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The business of football competitions is called the number one sport in the world, thanks to more than one billion people’s
attention. With the development of big convergence media, the live broadcasting of football competitions gradually becomes
industrialization and commercialization, which has a direct relationship with economic growth. For the live broadcasting of
football competitions, the users focus more on quality of experience, i.e., definition and instantaneity. In terms of such two
metrics, the current live broadcasting schemes are difficult to cover them well. Therefore, this paper exploits the emerging in-
network caching and edge computing technologies to optimize the live broadcasting of football competitions, shorten for IELB. At
first, the live broadcasting optimization framework based on in-network caching and edge computing is presented. Then, the
auction-based method is used to address the task scheduling problem in the edge computing. In addition, a video compression
algorithm based on adaptive convolution kernel is introduced to accelerate the video transmission and guarantee users to obtain
the contents of football competitions as quickly as possible. The proposed IELB has been verified based on the collected real
football competitions dataset by evaluating response time, and the experimental results demonstrate that IELB is feasible

and efficient.

1. Introduction

With the progress of the times, the industrialization and
commercialization development of football has been rapidly
promoted. In all outdoor sports, the football obtains the
highest productive value, owns the biggest influence, and has
the most widespread concern. According to the statistical
data, the total output value of football per year can account
for 43.5% of that of all sports, reaching 400 billion dollars
and exceeding some developed countries and regions” GDP.
Thus, the football is worthy of being called the number one
sport in the world [1, 2]. Furthermore, according to the
statistical data from FIFA, there are 1.6 million teams with
more than 0.2 billion athletes worldwide playing the various
football competitions by the end of 2019 [3]. Especially, with
the rapid development of mobile Internet and big conver-
gence media, the live broadcasting of football competitions
[4] gradually becomes industrialization and commerciali-
zation, which has attracted many Internet companies to

develop the related businesses. In fact, for the live broad-
casting of football competitions, the users pay more at-
tention to quality of experience (QoE) [5], i.e., high
definition and nice instantaneity, which needs that the whole
process of live broadcasting guarantees the fluency. How-
ever, for the two evaluation metrics (i.e., high definition and
nice instantaneity), the current live broadcasting schemes
based on content delivery networks (CDN) [6-8] paradigm
are very difficult to cover them well. In other words, it is
necessary to explore the new networking paradigm to
support the live broadcasting of football competitions with
high definition and nice instantaneity.

Information centric networking (ICN) [9-11] is a new
emerging and popular networking paradigm, which in-
herently owns one considerably important feature, i.e., in-
network caching, that is to say, the ICN router also has the
caching ability [12, 13] to store the contents that are related
with the live broadcasting of football competitions. How-
ever, different from both the CDN server and traditional
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router’s buffer, the cache size of the ICN router is between
them, and the ICN router can also be deployed at the edge
nodes to satisfy the users’ requests as many as possible. In
other words, this paper uses the in-network caching feature
of ICN to help the live broadcasting optimization of football
competitions so as to obtain high definition and nice in-
stantaneity. In fact, the usage of ICN has two obvious ad-
vantages. On the one hand, there is no need for fanfare to
deploy the expensive CDN server. On the other hand, the
ICN router can be regarded as a nice and big cache pool to
accommodate more intermediate data stream. The two
advantages can motivate the application of ICN into live
broadcasting of football competitions.

As abovementioned, the ICN router can be deployed at
the edge nodes which usually refer to the mobile devices,
such as smartphones. Given this, the situation of mobile
edge computing (MEC) [14-16] has to be considered and
addressed. In fact, MEC has the widespread application
value, especially for the optimization of live broadcasting. To
be specific, the mobile devices have the limited storage re-
sources and computation resources, and thus, it is very
difficult for them to completely handle all tasks which are
related to the live broadcasting. Therefore, it is one possible
solution to offload some complex tasks at the edge server for
computing, and the remaining simple tasks are performed at
the local device. Under this condition, it is very important to
address the task scheduling problem in the edge computing.
At present, there have been some task scheduling methods
[17-23], including artificial intelligence (AI) based ones
[24, 25], but they usually cannot obtain the fast response
speed and the low energy consumption. As a conclusion, it is
necessary to explore the new method to address the task
scheduling problem generated from the live broadcasting
optimization.

