Hindawi

Mobile Information Systems

Volume 2020, Article ID 8813243, 11 pages
https://doi.org/10.1155/2020/8813243

Research Article

Hindawi

Self-Controllable Mobile App Protection Scheme Based on Binary

Code Splitting

Sungtae Kim,' Taeyong Park,' Geochang Jeon,” and Jeong Hyun Yi

2

ISchool of Computer Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea
2School of Software, Soongsil University, Seoul 06978, Republic of Korea

Correspondence should be addressed to Jeong Hyun Yi; jhyi@ssu.ac.kr

Received 17 July 2020; Revised 27 August 2020; Accepted 23 September 2020; Published 10 October 2020

Academic Editor: Navuday Sharma

Copyright © 2020 Sungtae Kim et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mobile apps are booming with the expansion of mobile devices such as smartphones, tablet PCs, smartwatches, and IoT devices.
As the capabilities of mobile apps and the types of personal information required to run apps have diversified, the need for
increased security has grown. In particular, Android apps are vulnerable to repackaging attacks, so various code protection
techniques such as obfuscation and packing have been applied. However, apps protected with these techniques can also be
disabled with static and dynamic analyses. In recent years, instead of using such application level protection techniques, a number
of approaches have been adopted to monitor the behavior of apps at the platform level. However, in these cases, not only
incompatibility of system software due to platform modification, but also self-control functionality cannot be provided at the user
level and is very inconvenient. Therefore, in this paper we propose an app protection scheme that can split a part of the app code,
store it in a separate IoT device, and self-control the split code through the partial app. In the proposed scheme, the partial app is
executed only when it matches the split code stored in the IoT device. It does not require complicated encryption techniques to
protect the code like the existing schemes. It also provides solutions to the parameter dependency and register reallocation issues
that must be considered when implementing the proposed code splitting scheme. Finally, we present and analyze the results of

experimenting the proposed scheme on real devices.

1. Introduction

Since the advent of mobile technologies, mobile apps have
expanded very rapidly. According to IDC’s smartphone
market share report [1], smartphone shipments are expected
to increase from 1.3 billion units in 2020 to 1.5 billion units
in 2024 due to the launch of new devices and 5G plans. Of
these, Android devices are predicted to occupy 87% of the
1.5 billion units. With the increase in the number of apps,
their functions and personal information required from
users are diversifying. Apps that require a variety of personal
information such as smart banking, social network service
(SNS), e-mail, and so on generally store users’ IDs and
passwords for convenience so that they automatically re-
main logged in. However, if a device is unlocked or infected
with a virus due to an Android vulnerability [2], malware
can access or steal confidential information and leak it to an
attacker.

Currently, various authentication schemes [3-7], such as
password, pattern, and biometric information authentica-
tion, are provided with Android smartphones. However,
once the authentication is made, apps can be run without
any restrictions until the smartphone is locked. In other
words, unauthorized users can access personal information
if they manage to pass the authentication process. In par-
ticular, Android apps are vulnerable to repackaging attacks
[8], so various code protection techniques such as obfus-
cation and packing have been applied. However, apps
protected with these techniques can also be disabled with
static and dynamic analyses.

To deal with these problems, many techniques [9-11] are
introduced to protect the app by modifying the platform or
using root privileges. Typically, a monitor function is
inserted inside an app that contains a lot of sensitive per-
sonal information to trace and control the behaviour of the
app. However, this approach of modifying the app itself is

mailto:jhyi@ssu.ac.kr
https://orcid.org/0000-0002-2720-0593
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8813243

very inconvenient to apply directly at the user level. In order
to overcome these shortcomings, techniques that allow users
to directly protect apps by utilizing a private launcher are
recently introduced [12, 13].

Therefore, in this paper, we propose a self-controllable
mobile app protection scheme that can freely split binary
code and authenticate using the split code to resolve
smartphone security issues. The proposed scheme randomly
splits the code of the target app through a launcher app,
stores it in a separate IoT device, and reinstalls it after
reconfiguring it as an executable app with the rest, except for
the missing split code. With the proposed scheme, an app
can only be run through the proposed private launcher.
When the app is executed, the proposed launcher can receive
the split code from a separate IoT device and deliver the split
code to the app for execution. At this moment, a code-based
authentication scheme is used, so only authenticated code
can be run in the app and there is no need for a complicated
cryptographic authentication. By using this scheme, only the
user who has the split code can run the app, thereby im-
proving the security of the smartphone by preventing the
unauthorized user from running the app. In addition, the
proposed scheme can be applied at the app level, so no
platform modification and root privileges are required. The
user can simply improve the security of personal infor-
mation by installing the app.

In order to implement the code splitting function, which
is the core part of the proposed scheme, a parameter de-
pendency problem and a register reallocation problem in-
evitably occur. In this paper, solutions to these problems are
presented in detail along with sample codes. It also describes
the results of measuring feasibility and performance over-
head of the proposed scheme on real Android device and
smartwatch.

This paper is organized as follows. Section 2 addresses
the related work. Section 3 provides the background and
motivation behind the proposed scheme. Section 4 describes
the design of the proposed scheme. Section 5 describes issues
that arise when implementing the proposed scheme and
their solutions. Section 6 demonstrates the experimental
results with the proposed scheme. Finally we conclude the
paper in Section 7.

