84 RPs were di-
vided into four classes. Subregional labels were set. ,e result is
shown in Figure 6.We then placed boundary point labels on the
RPs near the subarea boundary, and the remaining RPs were set
as nonboundary points. ,e result is shown in Figure 7.

5.3. Fisher Score. To test the performance of Fisher–SSAE in
feature extraction, an effectivemodel should be set up at first. All
AP features need to be evaluated using the Fisher score. ,e
number of initial features was 181. ,e scores of these features
after normalization are shown in Figure 8. Features with scores
less than 0.01 were rejected, and 119 features were saved in total.

5.4.ModelGeneration of SSAE. After feature selection, SSAE
was constructed to obtain the reduced dimensional repre-
sentation of the original features. ,e training data collected
at the RPs were copied 50 times, and random noise was added
to improve the susceptibility of the model to noise.,e process
of parameter selection for SSAE is given in Algorithm 1. Initial
values included the sparse target� 0.05 and sparse weight� 0.4.
MLP classification was applied to test the accuracy based on the

Input:
(1) Training fingerprint data
(2) Number of features selected by Fisher criteria k

(3) Maximum dimension of hidden layer dhmax
(4) Maximum depth for SSAE depthmax
Output:
(1) ,e structure SSAE including the dimension of hidden layer dh and depth depth

(2) ,e fingerprint feature extracted
Calculate the Fisher score for each AP feature
Rank the Fisher score according to its value (large to small), and keep the features that correspond to the first k values
Set the initial depth of SSAE depth(1) � 1
Set the initial the dimension of hidden layer dh(1) � 10
t� 1
Repeat

t� t+ 1
dh(t) � dh(t−1) + 10
Calculate the accuracy of classification which is utilized to achieve subregional localization acc(t)

Until acc(t) < acc(t−1) or dh(t) > dhmax
Determine dh � dh(t−1)

t� 1
Repeat

t� t+ 1
depth(t) � depth(t− 1) + 1
Calculate the accuracy of classification which is utilized to achieve subregional localization acc(t)

Until acc(t) < acc(t− 1) or depth(t) > depthmax
Determine depth � depth(t− 1)

Training fingerprint data by SSAE
Return the data in the hidden layer

ALGORITHM 1: Feature extraction algorithm Fisher score–stacked sparse autoencoder (Fisher–SSAE).
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use of the extracted features. ,e parameters for the MLP
classifier included the “tanh” activation function,
l2_reg� 0.002, learning rate� 0.01, two layers, and the hidden
neurons were equal to 200 and 80.

In Figure 9, the accuracy of classification varied with the
output dimension for SSAE. When the output dimension
was 30, the model yielded its best accuracy which was equal

Prepare all the training data and mark the data
with the subregional, border, and location labels

Extract features using the Fisher–SSAE

Train subregional
classification

Train boundary
classification

Train precise localization classification
(regression) for subregions

Train global classification
(regression)

Figure 3: Process of the offline-training phase.

Collect online data

Feature extraction 

Determine if it is a boundary point
using boundary classification

Calculate the localization result 
using the global model

Determine which subregion the test point 
belongs to using subregional classification

Yes No

Calculate the localization result using the precise 
localization classification (or regression)

Figure 4: Process of the online-localization phase.

RP

Figure 5: Experimental environment.

Subregion 1
Subregion 2

Subregion 3
Subregion 4

Figure 6: Clustering reference point (RP) outcomes.
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to 92.3% in the testing database. After the output dimension
of the SSAE was determined, the depth of SSAE was set.

In Figure 10, when the depth was equal to one, the model
achieved an accuracy of 92.3%. ,e depth increased until the
accuracy stabilized. When the depth was equal to two, the
model yielded a locally optimal result equal to 94.0%.When the
depth was added continually, the accuracy reduced consid-
erably. After the structure of SSAE was determined, sparse
target and sparse weight were tuned, and the corresponding
results are shown in Figures 11 and 12.

Figure 11 presents the accuracy of the subregional lo-
calization at different values of the sparse target and sparse
weight in the training dataset, while Figure 12 presents the
performance in the testing dataset. Evidently, the combi-
nation of the parameters sparse weight = 0.4 and sparse
target = 0.2 led to the optimal localization accuracy of 97.0%.

5.5. Feature Extraction Performance. ,e Fisher–SSAE was
compared with other feature extraction methodologies:
mean value [21], PCA [5], and AE [6]. Different features
were placed into the MLP classifier to test the performance
for subregional and precise coordinate localizations. We
confirmed that robust features lead to better accuracies.

In the process of subregional localization, we tested the
feature extraction ability with different ways. ,e accuracy
with different features is shown in Figure 13.