Furthermore, the live broadcasting of football compe-
tition cannot do without the transmission of data stream. In
other words, the video transmission is an indispensable
operation to connect the contents provider and the users
[26]. Regarding the video transmission, the video com-
pression algorithm is very important, which can accelerate
the video transmission and guarantee users to obtain the
contents of football competitions as quickly as possible.
However, the current video compression algorithms exit
some limitations [27-31], and especially, the frame loss rate
and the transmission time cannot reach the satisfactory level.
Therefore, the video compression algorithm is also studied
in this paper.

With the above consideration, this paper optimizes the
live broadcasting of football competitions by using three
aspects of technical points, ie., the in-network caching
feature of ICN, the task scheduling of edge computing, and
the video compression of video transmission, called IELB. To
sum up, the major contributions of this paper are concluded
as follows. (i) The live broadcasting optimization framework
based on in-network caching and edge computing is pre-
sented. (ii) The auction-based method is used to address the
task scheduling problem in the edge computing. (iii) A video
compression algorithm based on adaptive convolution
kernel is introduced to accelerate the video transmission.

Mobile Information Systems

The rest of this paper is structured as follows. Section 2
reviews the related work. Section 3 presents the
comprehensive system framework. Section 4 introduces
the auction-based task scheduling. Section 5 proposes the
video compression algorithm. Section 6 shows the
significant experiment results. Section 7 concludes this

paper.

2. Literature Review

2.1. Task Scheduling. There have been some research studies
on task offloading proposals in the edge computing. In
particular, some review papers have presented the com-
prehensive summary, such as [32-35]. Furthermore, in [17],
the authors formulated successful computation probability,
successful communication probability, and successful edge
computing probability for offloading tasks to the MEC
server. In addition, they also analyzed by simulation how the
formulated probabilities vary for different sizes of task, task’s
target latency, and task arrival rate at the MEC server helping
users to make offloading decision. In [18], the authors
critically analyzed the resource-intensive nature of the latest
existing computational oftfloading techniques for MEC and
highlighted technical issues in the establishment of dis-
tributed application processing platforms at runtime where a
prototype application was evaluated with different com-
putation intensities in a real MEC environment. In [19], the
authors presented a collaborative approach based on MEC
and cloud computing that offloaded services to automobiles
in vehicular networks. Meanwhile, a cloud-MEC collabo-
rative computation offloading problem was formulated
through jointly optimizing computation offloading decision
and computation resource allocation. Besides, they also
proposed a collaborative computation offloading and re-
source allocation optimization scheme and designed a
distributed computation oftfloading and resource allocation
algorithm to achieve the optimal solution. In [20], the au-
thors proposed a price-based distributed method to manage
the offloaded computation tasks from users. Therein, a
Stackelberg game was formulated to model the interaction
between the edge cloud and users so as to maximize the
revenue subject to its finite computation capacity. For given
prices, each user locally made offloading decision to mini-
mize its own cost which was defined as latency plus payment.
Depending on the edge cloud’s knowledge of the network
information, they developed the uniform and differentiated
pricing algorithms, which could both be implemented in the
distributed manner. In [21], the authors proposed a mul-
tiuser noncooperative computation offloading game to ad-
just the offloading probability of each vehicle in vehicular
MEC networks and designed the payoff function considering
the distance between the vehicle and MEC access point,
application and communication model, and multivehicle
competition for MEC resources. Also, they constructed a
distributed best response algorithm based on the compu-
tation offloading game model to maximize the utility of each
vehicle and demonstrated that the strategy could converge to
a unique and stable equilibrium under certain conditions. In
[22], the authors used the partial computation offloading
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problem for multiuser in mobile edge computing envi-
ronment with the multiwireless channel. The computation
overhead model was built based on game theory. Then, the
partial computation offloading algorithm with low time
complexity was given to achieve the Nash equilibrium. In
[23], the authors captured a user-centric view to tackle the
oftfloading scheduling problem via jointly allocating com-
munication and computation resources with consideration
of the QoE of users where they formulated the design as a
mix-integer nonlinear programming problem and solved it
in an efficient way by the branch-and-bound method.