2. Related Work

Protecting mobile apps by modifying the platform or using
root privileges is inconvenient and difficult for users to apply
directly. Many techniques [9-11] have been developed to
modify and protect the app itself. I-arm-droid [9] identifies
security-sensitive API methods and specifies security poli-
cies for the app. It also improves security by rewriting
bytecodes in policies by monitoring apps. Aurasium [10]
does not require modification of the Android OS to provide
the security and policy desired by the user. This tool also
monitors behaviour for privacy breaches, such as attempts to
retrieve sensitive information from users or access malicious
IP addresses. However, in such methods, a monitor function
should be inserted inside an app that contains a lot of
sensitive personal information to control the behaviour of

Mobile Information Systems

the app. However, this method of modifying the app itself is
very inconvenient to apply directly at the user level.

Recently, many protection schemes have been intro-
duced through the launcher app [12, 13] to help users
manage the app comfortably. In general, Android launcher
refers only to a program that runs a home screen in the user
interface (UI) [14-16]. In most cases, it consists of home
screens and app drawers, and it can be seen that it is included
in the Android UL In addition, the app is always running
while the terminal is running, and additionally, the home
screen area can be provided to arrange shortcut icons or
widgets of the app so that the developer can execute the
desired function, such as executing or deleting other apps.
The manufacturer’s launcher is designed as the default
launcher from booting, but as the new launcher is installed, a
selection window pops up from the home button and allows
selecting the installed launcher. To change the default
launcher that is already specified, we can use the launcher to
clear the default task or use a separate app. Boxify [17] is a
representative example of a protection technique through a
launcher app. It executes the target app through the launcher
app, which is an isolated process with minimal privileges,
and monitors it through hooking to control untrusted apps
from doing actions that cause damage such as personal
information leakage.

In addition, an example of applying the code splitting
technique to Robot OS (ROS), an embedded software for
smart cars, was recently introduced [18]. This study applied
the code splitting scheme for the purpose of secure booting
to prevent an attacker from remotely controlling the smart
car. In addition, while this uses code splitting for native code,
the proposed scheme is applied for Android bytecode.
Except for the concept, the detailed underlying techniques
such as parameter dependency checking and register real-
location are completely different.

3. Background

3.1. Android App. Android apps are provided in a single file
called the Android package (apk) file. The apk file is in zip
format and consists of classes.dex, which contains not only
the app’s code, but also resource files that contain config-
uration information such as the app’s icons, images, and
strings. Each apk file contains an AndroidManifest.xml file
containing the app’s components and permission infor-
mation. The main language of the Android app is Java. Java
code is compiled into the Dalvik bytecode and consists of a
file called classes.dex. The generated bytecode is executed on
the Dalvik virtual machine. In addition, developers can use
native library (.so) written in the C or C++ language. These
native library codes run directly on the processor of the
device, not on the Dalvik virtual machine.

All apps can be identified by a unique package name and
are self-signed by the developer’s private key [19]. Android
apps consist of different types of components: Activity,
Service, Broadcast Receiver, and Content Provider. The
Activity represents functions that are performed through a
UL A single app can consist of several activities. In contrast,
the Service runs in the background without a UL For

Mobile Information Systems

example, a music player app might require a UI for selecting
songs, but no additional UI is required while music is
playing. This task can be implemented as a Service. The
Broadcast Receiver is a function that can receive the message
service and perform the corresponding action when a system
event occurs in Android. Finally, the Content Provider is
used to provide app data to other apps.

3.2. Android Repository. Android has internal storage and
external storage [20]. The internal storage primarily stores
systems and apps, while data is stored in the primary ex-
ternal storage. The internal storage can read and write data
only in the apps, and the external storage is used as a
common area. Also, the data in the internal storage is deleted
when the app is deleted. The external storage contains
photos, videos, and other files. With permission, it is possible
to read and write data, which is in the external storage, from
other apps. There is a cache area, a database area, and a file
area in the internal storage that exists for each app. Since it is
troublesome to find the necessary path whenever the path of
each area is required, Android provides an API that easily
obtains the main path where data is stored.

3.3. ASMDEX. ASMDEX [21] is an open-source project
which parses the dex file and organizes it into a tree. It allows
the user to modify, add, or delete the generated tree and rebuild
it as a dex file. The tree structure created by ASMDEX is shown
in Figure 1. When constructing a dex file as a tree, the root node
is represented by ApplicationNode. ApplicationNode has
member variables called classes, which represents a list of
ClassNodes classes. ClassNode parses and holds all informa-
tion, such as name, authority, and method for every class in a
dex file. A member variable, method, represents a list of
MethodNodes classes. MethodNode is the information of
method contained in ClassNode. Similar to ClassNode,
MethodNode parses and contains information about method,
such as name, descriptors, exceptions, and number of registers
used. Unlike ClassNode, MethodNode may have a duplicate
name. In such a case, the method is identified through a de-
scriptor. The MethodNode class has a member variable, in-
struction, which is a class called InsnList that implements a
double linked list for AbstractInsnNode. AbstractInsnNode is
an abstract class, and a method inherits the corresponding
abstract class and executes each instruction.

4. Proposed Scheme

When the user authentication is performed once before use,
anyone can run all the apps installed in a smartphone until it
is locked, thereby allowing personal information leakage.
This section proposes a scheme to protect personal infor-
mation by implementing app execution environment
through the self-controllable private launcher.

