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In the Internet of things (IoT), network devices andmobile systems should exchange a considerable amount of data with negligible
delays. For this purpose, the community has used the software-defined networking (SDN), which has provided high-speed flow-
based communication mechanisms. To satisfy the requirements of SDN in the classification of communicated packets, high-
throughput packet classification systems are needed. A hardware-based method of Internet packet classification that could be
simultaneously high-speed and memory-aware has been proved to be able to fill the gap between the network speed and the
processing speed of the systems on the network in traffics higher than 100Gbps.(e current architectures, however, have not been
successful in achieving these two goals. (is paper proposes the architecture of a processing micro-core for packet classification in
high-speed, flow-based network systems. By using the hashing technique, this classifying micro-core fixes the length of the rules
field. As a result, with a combination of SRAM and BRAMmemory cells and implementation of two ports on Virtex®6 FPGAs, thememory usage of 14.5 bytes per rule and a throughput of 324 Mpps were achieved in our experiments. Also, the performance per
memory of the proposed design is the highest as compared to its major counterparts and is able to simultaneously meet the speed
and memory-usage criteria.

1. Introduction

Our world is connected by Internet of things (IoT). In the
past few years, the considerable growth of network band-
width and development of hardware technologies, especially
in mobile communications, have led to a significant increase
in the speed of communication lines of this worldwide
network [1, 2]. (at is, the speed of communication lines is
reached to higher than “terabits per second.” (e SDN
paradigm aims to achieve good performance in managing
networks by accelerating routers and switches to process the
packets with the rate of network links [3, 4]. Making SDN
flexible enough to satisfy the different requirements of
heterogeneous IoT applications is desirable in terms of

software-defined IoT (SD-IoT) [5, 6]. For this purpose,
network devices are equipped with a new mechanism,
naming packet classification, which lets them to be flow-
aware. (at is, the network device, first classifies the in-
coming packets into predefined flows according to a set of
filters, then any further processing is done accordingly.
(erefore, a variety of packet processor devices including
routers, firewalls, intrusion detection systems, account
management systems, and network management systems
use packet classification [1, 7–10]. (at is, a number of
important network management functions such as access
control, quality of service provisioning, firewall, traffic po-
licing, and policy-based switching make use of packet
classification.

Hindawi
Mobile Information Systems
Volume 2020, Article ID 7641073, 8 pages
https://doi.org/10.1155/2020/7641073

mailto:abbasi@basu.ac.ir
https://orcid.org/0000-0002-5373-5778
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7641073


(ere are five fields in a typical classification rule including
source and destination IP addresses (SA and DA), source and
destination port numbers (SP and DP, respectively), and
protocol (PT). SA and DA are address prefixes, SP and DP are
number ranges, and the PT fieldmay be either a specified value
or a wildcard. (e order of rules in a rule set determines their
priority. (e last rule is the default rule in which all the five
fields are equal to the wildcard. If an incoming packet matches
more than one rule, the action corresponding to the rule with
the highest priority is performed. A description for packet
classification algorithms is found in [1].

Classification of Internet packets in network devices is
conducted through either software-based or hardware-based
approaches. Considerable time overload of software-based
methods makes them less popular among network equip-
ment manufacturers [11]. On the other hand, there is a
widespread tendency towards hardware-based methods and
their higher throughput rate and lower delay [12]. Hard-
ware-based implementation of packet classification algo-
rithms may categorized into two groups. (e first group
consists of algorithms based on parallel search in the content
addressable memory (CAM) chips Z-TCAM [13], E-TCAM
[14], and ZI-CAM [15]. In spite of their relatively high
speeds, the use of ternarymemories in these algorithms leads
to disadvantages such as excessive power consumption,
lower speed than other memory cells, lack of scalability,
undue consumption of chip resources, and high prices. (e
second group consists of algorithms such as decision tree,
decomposition tree, geometric space, field encryption, and
similar methods which are realized on programmable
hardware devices like ASIC or FPGA.

(e main challenge in designing hardware-based methods
is increasing the ratio of throughput to design cost. (e
throughput of a classifier is the number of packets that are
classified in unit time. (e required memory space is the main
indicator of the system design cost. To reach this optimal point,
we propose a micro-core that lowers memory consumption
and simultaneously increases the classification throughput.(e
chief contributions of this paper are as follows:

(1) (e proposed micro-core uses SRAM and BRAM
cells, which allow for dual-port implementations.