2.2. Video Compression. A number of video compression
methods have been proposed, including some compre-
hensive survey papers, such as [36-38]. Furthermore, in
[27], the authors maintained that a significant reduction in
file size without sacrificing the visual quality could be
achieved by using several efficient compression techniques.
To this end, they proposed the video compression method by
using global affine frame reconstruction, which involved
affine parameter estimation for motion estimation and affine
warping for motion compensation where the motion pa-
rameters were estimated and stored as compressed data. In
[28], the authors proposed an adaptive transfer function
based on perceptual quantizer for video compression, which
used a fixed mapping curve from luminance to luma, i.e., the
proposed transfer function adaptively mapped luminance to
luma according to the contents. In [29], the authors in-
troduced a hybrid spatially and temporally constrained
content-adaptive tone mapping operator to convert the
input high dynamic range video into a tone mapped video
sequence, which was then encoded using the high efficiency
video coding standard. In particular, the proposed tone
mapped video simultaneously exploited intraframe spatial
redundancies and preserved interframe temporal coherence
of the tone mapped video sequence. In [30], the authors
proposed a novel rate control scheme in H.264 to control the
rate of compression ratio where the level of compression was
decided with the help of the rate controller scheme. They
measured the quality of the transmitted video and available
bandwidth with the proposed technique and also built a
quality multimedia content and transferred over the
transmitter. In [31], the authors provided a lightweight video
compression scheme through interframe and intraframe
compression. In interframe compression, redundant frames
were removed by a proposed interpolation search-based
method and a lightweight edge detection technique. Then,
intraframe compression was performed by a proposed
adaptive column dropping technique modifying an existing
technique. Besides, they also devised two reconstruction
filters targeting to improve reconstruction quality.

3. System Framework

By using the in-network caching ability of ICN and edge
computing, the proposed system framework of live broad-
casting optimization of football competitions is shown in
Figure 1. We can see that there are two kinds of different

servers, i.e., contents provider server used to store the
football competitions related videos and edge computing
server used to compute the complex tasks. The whole live
broadcasting refers to the video transmission from the
contents provider to the mobile device via some indeter-
minate ICN routers used to store the hot data stream. In
particular, during the process of video transmission, a video
compression algorithm based on adaptive convolution
kernel is introduced to accelerate the video transmission.
The live broadcasting contents arrive at the mobile device.
Given the limited storage resources and computation re-
sources, the complex tasks are scheduled to the edge
computing server for computing, while the remaining
simple tasks are performed at the local mobile device. Re-
garding this, the auction-based method is used to address the
task scheduling problem in the edge computing.

In particular, the ICN router stays at the network level
instead of the application level (e.g., CDN), which is as-
sumed with the enough cache size to store the hot data
stream. In addition, this paper also assumes that all mobile
devices have the same configuration. In terms of two servers,
the contents provider server has the very abundant space to
store these videos of football competitions, just like a top-
level distribution server. Differently, the edge computing
server is only a high performance computing and storage
server, and its computing ability and storage ability is not a
circumstance to the contents provider server. The whole
workflow of live broadcasting optimization of football
competitions is shown in Figure 2. According to the above
statements, task scheduling and video compression are two
major research points in this paper, which will be addressed
in the following sections.

4. Task Scheduling

The whole task scheduling in the edge computing includes
two parts, i.e., offloading decision used to determine whether
the tasks need to be offloaded and the scheduling method
used to make resources computation and allocation.

4.1. Offloading Decision. Regarding whether the task is
offloaded, its decision depends on whether the task’s run-
ning time and energy consumption can be decreased in case
of performing task offloading. Given this, two conditions,
i.e., local performing and offloading performing, are con-
sidered and analyzed.

At first, for the arbitrary task task;, when it is performed
at the local mobile device, the required time is defined as
follows.

t = 9 (1)
Vi
where c; is the required computation resources which refer
to the number of CPU cycles, and v; is the execution rate of
CPU. Furthermore, the required energy consumption is
defined as follows.

e =tpp (2)

where p; is the power of the mobile device.
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FIGURE 1: The proposed system framework of live broadcasting optimization.
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FiGure 2: The workflow of IELB.