Figure 13 shows the outcomes of four algorithms. ,e
first one “Mean value” is the performance with the mean
value feature, and its accuracy is 84.8%.,e second is “PCA”
which reduces the dimension of the fingerprint data.
However, it does not play an effective role in subregional
localization, and its accuracy is 81.8%.,e “AE” yields a 3.1%
improvement compared with the “Mean value,” while the
proposed method yields the highest accuracy of 97.0%. By
using this subregional localization method, we achieved
excellent results in nonboundary areas. For the points in the
boundary region, the fusion of the global and the local
models was adopted. Accordingly, significant distance errors
caused by subregional localization errors will not occur.

In this experiment, different features were also applied in
one-step localization and hierarchical localization to verify

Boundary point
Nonboundary point

Figure 7: RPs with boundary labels.
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Figure 9: Accuracy varied with the output dimension for SSAE.

2 3 41
Depth of SSAE

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Test data
Train data

Figure 10: Accuracy varied with the depth for SSAE.
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the effects of feature extraction. ,e mean value, AE,
Fisher–SAE depth = 1, and Fisher–SSAE depth = 2 were
applied in two indoor localization schemes, namely, in the
SVR and RF regressions. ,e error distance criterion was
adopted to quantify the localization performances. Specifi-
cally, if the distance between the estimated location LE and
the excepted location LT was smaller than the defined error r,
i.e., if ‖LE − LT‖≤ r, the result was considered correct. ,e
localization accuracy was the percentage associated with the
number of correct localization accounts for the number of
total localizations. ,e localization performance of different
features is illustrated in Figures 14–16.

,e performance of different features in one-step locali-
zation based on SVR is illustrated in Figure 14. As the local-
ization error distance increases, the localization accuracy for
each method improves. Specifically, the Fisher–SSAE feature
extraction method has a better localization performance than
other means. When the error distance is 2m, 4m, 6m, or 8m,
the proposed methods of feature extraction all achieve the best
accuracy. Compared with the mean value which only extracted

shallow representation, the proposed method learned the ro-
bust features from the fingerprint database. Compared with
AE, the proposed method deleted the AP features which were
noisy in the localization process and had sparse characteristics,
to facilitate the extraction of critical features.

Figure 15 shows the performance in one-step localization
using RF regression. ,e proposed feature extraction method
yields the best accuracy when the error distances are 2m and
3m.

In Figure 16, the same conclusion can be reached based
on the hierarchical RF model when the error distances are
1m, 2m, 3m, 4m, and 5m, while the localization accuracy
of the proposed Fisher–SSAE changes is 15%, 48%, 70%,
82%, and 94%. Even though the RSS from different APs
varied considerably, the proposed method of feature
learning maintained the localization steady with the rep-
resentative features. In the next section, we will show the
influences of the hierarchical model.

5.6. Performance of Hierarchical Localization. During the
process of the hierarchical localization, the submodels for
subregions were constructed. To testify whether the hierar-
chical approach has a positive impact on indoor localization,
three categories of indoor localization approaches were taken
into account: matching method (WKNN), regression method
(RF regression), and classificationmethod (MLP classification).
Figures 17–19 show the localization error cumulative distri-
bution functions (CDF) of the TPs. Table 1 summarizes the
detailed results, including the mean error, medium error,
maximum error, and positioning time.

In Figure 17, WKNN is adopted to evaluate the impact.
As shown in this figure, the CDF curve using the hierarchical
positioning shifts to the right. Compared to the one-step
localization whose mean localization error is 2.76m, the
mean error of the hierarchical way is 4.12m, the accuracy of
which decreased by 1.36m. Similar to the case when the one-
step method was used, the online fingerprint is compared
with all RPs fingerprints in the radio map, and it is shown to
facilitate the identification of the suitable RPs which are close
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Figure 12: Variation of accuracy as a function of the sparse target
and sparse weight in the testing dataset.
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to the TPs. Furthermore, in the process of hierarchical
WKNN, RPs which were close to the TP but belonged to
other subregions could not contribute to the estimation of
location. Conversely, even though the one-stepWKNN has a
higher accuracy, it has a lower efficiency. ,e positioning
time of the hierarchical WKNN is 0.437 s. Compared to the
one-step WKNN, an improvement of 0.763 s was achieved.

In Figures 18 and 19, the RF regression and MLP classifier
are adopted. ,e mean error of these methods changes from
4.21m and 3.76m to 2.31m and 3.20m, respectively. In
comparison to the matching methods, such as WKNN, the
training of multiple submodels which are more in line with
local RSS distribution situations improves significantly the
localization accuracy. More importantly, the positioning time
of the MLP classification is significantly reduced. However, the
positioning time of RF regression changes inconspicuously. It
is speculated that the regression method calculates the

location based on the regression model and input finger-
print data, while the increase in candidate RPs does not
affect the efficiency. By contrast, the matching and clas-
sification methods select suitable RPs from the candidate
RPs. Hierarchical localization reduces the number of
candidate RPs, thus improving the efficiency.