(2) (e proposed engine does not use any ternary content
addressable memory. Instead, it encodes all of the
prefixes by a cyclic redundancy check (CRC) code.

(3) Implementing the proposed classifier on Virtex®6FPGA shows that the memory cost reduces to
14.5 bytes per rule, and simultaneously the
throughput of the classifier reaches 324Mpps. (is
result confirms the superiority of the proposed ar-
chitecture to its counterparts.

(e rest of this article is organized as follows. In Section
2, the related works on hardware-based packet classification
systems are reviewed. (e proposed microclassifier archi-
tecture is explained in Section 3.(e performance evaluation
of the proposed architecture is presented in Section 4 after
introducing the metrics. Finally, conclusions and directions
for future research are discussed in Section 5.

2. Related Work

So far, a wide variety of hardware-based classifier archi-
tectures have been proposed for packet classification. All of
them attempt to increase the throughput and decrease the
memory usage. (e CAM-based classifier architectures
benefit from the parallel search property of CAM modules
but suffer high implementation costs and high levels of the
consumption power. In [16, 17], two of the most recent
architectures are proposed. (ey utilize a pipelined decision
tree algorithm and a ternary memory, respectively. (e
architecture proposed in [16] has achieved a throughput of
103Gbps, which is the highest among all the works men-
tioned here. However, depending on its hardware param-
eters like the number and length of pipelines on the
distribution of the values of the classifier’s rule fields, any
updating requires reconfiguration of the architecture. On the
other hand, the memory usage of this architecture is 63.5
bytes per packet. In [17], the researchers used ternary
memories of the size 52∗144 and were able to reduced
memory usage down to 18 bytes per rule; however, their
maximum throughput was as low as 38Gbps. (e archi-
tectures proposed in [18, 19] could achieve a throughput of
100Mpps while keeping the memory usage at 23.5 and 17.4
bytes, respectively. (e focus of the architecture in [18] is on
the rule search, and it does not address the issue of longest
prefix matching (LPM). (e architecture proposed in [19]
adopts a TCAM-based approach to packet classification. Its
major drawback is linear growth of TCAM usage is pro-
portional to the number of rules that increases con-
sumption of chip resources and power. Implementation of
a merge algorithm based on decomposition tree in [20]
achieves a throughput of 94Gbps (amounting to 147Mpps,
given that each packet is 40 bytes). (e study does neither
provides the memory usage nor suggests any solution for
updating rules.

Some classifiers like that presented in [21] use a special
model to accelerate accessing the memory containing the
rules, which in turn raises their memory consumption.
Pipelined implementation of packet classification algorithms
seeks appropriate solutions to reduce the number of pipeline
stalls and the required memory space. For example, in the
pipelined packet classifier of [22], the memory consumption
varies from 16 to 24.5 bytes per rule.

To overcome the abovementioned disadvantages, we
propose a packet-classifying micro-core with low memory
consumption and high throughput. (e proposed micro-
core makes use of SRAM and BRAM cells, which allow for
dual-port implementations. Processing based on cyclic re-
dundancy check (CRC) codes in the internal structure of the
micro-core without any need for ternary memories reduces
the consumption of FPGA hardware resources and the time
required for memory access in this classifier.

3. Proposed Architecture

(is section explains the architecture of the proposed
classifier which is aimed at increasing packet classification
speed. Underlying the architecture are two principles: first,
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making use of BCAM memory in prefix matching and,
second, using hash codes to reduce memory usage.

In this classifier, a set of processing micro-cores act like a
CAM, each one storing the information about one rule field
of the rule set. (e architecture is shown in Figure 1. In this
architecture, n micro-cores are defined for each of the fields
used for packet classification, where n is the number of rules
in the classifier representing the number of micro-cores per
field.