Then, when task; is performed at the edge computing
server, the required time ¢ g is composed of three parts, i.e.,
transmission time of task; from the mobile device to the edge
computing server, computing time at the edge computing
server, and returning time of computing result from the edge
computing server to the mobile device, denoted by ¢
and ¢,, respectively. Mathematically,

up? tdown >

toff = tup + te + tdown' (3)

Consider that the size of the output result is far smaller
than that of input data for most applications, and the
returning time has no the significant influence on the total
required time. On this basis, the above equation (3) is
modified as follows.

toff = tup + e

D;
fup = W log, (1 +(p,Los/N))’ (4)
G
t, =—,
ve

Among them, D; is the size of task;, N is the Gaussian
noise power of channel, W is the bandwidth of channel, Los
is the transmission gain, and v, is the edge computing server
CPU’s execution rate. To sum up, the total required time
under such condition is expressed as follows.

D. C.

toe = ! —
off Wlog, (1 + (p;Los/N)) " v, ()
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Let e i denote the total required energy consumption
under such condition, as follows.

o = piD;
" Wlog, (1 + (p,Los/N))

(6)

Moreover, when the consumed time and energy under
the task offloading condition are smaller than those under
the local performing condition, the task should be per-
formed in the offloading way. For this purpose, the following
two constraint conditions should be satisfied.

tofe <tp )

€off < €.

For these two constraint conditions, the further deri-
vation results are shown as follows.
vC;

Y G = (D) (Wog, (1 + (pLosiN)))) )

vipiD;
W b
” piCllog, (1 + (piLos/N))

(9)

which indicates that, if the computing ability of edge
computing server satisfies in equation (8) and the current
network bandwidth environment satisfies in equation (9),
the task will be performed in the offloading way.

4.2. Scheduling Method. This paper uses the auction method
[39] to address the scheduling strategy, including two roles,
i.e., buyers and sellers. In terms of n buyers, they refer to
these tasks, i.e., the set of buyers is denoted by
TASK = {task,, task,, .. ., task,}. Each task has two attri-
butes, i.e., task; () and task; (p) which denote the required
time to complete task; and the bid of task;, respectively. In
terms of m sellers, they refer to the unoccupied virtual
machines (VMs), ie., the set of sellers is denoted by
VM = {vm,,vm,,...,vm,,}. Each VM is equipped with one
attribute, i.e., vim; (), which denotes the rental time of vm,.
Furthermore, let price;,; denote the initial bid price, and it is
defined as follows.

1

price;; = (10)

£ = Logt

Although equation (10) considers the emergency degree
of task, there exists the unfairness. Especially, the task in the
offloading way will gradually lose the price advantage.
Therefore, this paper proposes the compensation strategy in
terms of the condition of bidding failure. Mathematically,
equation (10) is modified as follows.

1

price = ——————,
= tog — SNgy

(11)
where s is the length of time slice, and Ny, is the number of
bidding failures.

The derivation operation in terms of s is performed, and
the following equation is obtained.

Oprice s
= 5
05 (t;—tog — sNgy)

(12)

which indicates that the derivation value increases with the
increase of N,;. In other words, the large derivation value
means the fast increasing speed in terms of price. Therefore,
another meaning of equation (12) is that, more price
compensations are performed based on more bidding
failures.

Besides task and VM, there is a set of intermediate
variables (denoted by CA) used to store some tasks satisfying
auction condition. If task; (#) <vm; (¢), it means that task;
satisfies the auction condition, and it is added into CA.
Otherwise, task; is marked as the bidding failure. Regarding
the whole auction process, reference [39] has presented the
detailed steps, and this paper does give the corresponding
steps no longer. In particular, the time complexity is
O (mlogm) rather than O (nm).

5. Video Compression

The whole video compression process depends on the
motion compensation which is used to realize the motion
evaluation among video frames and pixel information
compensation. In particular, the part is completed based on
adaptive convolution kernel [40]. Inspired by Simon et al.
[40], this paper learns the motion offset in terms of the
continuous video frames so as to realize the motion eval-
uation among video frames. Regarding such process, it is
defined as follows.