4.1. Concept. The basic idea of the proposed scheme is to
split and manage a part of the binary code of the app safely
and separately and to take the split code at runtime and

—

ApplicationNode]

|

MethodNode | ¢ o « | MethodNode

MethodNode

InsnNode

InsnNode

InsnNode

InsnNode

baal

FIGURE 1: The dex file tree generated from ASMDEX.

functionally assemble it to operate the same as the original
code. More specifically, a part of the binary code of the app is
split and stored in the IoT device, and each time the app is
executed, the split code stored in the IoT device is taken and
assembled functionally through a code-based authentica-
tion. We call this launcher app that provides this func-
tionality an AppContainer, which is provided in two modes:
Normal or Protected modes. If the target app is given as
input to the AppContainer, it will enter the Normal mode by
default. As shown in Figure 2, when the target app is exe-
cuted in the Normal mode, the binary code splitting function
is operated first. A part of the binary code of the app is
randomly selected, split, and then stored in an IoT device.
The rest of the code is incomplete, but apparently recon-
structed to take the form of the app and reinstalled on the
smartphone. This incomplete-but-normal-looking app is
called a partial app in the rest of this paper. At this time, the
partial app can be run only in Protected mode. That is, after
switching to Protected mode, all apps displayed in the
AppContainer are partial apps. When running this partial
app in the Protected mode, the corresponding split code is
received from the IoT device. Then, it operates in the same
way as the original app through the code-based authenti-
cation protocol.

The dex file can be decompiled into smali code at any
time, so it is possible to parse the method in the executable.
There can be up to 65536 methods in one dex file. Currently,
methods are randomly selected. Even if the proposed scheme
is applied to the same app several times, different pairs of
split and remaining codes can be generated each time. Thus,
by uniquely creating a split code, only the owner of the IoT
device can run the app. In addition, if you select the core
logic and then store it in the split code and configure only the
less important code in the partial app, the core logic of the
original app can still be protected even if the partial app is
exposed to reverse engineering.

4.2. Design Details. The proposed scheme consists of two
main phases: binary code splitting for the target app and
applying the code-based authentication to the partial app.

App Container
normal mode

-

Mobile Information Systems

App Container
Protected mode

) E——
Partial app *
(partial.apk)
— | E— Partial app
Original app (partial.apk)
e 1T device }—
— Code-based
méa’}g? authentication
10011 \ P,
Code splitting = 01100 P 11t c(;) ¢
Split code (split.dex) (split.dex)

Ficure 2: Concept of proposed AppContainer scheme.

4.2.1. Binary Code Splitting. Like the general launcher app,
except for system apps, the list of apps installed by the user is
displayed in the form of icons in the Normal mode. At this
time, when a specific app is selected, the code of the app is
split, the rest of the app is rebuilt as a partial app, and a code-
based authentication function is additionally applied. This
rebuilt partial app is only displayed in the Protected mode
and no longer visible in the Normal mode. The outline of
how the Normal mode operates is shown in Figure 3. A
target app (original.apk) can be selected to apply the code
splitting scheme. The package name of the target app goes to
the internal memory path/data/app/“packagename”/. This
path can only read the original.apk files of the target apps
because read-only permission exists for other apps. Then, the
original.apk file is copied to external storage such as an/
sdcard. To use external storage, the AppContainer must have
READ_EXTERNAL_STORAGE and WRITE_EXTER
NAL_STORAGE permissions. Next, the imported origi-
nal.apk file is unzipped into the original.dex file. After the
code splitting process, the original.dex file is split into the
partial.dex and the splitimg files. The splitimg file is
reconstructed into the split.dex file with a wrapping func-
tion. When the reconstruction is complete, a hash value on
the split.dex file is created with the application name. It will
be used later for code-based authentication. Then the
split.dex file is sent to the connected IoT device. In the other
side, the folder containing the partial.dex file is recom-
pressed to create in form of a partial.apk file. This partial.apk
file is resigned with the user’s private key. Then, the origi-
nal.apk file is replaced with the partial.apk file in the internal
storage. After completing the code splitting process, all files
used in the/sdcard path are deleted.

The detailed process of the code splitting scheme is given
in Algorithm 1. Given the original.apk file, the original.dex
inside the original.apk file is turned into a tree through
ASMDEX. It traverses the created tree and randomly selects
(we note that it is impossible to split any part of the Android
application. This is always applicable only for user-defined
classes and methods. It does not apply to classes or methods
with framework code or system dependencies. Also, the
onCreate function of the MainActivity class, which is the
basis for app running, or a class that is automatically created
by the system such as R$ should not be selected. However,

there is no problem for practical application because sen-
sitive or secret code logic, which is the main target to be split
in this proposed scheme, is all user-defined classes and
methods) specific splitClass and splitMethod. When the split
node selection is complete, ASMDEX is used to create a new
tree. The selected splitMethod is added to the splitClass node
to create a new dex tree. Since the selected splitMethod
disappears from the existing tree, it is necessary to modify
the caller part and splitMethod body part. If the selected
splitMethod is Static, the splitMethod body part needs to be
modified; otherwise, the caller part needs to be modified. If it
is not Static method, the splitMethod and splitClass are
changed into Abstract, and all splitMethod bodies are de-
leted. The reason for changing to Abstract is to allow a
splitClass with a splitMethod to inherit the existing class and
use the undefined methods and field values of the existing
class.