(e incoming packets are classified as follows: First, the
packets are transmitted through a shared bus to the micro-
core unit. As soon as a packet enters a micro-core, the fields
of source and destination IP addresses of the header are read
by Parallel Hash Calculator. Next, in a parallel manner and
proportional to the length of the value of the Prefix register,
CRC-16 generation process is performed on the input ad-
dress and the result is stored in the Temp register. Each
micro-core has a control unit that, in addition to controlling
the function of the micro-core, manages the generation
process as well as the process of matching the hash code
generated and stored in the Temp register against the hash
code of the prefix field of the corresponding rule of the
micro-core in the Hash-of-rule register. If the hash code of
the incoming packet header matches the hash code in the
micro-core, the Adder will add one to the variable stored in
the Rank register. Moreover, in the case of correct matching,
the one-bit flag Match and the corresponding bit of the
micro-core in the n-bit register Packet Matching will be set.
If matching fails, these bits will be reset by default. (e
Packet Matching register is used to record matches or
mismatches in other micro-cores. In this register, any bit
with a value of one denotes a match and any bit with a value
of zero denotes a mismatch in the micro-core corresponding
to a field that is being searched. After matching all fields, the
results are written to the bits corresponding to each field in
the Packet Matching register. Next, the result of logical AND
operation on all Packet Matching registers is stored in
Matched Vector. Finally, a prioritized decoder selects the
matching rule with the highest priority.

As seen in Figure 1, the classifier consists of a set of
processing micro-cores. In the following, we shall discuss the
internal architecture of the micro-cores that is illustrated in
Figure 2. Also, the length of each register of the micro-cores
is shown in the bottom of Figure 2.

(e main body of the micro-core is composed of two
modules, i.e., CRC Calculator and Controller. (e Con-
troller module is responsible for management of all control
lines, inputs, and outputs. Operations in this unit include
management of selection lines, injection, and updating of
registers. In fact, this unit is the decision-maker of themicro-
core, which is separately controlled by the main controller of
the classifier. In other words, the functioning of the micro-
cores is not disrupted by updating and changing one of the
micro-cores.

(e second important module of the micro-core that
bears a major part of its processing load is CRC Calculator.
Figure 3 shows the function of this module. It receives the
incoming packets and calculates their hash code in parallel
(Line 1 of Algorithm 1). For this purpose, each IP address

along with the corresponding prefix which has been already
stored in the Prefix register enters the module. Next, a hash
code is computed using them and sent to the Controller for
the purpose of matching. Implementation of this module
consumes 40 out of 204000 LUTs on Virtex-6.

(e micro-core has 7 input pins and 2 output pins.
Table 1 lists the input and output ports of the micro-core
along with their length in bits as well as their description. A
micro-core is composed of registers, hash generator modules
(CRC Calculator), and a controller.

One set of the input pins of the micro-core is named
“Select,” which determines the operation mode of the micro-
core (Line 2 of Algorithm 1). In fact, this pin is responsible
for management of the micro-core’s functioning. It is
connected to a two-bit bus which is used to address different
modes of the micro-core function as described below (also,
see Table 2):

Mode 0: themicro-core performs its main task, which is
the packet classification (Lines 3–7 of Algorithm 1).
Mode 1: when the address from the Address port is
identical with that in the Address register, the infor-
mation in the selected micro-core is updated by means
of the information from the Prefix and Rules ports
(Lines 9–11 of Algorithm 1).
Mode 2: each micro-core sends the information related
to its rank into a shared output bus. (is operation is
aimed at selecting the best candidate for being removed
by the classifying controller. (e central controller
stores the number of the classifier with the lowest rank
to update the rules (Lines 12-13 of Algorithm 1).
Mode 3: the majority of the existing classifiers do not
offer a dynamic solution for updating rules and per-
form this task by reconfiguration of the chipset.
However, given its low-rank feature, our proposed
architecture enables us to update the rules under
certain conditions. It is easy to inject new rules without
changing the order of the existing rules. (e last mode
is Select(1, 1), which is used to initialize the micro-cores
by injecting rules into each micro-core (Lines 14–17 of
Algorithm 1).