I’cz = f(Icl’Icz) = Icl + Ai,i+1' (13)

Among them, I; denotes the frame i, A;;,, denotes the
offset from frames i to i + 1, I,;denotes the motion com-
pensation on I, and f is the mapping function when the
adaptive convolution kernel is used.

When the adaptive convolution kernel is used, it needs
two convolution kernels to do the motion prediction,
denoted by K, (x, y) and K, (x, y), which are considered as
the horizontal vector and the vertical vector of K(x, y),
respectively. Mathematically,

K(x,y) =K, (x,y) * K, (x, ), (14)

where * denotes the convolution operation. In particular, the
rectified linear units function is added after each convolu-
tion operation so as to enhance the express ability of the
network. On this basis, the general motion compensation on
I,; is defined as follows.

Iéi (x,9) =K, (x, )« K, (x, ) * I ; (x, y). (15)

In summary, by using the network self-learning oper-
ation, the motion compensation is analyzed and performed
based on K, (x, y) and K, (x, ) with the nonlinear mapping
relationship. In terms of K(x, y) with K x K convolution
kernels, the current number of parameters is 2K instead of
K?, which indicates that two one-dimensional convolution
kernels have better computation efficiency than one two-
dimensional convolution kernel.



6 Mobile Information Systems
TaBLE 1: The average transmission times (ms) for ATS, IoT], and CoMNeT.
Data size 10 GB 20 GB 30GB 40 GB 50 GB 60 GB
ATS 26.351 29.462 35.662 43.506 54.102 67.389
IoT] 35.118 37.525 42.727 52.354 64.178 75.065
CoMNeT 48.672 49.192 55.881 64.394 77.296 86.406
TaBLE 2: The independent transmission times (ms) for ATS, IoT], and CoMNeT where the data size is 50 GB.

No. 1 2 3 4 5 6 7 8
ATS 54.069 53.945 54.261 53.886 54.612 54.119 53.687 54.234
IoTJ 61.598 65.363 68.552 64.364 62.506 62.395 63.094 65.556
CoMNeT 78.932 79.642 77.265 78.345 77.064 76.355 75.106 75.663
6. Experiment Results

This paper makes three parts of experiments. At first, the
proposed auction-based task scheduling strategy called ATS
is verified. Then, the proposed adaptive convolution kernel-
based video compression scheme called ACK is verified.
Finally, the proposed whole IELB is verified. Among them,
the first part considers transmission time and energy con-
sumption as the evaluation metrics where references [21, 22]
are used as the baselines, shorten for IoT] and CoMNeT,
respectively. The second part considers frame loss rate and
transmission time as the evaluation metrics where references
[30, 31] are used as the baselines, shorten for CoMCoM and
JVCIR, respectively. The third part considers response time
and QoE of users as the evaluation metrics by collecting the
1000 football competitions and testing 500 users.

6.1. Experiments on Task Scheduling. The average trans-
mission times under different data sizes (from 10GB to
60 GB) for ATS, IoTJ, and CoMNeT are shown in Table 1.
We can see that the proposed ATS task scheduling strategy
in the edge computing has the smallest average transmission
time, followed by IoT] and CoMNeT. In addition, with the
increase of data size, the corresponding average transmis-
sion time increases. It suggests that the auction-based task
scheduling strategy is more efficient than IoT] and CoM-
NeT. Furthermore, when the data size is 50 GB, the inde-
pendent transmission times under different experiments
(from 1 to 8) for ATS, IoT], and CoMNeT are shown in
Table 2. It is obvious that ATS has the smallest transmission
time for each experiment. In particular, for 8 experiment
results in terms of the independent transmission time, the
proposed ATS has the best stability, followed by CoMNeT
and IoT]. It suggests that the proposed task scheduling is the
optimal.

Moreover, the average energy consumption under dif-
ferent data sizes (from 10 GB to 60 GB) for ATS, I0T], and
CoMNeT are shown in Table 3. We can see that the proposed
ATS consumes the smallest energy. In summary, ATS has
the smallest transmission time and the smallest energy
consumption, which indicates that the proposed task
scheduling strategy in the edge computing is considerably
satisfactory.