Consequently, it traverses the existing targetTree and
finds all caller parts of the splitMethod. If a splitMethod is
used as an existing class, it is changed to an Abstract method,
and thus a splitMethod cannot be used by creating an
existing class. The existing class part should be replaced by
the stub code, which finds a splitClass that inherits an
existing class. A split.dex file is created including the
splitClass and then is returned. In the case of Static method,
the caller should be replaced with the contents of calling the
stub code without removing the caller part. In the split code,
the following actions are performed: find and create a
splitClass that inherits the existing class, execute the split-
Method immediately, and return the result value of the
splitMethod. Inserting or deleting other codes may cause
parameter and register dependency problems that may
conflict with existing registers because the Dalvik bytecode is
register-based, not stack-based. To solve this problem, we
have to deal with a parameter dependency checking and a
register reallocation, which are explained in Sections 5.1 and
5.2, respectively.

4.2.2. Split Code Integrity Checking. In the Normal mode,
when AppContainer separates the split.dex and transmits it
to an IoT device, it stores IMEI (International Mobile
Equipment Identity) information of the device in the

Mobile Information Systems

Input: target app (original.apk)
(1) Tree targetTree, newTree;
(2) Class splitClass;

(3) Method splitMethod;
(4)

(7)
(8) ASMDEX.init (newTree);

1)

(14) else

Output: remaining target tree and split code tree

(5) targetTree = makeTree (original.dex);
(6) selectSplittingTarget (targetTree, splitClass, splitMethod);

(9) ASMDEX.makeClassNode (newTree, splitClass);
(10) ASMDEX.makeMethodNode (newTree, splitMethod);

(12) if splitMethod.Type == STATIC then
13) convertMethodCalleeToStub (targetTree, newTree, splitClass, splitMethod);

(15) convertToAbstract (targetTree, splitClass, splitMethod);
(16) deleteMethodBody (targetTree, splitMethod);

(17)

(18) for Class class:targetTree.Classes do

19) if findMethodCaller (class, splitMethod) = =true then
(20) convertToStub (class, newTree, splitMethod);

(21) end if

(22) end for

(23) end if

ALGORITHM 1: Pseudocode for splitting original app.

_{ AppContaibner: normal

e —
App @ Code
£ ¥ PfE- | @@ |iE parsing splitting
Iorigina Aapk] Iorig 12Aapkl Iorig ln,apkl
T T~ 1 T T T ©)
v/
Internal storage Stub code ® Split code @ .
X) . Split.dex
P insertion wrapping
e — ——
® l IoT device
'“']ﬁ ‘“’lﬁ oo | -+ @| | Partial app App
I partiall.apkl | partial2.apk | |partialn.apk] distribution resigning
| J L J 1]
f

|

External storage

F1GURE 3: Normal mode operation of the AppContainer.

internal storage. After that, when AppContainer requests
split.dex from the IoT device, the IoT device creates a hash
value using not only split.dex, but also IMEI and salt. The
IoT device transmits the remaining split.dex, salt, and hash
value excluding IMEI information to the AppContainer.
Then, AppContainer calculates the hash value using split.-
dex, salt received from the IoT device, and IMEI stored in the
internal storage and then checks whether it matches the hash
value received from IoT. If the two hash values match,
AppContainer proves that it has received the split.dex file
from a trusted IoT device and that the integrity of split.dex is
verified.

4.2.3. Code-Based Authentication. In the Protected mode,
only partial apps with code splitting scheme are displayed in
the form of icons on the home screen area. As shown in
Figure 4, when the partial.apk starts, it requests its corre-
sponding split.dex to the IoT device. The partial.apk remains
on standby until the split.dex file is transmitted from the IoT
device to AppContainer. Upon downloading the split.dex
file to AppContainer, as explained in Section 4.2.2, App-
Container checks the integrity of the split code and stores it
in the internal storage (/data/data/“packagename”/). Then,
check if split.dex and corresponding original.dex work
normally. If it is wrong, the partial.apk does not work

Mobile Information Systems

ToT device

,—[AppContainer: protected]— ®

Splitl.de ?P @
pli X <
Split2.dex?F

Split code
request

@ ®

Split code

Code-based
authentication

L]

L[]

[J
Solitn.d authentication —p»
plitn.de Download| checking

Split.dex
partial.apk
Internal
stroage
Split code ©) §
loading

FIGURE 4: Protected mode operation of the AppContainer.

anymore and is terminated. When the partial.apk terminates
abnormally, the split.dex files created during download are
deleted. After that, when the partial.apk receives the split.dex
file stored in the internal storage through the Intent, the
partial.apk can be normally executed. Once again, if you try
to run a partialapk on a general launcher other than
AppContainer, the partial.apk does not work because its
corresponding split.dex file does not exist.

5. Implementation Issues

In this section, we present several issues and solutions to
implement the code splitting scheme described above. In
regard to code-based authentication, since there are no
implementation problems, we focus on the issues for the
code splitting scheme.

5.1. Parameter Dependency Checking. As shown in Figure 5,
given the original.dex file, it is divided into the partial.dex
and split.img files. When the partial.dex is transformed to
the partial.apk, there are important implementation issues
on the parameter dependency checking and the register
reallocation.