Before injecting the packets into a processing micro-
core, the rules are injected. In this step, the rules that have
been converted to hash codes are stored in the Hash Code
register. Prefix and Address registers keep the prefix length
and the address of the processing core of the rules. Flag
belongs to the internal controller which manages the input/
output operation inside the micro-core so that the acts of
processing the input packets would not overlap. Rank
register has a length of 32 bits and holds the correct
matches between the incoming packets and the matched
field in the micro-core. For each correct match in the
micro-core, one is added to the value of this register. (is is
a criterion used for updating and removing rules in other
processing micro-cores. (us, the micro-core with the
lowest rank is selected for removing and updating. In fact,
in this classifier, a lower rank is indicative of decreased use
of the rule in the rule set.
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Figure 1: Proposed architecture for a packet classifier.
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4. Implementation and Evaluation

In this section, the results of implementation of the proposed
micro-core architecture are discussed. (is architecture is
implemented on a XC6VLX75T chip from Virtex-6 FPGA
family with a Xilinx ISE 14.7 simulator using VHDL lan-
guage. Experiments are done on a system with the char-
acteristics mentioned in Table 3.

(e evaluation criteria in this experiment are throughput
and memory. (roughput refers to the number of packets
classified in a second. Assuming a minimum of 40 bytes for
each packet [20], we use Gbps instead ofMpps formeasuring
the throughput. Memory usage is measured in bytes for each
rule in the classifier.

We use Classbench tool to generate rules and experi-
mental packets in our experiments. Classbench runs on
Linux platform and is used for generating rulesets with
desirable distributions in themodel of the geometric space of
rules. It generates rules and corresponding headers by using
a set of input distribution parameters [23].

(e highest throughput achieved so far belongs to Chang
[16], which is 103.53Gbps. However, it is 0.150Gbps less
than our throughput rate. Also, the memory usage for
storing the classifier’s rules in that architecture is four times
greater than in our method. In fact, Chang’s architecture
resembles traditional TCAM-based architectures in terms of
memory usage.

Table 4 compares the proposed micro-core architecture
with the existing architectures. With a clock frequency of
170MHz, the processing time of each micro-core is in the
worst case 6.2 nanoseconds per packet and power con-
sumption is 118mW. With a dual-port memory which can
process two packets simultaneously, the proposed micro-
core is able to process 324 million packets of at least 40 bytes
in a second which amounts to a throughput of more than
100Gbps. In this simulation, our architecture used 137 Slice
registers and 182 search tables.

In Table 4, the proposed micro-core architecture is
compared with major recently proposed counterparts in
terms of throughput and memory usage per rule. From
among these architectures, Jiang and Prasanna [19] and
Irfan et al. [17] require the least amount of memory, i.e., 17.4
and 18 bytes per rule, respectively. With a required memory
of 14.5 bytes per rule, our proposed micro-core outperforms
these two architectures. (e major reason behind the low
memory usage in our method is that, in contrast to the two
mentioned architectures, our classifier does not rely on
TCAM and mask for matching operation.

In a more fare approach, Table 5 compares the proposed
design with other designs with regard to the performance
per memory [19]:

188.112.0.0

Incoming packet

13

Length of prefix

XORXORXORXORXOR
1011110001110∗ 1110101010100010

Calculate 
CRC

16 bitsVariable

Figure 3: CRC Calculator module.

Input: Data, InputPrefix, Rules, Select, InputAddress
Output: rank out, match
Registers: Rank, Flag, Hashcode, Prefix, Address, Match
Data: Packet P, CRCof Packet PCRC

(1) PCRC⟵Calculate CRC (P,HashCode)
(2) Switch Select
(3) Case 00: //classify Operation
(4) if PCRC �� Hashcode then
(5) Match⟵ 1, Rank←Rank + 1, Flag←1
(6) Else
(7) Match⟵ 0
(8) end if
(9) Case 01: //update
(10) Rank⟵ 0, Match←0, Flag←0
(11) Prefix⟵ Input prefix, Hashcode←Rules
(12) Case 10: //rank
(13) Rank out⟵Rank
(14) Case 11: //set address
(15) Address⟵ InputAddress, Prefix←Input prefix
(16) Hashcode⟵Rules
(17) Match⟵ 0, Flag⟵ 0
(18) End Switch
(19) If flag �� 1 then
(20) Flag⟵ 0, Match⟵ 0
(21) End if

ALGORITHM 1: Implementation of the packet classifier micro-core.
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Table 1: (e function of input pins.