TaBLE 3: The average energy consumption (kJ) for ATS, IoTJ, and
CoMNeT.

Data size 10GB 20GB 30GB 40GB 50GB 60GB
ATS 50263 50652 51297 52096 53121 54465
IoT] 68355 68626 69172 70104 71233 72531
CoMNeT 83623 84069 84707 85391 85426 86829

6.2. Experiments on Video Compression. The average frame
loss rates under different resolution ratios (i.e., 320P, 480P,
720P, and 1080P) for ACK, CoMCoM, and JVCIR are shown
in Table 4. We can see that the average frame loss rate of
ACK is the lowest. Although when the resolution ratio is
320P, their average frame loss rates have no significant
difference, and the change of ACK is the linear while
CoMCoM and JVCIR show the index movement. It suggests
that the proposed video compression scheme can guarantee
the integrated video transmission. Furthermore, the average
transmission time under different resolution ratios for ACK,
CoMCoM, and JVCIR are shown in Table 5. We can see that
the average transmission time of ACK from the contents
provider server to the mobile device is the smallest. Simi-
larly, when the resolution ratio is 320P, their average
transmission times have no significant difference. In par-
ticular, we also see that the average transmission time
generated from video transmission is larger than that
generated from the task offloading.

6.3. Experiments on Live Broadcasting Optimization.
When the data size is 60 GB and the resolution ratio is 720P,
the independent response times under different experiments
(from 1 to 10) for IELB are shown in Table 6. We can see that
the response time is around 120 ms with the ms-level, which
can be acceptable by users.

Furthermore, this paper evaluates QoE of users where
the QoE is divided into five grades, i.e., very satisfactory,
satisfactory, borderline, dissatisfaction, and very dissatis-
faction. From two perspectives (i.e., users and football
competition), the evaluation results on QoE of users are
shown in Table 7. We can see that the satisfaction rate can
reach 100%, which indicates that the proposed live broad-
casting optimization of football competition is feasible and
efficient.
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TaBLE 4: The average frame loss rates (%) for ACK, CoMCoM, and JVCIR.
Resolution ratio 320P 480P 720P 1080P
ACK 0.015 0.039 0.051 0.073
CoMCoM 0.017 0.062 0.103 0.218
JVCIR 0.018 0.071 0.135 0.267
TaBLE 5: The average transmission times (ms) for ACK, CoMCoM, and JVCIR.
Resolution ratio 320P 480P 720P 1080P
ACK 36.517 40.268 47.516 53.992
CoMCoM 47.068 53.267 64.333 82.908
JVCIR 61.285 68.593 79.112 97.267
TaBLE 6: The average independent response times (ms) for IELB.

No. 1 2 3 4 6 7 8 9 10
IELB 120.236 119.351 120.692 119.864 121.006 120.443 121.507 119.868 120.612 121.323
TaBLE 7: The statistical results on QoE of users.

Grade Very satisfactory Satisfactory Borderline Dissatisfaction Very dissatisfaction Satisfaction rate (%)
#Users 496 4 0 0 0 100
#Videos 998 2 0 0 0 100

7. Conclusions References

This paper optimizes the live broadcasting of football
competitions by using three aspects of technical points, i.e.,
the in-network caching feature of ICN, the task scheduling
of edge computing, and the video compression of video
transmission. At first, the live broadcasting optimization
framework based on in-network caching and edge com-
puting is presented. Second, the auction-based method is
used to address the task scheduling problem in the edge
computing. Third, a video compression algorithm based on
adaptive convolution kernel is introduced to accelerate the
video transmission. For these proposed strategies, this paper
makes three kinds of experiments: (i) the proposed auction-
based task scheduling strategy is verified by testing trans-
mission time and energy consumption; (ii) the proposed
adaptive convolution kernel-based video compression
scheme is verified by testing frame loss rate and transmission
time; and (iii) the proposed whole IELB is verified by testing
response time and QoE of users. The experimental results
demonstrate that the proposed IELB is feasible and efficient.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

[1] T. Dima, “The business model of European football club
competitions,” Procedia Economics and Finance, vol. 23,
pp. 1245-1252, 2015.