To perform the same operation as before splitting, the
splitClass instead of an existing class should be created since
the splitMethod is replaced with an Abstract method. In the
stub code, a new class that inherits the existing class is
created instead (refer to Figure 6). Since the splitClass has
always different shape, the type and number of parameters
required for class creation are different, so the number of
registers used is different. To generically solve this problem,
the parameter dependency should be resolved by adding
three registers to the method that contains the caller part.
Reusing an existing register can cause conflicts with the
other code, so only the new register is used. The first register
is a register containing name information of a splitClass that
inherits an existing splitClass. The second register is an
object array that can hold the constructor parameters. The
reason for using an object array is that the number of
registers used is different because the number and type of
parameters in the splitClass constructor are different each
time. Therefore, several parameter registers are managed as
one register and sent to the stub code to generically fix the
caller part. When creating an array of objects, a register is
created using the init() in the original code and moved to the

second register. The last register is the index register that
controls the object array. In addition, parameters of prim-
itive types such as Integer and Double cannot be put directly
into the object array, but they must be converted to Integer
and Double types using the valueof() function. Therefore,
before putting it into the object array, the type is converted
into the array by using the register used as a parameter
register.

5.2. Register Reallocation. The register dependency problem
occurs because it does not match the number of registers
previously used. To solve this problem, register reallocation
is additionally needed. This task is to solve the index conflict
caused by three registers added to resolve the parameter
dependency. As shown in Table 1, method registers used in
the Dalvik bytecode [22] can be divided into local registers
and parameter registers. Local registers are numbered from
the beginning, and in the case of parameter registers, the last
register is used in all registers. The register before the pa-
rameter register is this register that represents the method
itself. Thus, adding three registers changes the total number
of registers and may cause a malfunction during the exe-
cution because the modified register is accessed; thus, the
relocation of the registers is necessary.

To solve this problem, at the start of the splitMethod, this
register and the parameter registers are returned to the
register position before adding the register. As shown in
Table 2, when 5 registers are used in the splitMethod and 2
parameters are used, v3 and v4 registers have first and
second parameters, and v2 register has this register. If three
registers are added, the first parameter goes into the v6
register, the second parameter goes into the v7 register, and
this register goes into the v5 register. In this case, if v2, v3, or
v4 is used in the original code, an error occurs because the
desired value is not included. Therefore, the values of v5, v6,
and v7 are put back to v2, v3, and v4. Then the added v5, v6,
and v7 registers are used to resolve parameter dependencies.

If Double and Long of the parameter register type are
used, two registers are used instead of one. Also, by adding
registers, the total number of registers used in the splitMethod
may be over 16. In some cases, more than 16 registers of the
existing splitMethod may be used. For example, invoke-
virtual should be used when using registers less than 16, but
invoke-virtual/range should be used when using registers
above 16. In addition, the number of registers to be used must

Mobile Information Systems 7
Code splitting module
asset
| Split.dex
res +
; IoT device
original.dex || partial.dex o oy
split.img
android
manifest xml
Parameter . res
original.apk dependency Sp lit C?de
checking wrapping partial.dex
Register Stub code stub code
reallocation insertion
android
| + manifest.xml
partial.apk
FIGURE 5: Implementation issues with code splitting.
SplitCodeCaller(..) SplitCodeCaller(..)
{ {
d lass a = new d lass(..) —_> ;andomclass a = (Rand lass)StubcodeCall (..)
a.RandomMethod (...) a.RandomMethod(...)
. , =
FIGURE 6: Method caller change for solving parameter dependency problem.
TaBLE 1: Dalvik register allocation (before). TaBLE 2: Dalvik register allocation (after).
Variables Parameters Description Variables Parameters Description
v0 Local register v0 Local register
vl Local register vl Local register
v2 po This-register v2 Class name register
v3 pl First parameter register v3 Parameter information register
v4 p2 Second parameter register v4 Index register
v5 po This-register
v6 pl First parameter register
be sequential. When invoke-virtual is available, three registers v7 p2 Second parameter register

such as v5, v8, and v3 are available. But when invoke-virtual/
range is available, the registers should be v5, v6, and v7. In
addition, more than 16 registers cannot new-array and thus
cannot create object arrays. The object array is created and
relocated using the init() command register, which uses the
register below 16 unconditionally, as described above.

5.3. Stub Code Insertion. The stub code needs to be injected
in two cases. The first is the case that the AppContainer
needs to get the split.dex and store it in internal memory
when the app first starts. The second is necessary to load the
split.dex from the internal memory when the split.dex is
called and to execute the splitClass from the split.dex. The
first case analyzes the AndroidManifest.xml and inserts stub
code into the Activity class that starts first when the app is
run. You also need to modify the beginning of the
onCreate() function to add a call to the inserted stub code
when the app starts. Moreover, we need to check whether the

split.dex received from the AppContainer is the corre-
sponding the split.dex to the partial.apk. If the checking is
correct, save the split.dex in the internal memory. If not,
terminate the program. The code that loads the split.dex is
inserted by adding a splitClass node to the tree created by
ASMDEX. The stub code is executed when the caller invokes
the split.dex. We create a DexClassLoader object and load
the split.dex stored in the internal memory into the Dex-
ClassLoader object. Find the splitClass in the created
DexClassLoader object and execute the splitMethod nor-
mally. Therefore, it is an object that has a class name and
constructor parameter value. It finds the desired splitClass
by using the reflection API provided by Java. In the case of
the Static method, the method finds and executes the
method through the object that has the class name, method
name, and method parameter value.

5.4. Resigning. When all the code splitting procedures are
done, the folder containing the partial.dex is recompressed to
create an partial.apk file. Using ASMDEX, a new tree created
with split.img is created as a split.dex file. This split.dex file is
distributed to the connected IoT device. The Android app must
be digitally signed before distribution. Since the original.apk file
was modified during the splitting process, the previous sig-
nature is useless, so resigning is required to install the app.
Therefore, the user’s signing key stored in the AppContainer is
used. When all the resigning is done, the existing original.apk is
deleted, and the partial.apk is reinstalled.