Name Length (bit) Description
Clk 1 Clock for all micro-cores
Prefix 6 Length of Prefix
Data 32 Width of input line for incoming packets
Rule 16 Maximum length of the hash code of rules
Address 16 Address of the selected processing core
En-address 1 Activation of updating and configuration operations
Select 2 Mode of processing in selected core
Rank-out 32 Width of the bus which is shared with all micro-cores and is used for updating
Match 1 A flag for signalling match/mismatch in a micro-core

Table 2: Modes provided by select pin.

Select Modes Corresponding lines of Algorithm 1
00 Classifying packets 3–7
01 Updating rules and propertyof micro-cores 9–11
10 Outputting rank of micro-cores on BUS 12–13
11 Initializing the selected micro-core 14–17

Table 3: System specification.

Specifications Processor
Name Intel Core i7-3720QM
Clock speed 2600MHz
L3 cache 6MB
Main memory 16GB DDR3
Operation system Windows 10 enterprise 18.03, 64 bit

Table 4: Comparison of the performance of the proposed method with different architectures.

Reference (roughput (Gbit/s) Frequency (MHz) Memory (byte) Seri Chip
Pus and Korenek [18] 100 125 23.5 Virtex5 LX110T
Chang and Chen [16] 103.53 161.76 63.5 Virtex-6 XC5VFX200T
Fiessler et al. [24] 92.16 180 NA Virtex-7 XC7VX690T
Orosz et al. [25] 100 312 NA Virtex-6 XC6VHX255T
Zhou et al. [20] 147 mil NA NA Virtex-7 XC7VX690T
Irfan et al. [17] 37.3 259 18 Virtex-6 XC6VLX760
Jiang and Prasanna [19] 100 167 17.4 Virtex-5 XC5VFX200T
Our design 103.680 170 14.5 Virtex-6 XC6VLX75T

Table 5: Comparison of performance per memory for various systems.

Approaches (roughput (Gb/s) Memory (byte) Efficiency (throughput/memory) Chip
Orosz et al. [25] 100 156 0.64 XC6VHX255TOur approach 101.7 14.5 7.01
Irfan et al. [17] 37.3 18 2.072 XC6VLX760Our approach 75.83 14.5 5.229
Ganegedara and Prasanna [21] 407 156 2.660 XC6VLX760Our approach 75.83 14.5 5.229
Qi et al. [26] 73.9 46.4 1.592 XC6VSX475TOur approach 86.83 14.5 5.988
Pao and Lu [22] 108.8 18 6.04 XC6VLX75TOur approach 103.680 14.5 7.150
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efficiency �
throughput (Gb/s)

normalizedmemory (B/rule)
. (1)

For this purpose, the throughput as well as the memory
consumption of the proposed architecture is measured on
the chipsets that are used in the evaluation of the competitor
designs.(e memory usage per rule is always constant in the
proposed design.(erefore, the performance per memory of
the proposed design is the highest as compared to its major
counterparts.

(e ratio of superiority of the efficiency of the proposed
method with respect to each counterpart is illustrated in
Figure 4. Our comparisons suggest that the proposed ar-
chitecture has considerably improved the throughput rate
and memory usage of the Internet packet classification
systems. (e performance per memory of the proposed
design is at least 18% and at most 990% better than the best
and the worst designs, namely, Pao and Lu [22] and Orosz
et al. [25].

5. Conclusion

In this paper, we proposed a new micro-core architecture
for classification of Internet packets that is capable of being
updated. (e proposed architecture allows for adding or
removing rules during processing and enjoys lower
memory usage as well as higher throughput rate in com-
parison with other architectures. Our evaluations suggest
that this micro-core can classify packets with a throughput
of more than 103Gbps, which amounts to about 324Mpps.
Another advantage of this architecture is that memory
usage per rule is always constant. (erefore, the perfor-
mance per memory of the proposed design is the highest as
compared to its major counterparts. (is achievement
helps the proposed micro-core to avoid the problem of
resource requirement in the longest prefix matching
(LPM). A fruitful topic for future research would be to
apply this inherent feature of the micro-core to the
implementation of pipeline classifiers in which LPM is a
great problem in pipeline processing.
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