[2] S.TJ. Koopman and R. Lit, “Forecasting football match results
in national league competitions using score-driven time series
models,” International Journal of Forecasting, vol. 35, no. 2,
pp. 797-809, 2019.

[3] J. M. Buldu, D. R. Antequera, and J. Aguirre, “The resumption
of sports competitions after COVID-19 lockdown: the case of
the Spanish football league, chaos,” Solitons & Fractals,
vol. 138, pp. 1-7, 2020.

[4] F. Zhou, L. Chen, and Q. Su, “Understanding the impact of
social distance on users’ broadcasting intention on live
streaming platforms: a lens of the challenge-hindrance stress
perspective,” Telematics and Informatics, vol. 41, pp. 46-54,
2019.

[5] W.-H. Hsuand C.-H. Lo, “QoS/QoE mapping and adjustment
model in the cloud-based multimedia infrastructure,” IEEE
Systems Journal, vol. 8, no. 1, pp. 247-255, 2014.

[6] S. Cui, M. R. Asghar, and G. Russello, “Multi-CDN: towards
privacy in content delivery networks,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 5, pp. 984-999,
2020.

[7] A. Passarella, “A survey on content-centric technologies for
the current internet: CDN and P2P solutions,” Computer
Communications, vol. 35, no. 1, pp. 1-32, 2011.

[8] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, and N. Sastry,
“Survey on peer-assisted content delivery networks,” Com-
puter Networks, vol. 116, pp. 79-95, 2017.

[9] A. V. Vasilakos, Z. Li, G. Simon, and W. You, “Information



centric network: research challenges and opportunities,”
Journal of Network and Computer Applications, vol. 52,
pp. 1-10, 2015.

[10] Y.Ren,]J.Li, S. Shi, L. Li, G. Wang, and B. Zhang, “Congestion
control in named data networking—a survey,” Computer
Communications, vol. 86, pp. 1-11, 2016.

[11] J. Lv, X. Wang, and M. Huang, “ACO-inspired ICN routing
mechanism with mobility support,” Applied Soft Computing,
vol. 58, pp. 427-440, 2017.

[12] N. Lal, S. Kumar, G. Kadian, and V. K. Chaurasiya, “Caching
methodologies in content centric networking (CCN): a sur-
vey,” Computer Science Review, vol. 31, pp. 39-50, 2019.

[13] M. Zhang, H. Luo, and H. Zhang, “A survey of caching
mechanisms in information-centric networking,” IEEE
Communications Surveys ¢ Tutorials, vol. 17, no. 3,
pp. 1473-1499, 2015.

[14] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A
survey on mobile edge computing: the communication per-
spective,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 4, pp. 2322-2358, 2017.

[15] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: a survey,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 450-465, 2018.

[16] H. Elazhary, “Internet of things (IoT), mobile cloud, cloudlet,
mobile IoT, IoT cloud, fog, mobile edge, and edge emerging
computing paradigms: disambiguation and research direc-
tions,” Journal of Network and Computer Applications,
vol. 128, pp. 105-140, 2019.

[17] B. Bahadur Bista, J. Wang, and T. Takata, “Probabilistic
computation offloading for mobile edge computing in dy-
namic network environment,” Internet of Things, vol. 11,
pp. 1-11, 2020.

[18] M. Shiraz, M. Sookhak, A. Gani, and S. A. A. Shah, “A study
on the critical analysis of computational offloading frame-
works for mobile cloud computing,” Journal of Network and
Computer Applications, vol. 47, pp. 47-60, 2015.

[19] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation off-
loading and resource allocation for cloud assisted mobile edge
computing in vehicular networks,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 8, pp. 7944-7956, 2019.

[20] M. Liu and Y. Liu, “Price-based distributed oftloading for
mobile-edge computing with computation capacity con-
straints,” IEEE Wireless Communications Letters, vol. 7, no. 3,
pp. 420-423, 2018.

[21] Y. Wang, P. Lang, D. Tian et al., “A game-based computation
offloading method in vehicular multiaccess edge computing
networks,” IEEE Internet of Things Journal, vol. 7, no. 6,
pp. 4987-4996, 2020.

[22] S. Zhou and J. Waqas, “The partial computation offloading
strategy based on game theory for multi-user in mobile edge
computing environment,” Computer Networks, vol. 178,
pp. 1-12, 2020.