6. Experimental Results

In this section, we describe the results of evaluating per-
formance of the proposed scheme. We implement and
measure the performance on an Android version 6 or later
and Galaxy Gear for an IoT device.

6.1. Sample Codes with Code Splitting. When the code
splitting scheme is applied, the target method is randomly
chosen from all the methods. As shown in Figure 7, the
addFont method of jxL/bift/Fonts class is selected among all
methods and converted into an Abstract method, and the
method body disappeared and its size became zero.

Figure 8 shows the caller part of a splitMethod. Previ-
ously, only 7 registers from v0 to v6 were used. Three
registers were added to modify 10 registers from v0 to v9. We
also reallocated the parameter register and this-register
through the move-object at the start of the method to avoid
register conflicts.

Figure 9 is the part that creates class before calling the
splitMethod. It creates an object array using the register
used to execute the Init() function and stores the object
array in the added register, v8. The register v9 was not used
because there were no parameters in the constructor of the
splitClass, and the object[] array was also created with a size
of zero.

The name of the class to create is stored in the register v7.
The class name and the object array to be created are sent
with the parameters for calling the stub code, and the/range
command is used in case the register number becomes 16 or
more. The generated class is cast to the original class and
stored in the register vO because the original class uses the
register v0 in the code before modification.

Figure 10 shows the splitClass and splitMethod in the
split.dex file stored in the IoT device. In the example code
above, there is a splitMethod in the newly named class that
inherits the selected class.

If the static method is selected for splitting as in Fig-
ure 11, the change of the caller part is not necessary and only
the body of the splitMethod is changed. The changed code
executes the method by sending class name, method name to
execute, and parameters of the method to stub code. It then
processes the parameter information received by the
method, converts the result to the original return format,
and delivers it.

Mobile Information Systems

com/example/secrettest/Secretd extends java/lang/Object
method: <init>()V [public constructor] size:4
method: suml(I I)I [public] size:3
method: sum2(I I I)I [public] size:3

{

com/example/secrettest/Secretd4 extends java/lang/Object
method: <init>()V [public constructor] size:4
method: suml (I I)I [public] size:3

method: sum2(I I I)I [public abstract]

F1GUre 7: Method change with code splitting.

Parameters:

- Local registers:v0.vll
- vl2:android.view.View
#

- return:void

onClick-BB@Ox0 :

const/4 v1i0, 1
const/4 v9, 3
const/4 v8, 2

Local registers : v0..vld

Parameters :
=| vl5 : android.view.View

#
#
#
7
- return:void

onClick-BBROx0 :

move-object vlil, vl14
move-object vli2, vlS
const/4 v1i0, 1
const/4 v9, 3
const/4 v8, 2

FIGURE 8: Register rearrangement followed by register addition.

6.2. Performance Overhead. We tested whether the proposed
scheme is properly applied to real apps in the Google Play
Store and evaluated the execution overhead by comparing
the launching time of apps with the proposed scheme and
apps without it.

Table 3 shows the launching speed of the app before and
after applying the proposed scheme to five apps by category
in Google Play Store. Experimental results show that the
proposed scheme has a delay time of 138 milliseconds on
average, although the delay time is different for each app.
This delay is caused by the time required to load the split
code when the app starts and to check the authenticity of the
split code received from the AppContainer. Because each
app has different size and functions, its launching time
before and after applying the proposed scheme is different.
The fastest launching time is 163 milliseconds, and the
slowest one is 975 milliseconds. Looking through the ex-
perimental results, it can be seen that the overhead due to the
proposed scheme increases by about 15% to 2 times.
However, the average increase of 138 milliseconds is rea-
sonable, making the launching delay of the proposed scheme
acceptable.

Mobile Information Systems 9
invoke-virtual v3, v5, v6, Lcom/ mple/ ttest/S t3;->e(Ljava/lang/
new-instance v4, Lcom/example/secrettest/Secretd;
invoke-direct v4, Lcom/example/secrettest/Secretd;-><init>()V
const/4 v5, 6
invoke-virtual v4, v9, v8, v5, Lcom/example/secrettest/Secretd;->sum2(I I
invoke-virtual v3, v5, v6, Lcom/example/secrettest/Secret3;->e(Ljava/lang/
const/4 vd, O
new-array v4, v4, [Ljava/lang/Object;
move-object vld, v4
const-string vl3, ‘com.example.secrettest.rStUVNacyAlA’
invoke-static/range v13 .. vl4, Ledu/ssu/msec/sot/a;->gI(Ljava/lang/String;[java
move-result-object vl3
move-object vd, v13
check-cast v4, Lcom/ iple/secrettest/Secretd ;
const/4 v5, 6
invoke-virtual v4, v9, v8, v5, Lecom/example/secrettest/Secretd;->sum2(I I