5.7. Localization Performance of Proposed Hybrid Model.
After the validity of the proposed feature extraction method
and hierarchical positioning mode, the impact of the hybrid
model which used the global model to estimate the TPs in the
boundary region and which used the submodel to estimate TPs
located at the nonboundary region was tested. ,e localization
of the TP within the boundary area or outside was judged by
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Figure 17: Cumulative distribution function (CDF) comparison of
the one-step and hierarchical WKNN approaches.
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Figure 14: Localization performance of different feature extraction
methods using one-step support vector regression (SVR).
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Figure 15: Localization performance for different feature extrac-
tion methods using one-step random forest (RF).
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the trained boundary point classifier. MLP classification was
selected as the boundary point classifier.We confirmed that the
proposed model can avoid significant errors when the result of
the subregion positioning is in error.

In this experiment, TPs with localization errors greater
than 4m were defined as error points. ,e error rate is the
percentage ratio of the number of error points to the total
number of test points. Several hierarchical localizationmethods
were adopted, including RF regression, SVR, and MLP clas-
sification, which use features extracted by the proposed ap-
proach. By comparing themwith hybridmodel-basedmethods
and with methods that do not rely on the use of hybrid models,
we found that the proposed hybrid model effectively avoided

large localization errors. Table 2 shows the mean error and
error rate. When the proposed hybrid model is used, the mean
error decreased by 0.22m, 0.39m, and 0.76m, while the error
rate, respectively, decreased by 6.1%, 9%, and 12.1%. ,e ex-
perimental results verified the validity of the proposed hybrid
model with the global model and submodel. Large errors
caused by subregional localization errors were replaced by
localization errors based on the use of the global model.

Also, three algorithms based on the proposed scheme were
compared. Table 3 presents the detailed results. After the
training of the feature data, which were extracted by the pro-
posed feature extractionmethod, the CDF curve (which uses the
hybrid model based on RF) in Figure 20 shifts to left. ,is
algorithm yields the lowest average error which is only 2.09m.

Finally, Figure 21 shows the CDFs of different localization
algorithms, including method proposed by Li et al. [40],
AutLoc [6], ECLS [7], and proposed method. Table 4 lists the
detailed results. Method proposed by Li et al. and AutLoc
transfer fingerprint data to low-dimensional spaces and im-
prove efficiency but do not eliminate feature redundancy; ECLS
expands the candidate points space, and true location is likely
considered. However, the performance of classifiers will be
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Figure 18: CDF comparison of the one-step RF and hierarchical RF
methods.
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Figure 19: CDF comparison of one-step multiplayer perceptron
(MLP) and hierarchical MLP.

Table 1: Localization performances of different localization
methods.

Algorithm Mean
error (m)

Medium
error (m)

Maximum
error (m)

Time
(s)

One-step
WKNN 2.76 1.75 9.72 1.200

One-step
MLP 3.76 2.46 13.84 0.330

One-step
RF 4.21 3.70 11.23 0.097

Hierarchical
WKNN 4.12 3.18 10.43 0.437

Hierarchical
MLP 3.20 2.46 10.58 0.008

Hierarchical
RF 2.31 2.15 5.52 0.085

Table 2: Error rates of different localization methods.

Algorithm Mean error (m) Error rate (%)
RF 2.31 18.2
Hybrid RF 2.09 12.1
SVR 2.70 24.2
Hybrid SVR 2.31 15.2
MLP 3.20 33.3
Hybrid MLP 2.44 21.2

Table 3: Localization performance for different localization al-
gorithms based on the proposed model.

Algorithm Mean error
(m)

Medium error
(m)

Maximum error
(m)

Hybrid RF 2.09 1.60 5.52
Hybrid SVR 2.31 2.48 4.96
Hybrid MLP 2.44 1.91 6.55
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affected when large number of APs are used. ,e results show
that the proposed method has a positioning advantage under
this experimental environment with a large number of APs.

6. Conclusions

In this study, two problems were highlighted. ,e common
feature extraction methods are unrepresentative owing to the
signal fluctuation. A feature extraction method which was
called Fisher–SSAE was proposed to obtain robust fingerprint
features. ,is led to localization accuracy improvements.
More importantly, given the error of subregional positioning,
large errors occurred. Faced with this problem, the TPs were
divided into boundary and nonboundary points, and a hybrid
scheme was proposed to solve the problem effectively.
Moreover, the positioning moving target was not taken into
account in this study and thus needs to be studied in more
detail in the future.
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