[23] J. Luo, X. Deng, H. Zhang, and H. Qi, “QoE-driven com-
putation offloading for edge computing,” Journal of Systems
Architecture, vol. 97, pp. 34-39, 2019.

[24] L. Ma, S. Cheng, and Y. Shi, “Enhancing learning efficiency of
brain storm optimization via orthogonal learning design,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
p. 1, 2020.

[25] S. Cheng, L. Ma, H. Lu, X. Lei, and Y. Shi, “Evolutionary
computation for solving search-based data analytics prob-
lems,” Artificial Intelligence Review, 2020.

[26] Y.-M. Hsiao, J.-F. Lee, J.-S. Chen, and Y.-S. Chu, “H.264 video
transmissions over wireless networks: challenges and

Mobile Information Systems

solutions,” Computer Communications, vol. 34, no. 14,
pp. 1661-1672, 2011.

[27] D. R. J. Dolly, G. J. Bala, and J. D. Peter, “Performance en-
hanced spatial video compression using global affine frame
reconstruction,” Journal of Computational Science, vol. 18,
pp. 1-11, 2017.

[28] S. Yu and C. Jung, “Adaptive perceptual quantizer for high
dynamic range video compression,” Journal of Visual Com-
munication and Image Representation, vol. 58, pp. 25-36,
2019.

[29] C. Ozcinar, P. Lauga, G. Valenzise, and F. Dufaux, “Spatio-
temporal constrained tone mapping operator for HDR video
compression,” Journal of Visual Communication and Image
Representation, vol. 55, pp. 166-178, 2018.

[30] K. Siva Kumar, S. Sasi Kumar, and N. Mohan Kumar, “Ef-
ficient video compression and improving quality of video in
communication for computer endcoding applications,”
Computer Communications, vol. 153, pp. 152-158, 2020.

[31] T. Pal and S. Das Bit, “Low overhead spatiotemporal video
compression over smartphone based delay tolerant network,”
Journal of Visual Communication and Image Representation,
vol. 70, pp. 1-20, 2020.

[32] H. Lin, S. Zeadally, Z. Chen et al., “A survey on computation
oftfloading modeling for edge computing,” Journal of Network
and Computer Applications, vol. 169, pp. 1-25, 2020.

[33] Q.-H. Nguyen and F. Dressler, “A smartphone perspective on
computation offloading-a survey,” Computer Communica-
tions, vol. 159, pp. 133-154, 2020.

[34] S. Ali, M. Ghobaei-Arani, and S. Ali, “A survey on the
computation offloading approaches in mobile edge com-
puting: a machine learning-based perspective,” Computer
Networks, vol. 182, pp. 1-24, 2020.

[35] A. Bhattacharya and P. De, “A survey of adaptation tech-
niques in computation offloading,” Journal of Network and
Computer Applications, vol. 78, pp. 97-115, 2017.

[36] A. ]. Tabatabai, R. S. Jasinschi, and T. Naveen, “Motion es-
timation methods for video compression-a review,” Journal of
the Franklin Institute, vol. 335, no. 8, pp. 1411-1441, 1998.

[37] J.-S. Lee and T. Ebrahimi, “Perceptual video compression: a
survey,” IEEE Journal of Selected Topics in Signal Processing,
vol. 6, no. 6, pp. 684-697, 2012.

[38] H. A. Choudhury, N. Sinha, and M. Saikia, “Nature inspired
algorithms (NIA) for efficient video compression—a brief
study,” Engineering Science and Technology, an International
Journal, vol. 23, no. 3, pp. 507-526, 2020.

[39] I. Abraham, S. Athey, M. Babaioff, and M. D. Grubb,
“Cookies: peaches, lemons, and cookies: designing auction
markets with dispersed information,” Games and Economic
Behavior, vol. 124, pp. 454-477, 2020.

[40] N. Simon, L. Mai, and F. Liu, “Video frame interpolation via
adaptive convolution,” 2017, https://arxiv.org/abs/1703.
07514.


https://arxiv.org/abs/1703.07514
https://arxiv.org/abs/1703.07514