FIGURE 9: Caller part of changed method with code splitting.
Lcom/example/secrettest
com/example/secrettest/rStUVNacyALA extends [com/example/secrettest/Secretd
method: <init> () [public constructor] size:4
method: sum2 (I I I)I [public] size:3
Ficure 10: Split code stored in IoT devices.
sum-BB@Ox0 :
(00000000) add-int v0, vl, v2
(00000004) return v0
sum-BB@Ox0 :
const-string v0, ‘com.example.secrettest.FpWcUBZgSvRa’
const-string v3, ‘sum’
const/4 vl, 2
new-array vl, vl, [Ljava/lang/Object;
invoke-static v4, [Ljava/lang/Integer;->valueOf (I)Ljava/lang/Integer;
move-result-object v4
const/4 v2, 0
aput-object vd, vl, v2
invoke-static v5, Ljava/lang/Integer;->valueOf(I)Ljava/lang/Integer;
move-result-object v5
const/4 v2, 1
aput-object v5, vl, v2
invoke-static v0, v3, vl, Ledu/ssu/msec/sot/a;->gStatic(Ljava/lang/S
move-result-object vo0
check-cast v0, Ljava/lang/Integer;
invoke-virtual v0, Ljava/lang/Integer;->intValue()I
move-result v0
return v0
FiGure 11: Static method definition part with the proposed scheme.
TaBLE 3: Comparison of launching time.
Lifestyle apps Banking apps Finance apps Education apps Test apps
Original app 0.31 (sec) 0.98 (sec) 0.19 (sec) 1.00 (sec) 0.14 (sec)
App with split code 0.44 (sec) 1.14 (sec) 0.32 (sec) 1.13 (sec) 0.28 (sec)

TABLE 4: Feature comparison between code protection solutions.

DexProtector DexGuard AppContainer
Class protection Encryption Encryption Code splitting
Method protection Encryption Encryption Code splitting
Reversing resistance Static Static Dynamic

Side effect —

— Device authentication

6.3. Feature Comparison. Table 4 shows the feature com-
parison of AppContainer with typical commercial tools for
software code protection for Android. The existing tools

such as DexGuard [23] and DexProtector [24] adopt en-
cryption to protect methods and classes, but the proposed
scheme utilizes code splitting to protect the code without

10

encryption. Since Android bytecode can automatically re-
cover encrypted code by using advanced dynamic analysis
tools [25], the existing tools with encryption can prevent
static analysis, but have the disadvantage of being exposed to
dynamic analysis. On the other hand, the proposed App-
Container does not expose the complete code even when
attempting dynamic analysis of the partial app because a part
of the code exists in the external device. Therefore, the
proposed scheme can resist dynamic analysis as well as static
analysis without applying any encryption techniques. Recall
that the split code is physically stored on an external device,
and the partial app is stored on a smartphone. In the
proposed scheme, since the code works normally only when
the pair of partial app and split code must match each other,
the app runs normally means that the external device that
stores the split code can be trusted. In other words, this
means that device authentication is obtained as a side effect.

7. Conclusion

As many apps require personal information, such as smart
banking, SNS, and e-mail, the importance of personal in-
formation protection is also increasing. However, most users
keep their auto-login status by storing their ID and password
even though they are apps with sensitive personal infor-
mation for convenience. Smartphones are protected by
various authentication methods such as the PIN, patterns,
and biometric information authentication, but they fall short
of providing the utmost security of personal information.
Thus, we proposed a scheme that protects the app from
unauthorized users by assigning control of app execution by
merely installing the app without modifying the platform of
the smartphone.

The AppContainer is designed to meet the following
design goals. First, an app with the proposed scheme re-
quires user authentication before running the app so that
unauthorized users cannot run the app itself. The App-
Container is responsible for receiving the split code from the
IoT device and communicating it with the app. Therefore,
only authenticated users who have a split code on the IoT
device can run the app through the AppContainer. Secondly,
it can be applied simply as an app-level protection technique
rather than a platform modification. Existing protection
techniques have enhanced the security by changing the
platform of the smartphone, but since the proposed scheme
does not require any platform change, it can be used on any
platform by any user.

In addition, the AppContainer shows a list of apps with
code splitting so that the user can recognize which apps have
code-based authentication. Just in case, if the misbehaving
app is reinstalled due to a repackaging attack, it is excluded
from the list so that users can easily recognize that it is not an
existing app. In conclusion, the proposed AppContainer is
expected to prevent personal information leakage by ef-
fectively avoiding app execution by unauthorized users. As a
future work, we intend to expand and develop the proposed
scheme by applying the code splitting technique not only to
Android but also to various embedded software such as
smart vehicles, robots, and drones.

Mobile Information Systems

Data Availability

All data generated or analysed during this study are included
in this published article.

Disclosure

The authors disclose that this manuscript is an expanded and
improved version of the master’s thesis [26] by the first
author, S. Kim.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the Institute for In-
formation & Communications Technology Promotion
(IITP) grant funded by the Korea Government (MSIT) (No.
2017-0-00168, Automatic Deep Malware Analysis Tech-
nology for Cyber Threat Intelligence) and in part by the Mid-
Career Researcher program through the National Research
Foundation of Korea (NRF) funded by the MSIT (Ministry
of Science and ICT) under Grant NRF-2020R1A2C2014336.

References

[1] M. Chau and R. Reith, “Smartphone market share,” 2020,
https://www.idc.com/promo/smartphone-market-share/.

[2] W. Winder, “28 million android phones exposed to “eye-opening”
attack risk,” 2020, https://www.forbes.com/sites/daveywinder/
2019/08/03/28-million-android-phones-exposed-to-eye-opening-
attack-risk/#761afc4a7b74.

[3] M. A. Ferrag, L. Maglaras, A. Derhab, and H. Janicke, “Au-
thentication schemes for smart mobile devices: threat models,
countermeasures, and open research issues,” Telecommuni-
cation Systems, vol. 73, no. 2, pp. 317-348, 2020.

[4] Z. Lin, W. Meng, W. Li, and D. S. Wong, “Developing
cloudbased intelligent touch behavioral authentication on
mobile phones,” in Deep Biometrics, pp. 141-159, Springer,
Berlin, Germany, 2020.

[5] A. O. Ekpezu, E. E. Umoh, F. N. Koranteng, and
J. A. Abandoh-Sam, “Biometric authentication schemes and
methods on mobile devices: a systematic review,” in Modern
Theories and Practices for Cyber Ethics and Security Com-
pliance, W. Yaokumah, M. Rajarajan, J. Abdulai, I. Wiafe, and
F. A. Katsriku Eds., IGI Global, Hershey, PA, USA, pp.
172-192, 2020.

[6] Q. Li, P. Dong, and J. Zheng, “Enhancing the security of

pattern unlock with surface EMG-based biometrics,” Applied

Sciences, vol. 10, no. 2, p. 541, 2020.

M. Guerar, L. Verderame, A. Merlo, F. Palmieri, M. Migliardi,

and L. Vallerini, “CirclePIN: a novel authentication mecha-

nism for smartwatches to prevent unauthorized access to IoT

devices,” ACM Transactions on Cyber-Physical Systems, vol. 4,

no. 3, pp. 1-19, 2020.

[8] J.-H. Jung, J. Y. Kim, H.-C. Lee, and J. H. Yi, “Repackaging
attack on android banking applications and its counter-
measures,” Wireless Personal Communications, vol. 73, no. 4,
pp. 1421-1437, 2013.

[9] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen, “I-arm-
droid: a rewriting framework for in-app reference monitors

[7

https://www.idc.com/promo/smartphone-market-share/
https://www.forbes.com/sites/daveywinder/2019/08/03/28-million-android-phones-exposed-to-eye-opening-attack-risk/#761afc4a7b74
https://www.forbes.com/sites/daveywinder/2019/08/03/28-million-android-phones-exposed-to-eye-opening-attack-risk/#761afc4a7b74
https://www.forbes.com/sites/daveywinder/2019/08/03/28-million-android-phones-exposed-to-eye-opening-attack-risk/#761afc4a7b74

Mobile Information Systems

for android applications,” Mobile Security Technologies,
vol. 2012, no. 2, pp. 1-7, 2012.

[10] R.Xu, H. Saidi, and R. Anderson, “Aurasium: practical policy
enforcement for android applications,” in Proceedings of the
21st USENIX Security Symposium, Bellevue, WA, USA, 2012.

[11] B. Davis and H. Chen, “RetroSkeleton: retrofitting android
apps,” in Proceedings of the 11th Annual International Con-
ference on Mobile Systems, Applications, and Services, Taipei,
Taiwan, 2013.

[12] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von
Styp-Rekowsky, “Appguard-real-time policy enforcement for
third-party applications,” Technical report A/02/2012, Saar-
land University, Saarbriicken, Germany, 2012.

[13] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna, “NJAS:
sandboxing unmodified applications in non-rooted devices
running stock android,” in Proceedings of the 5th Annual
ACM CCS Workshop on Security and Privacy in Smartphones
and Mobile Devices, Denver, CO, USA, 2015.

[14] Go Launcher, 2020, http://www.goforandroid.com/.

[15] ADW Launcher, 2020, http://jbthemes.com/anderweb/.

[16] LauncherPro, 2020, http://www.launcherpro.com/.

[17] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von
Styp-Rekowsky, “Boxify: full-fledged app sandboxing for
stock android,” in Proceedings of 24th USENIX Security
Symposium, Washington, DC, USA, 2015.

[18] J. Yoo and J. H. Yi, “Code-based authentication scheme for
lightweight integrity checking of smart vehicles,” IEEE Access,
vol. 6, pp. 46731-46741, 2018.

[19] Oracle, “Understanding signning and veification,” 2020,
https://docs.oracle.com/javase/tutorial/deployment/jar/intor.
html.

[20] H. Kim, N. Agrawal, and C. Ungureanu, “Examining storage
performance on mobile devices,” in Proceedings of the 3rd
ACM SOSP Workshop on Networking, Systems, and Appli-
cations on Mobile Handhelds, Cascais, Portugal, 2011.

[21] ASMDEX, 2020, http://asm.ow2.org/doc/tutorial-asmdex.
html.

[22] Android Open Source Project, 2020, https://source.android.
com/index.html.

[23] DexGuard, 2020, https://www.guardsquare.com/en/products/
dexguard.

[24] DexProtector, 2020, https://dexprotector.com/.

[25] H. Cho, J. H. Yi, and G.-J. Ahn, “DexMonitor: dynamically
analyzing and monitoring obfuscated android applications,”
IEEE Access, vol. 6, pp. 71229-71240, 2018.

[26] S. Kim, “Self-controllable mobile app protection scheme
based on binary code splitting,” Master degree thesis, Soongsil
University, Seoul, Republic of Korea, 2017.

11

http://www.goforandroid.com/
http://jbthemes.com/anderweb/
http://www.launcherpro.com/
https://docs.oracle.com/javase/tutorial/deployment/jar/intor.html
https://docs.oracle.com/javase/tutorial/deployment/jar/intor.html
http://asm.ow2.org/doc/tutorial-asmdex.html
http://asm.ow2.org/doc/tutorial-asmdex.html
https://source.android.com/index.html
https://source.android.com/index.html
https://www.guardsquare.com/en/products/dexguard
https://www.guardsquare.com/en/products/dexguard
https://dexprotector.com/

