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Signal-to-noise ratio (SNR) estimation is a fundamental task of spectrum management and data transmission. Existing methods
for SNR estimation usually suffer from significant estimation errors when SNR is low. *is paper proposes a deep learning (DL)
based SNR estimation algorithm using constellation diagrams. Since the constellation diagrams exhibit different patterns at
different SNRs, the proposed algorithm achieves SNR estimation via constellation diagram recognition, which can be easily
handled based on DL. *ree DL networks, AlexNet, InceptionV1, and VGG16, are utilized for DL based SNR estimation.
Experimental results show that the proposed algorithm always performs well, especially in low SNR scenarios.

1. Introduction

Signal-to-noise ratio (SNR), which defines the difference in
level between the signal and the noise, is one of the most
important parameters for spectrum management [1],
channel resource allocation [2, 3], transmission power
control [4], and adaptive modulation and coding [5].

Based on whether auxiliary data is needed, existing SNR
estimation methods can be divided into two groups, data-
aided (DA) algorithms [6] and non-data-aided (NDA) al-
gorithms [7]. *e former are able to achieve high estimation
accuracy but have to transmit a pilot sequence [8]. *e latter
require little prior information about the signal and in-
creasingly become prevalent choices.

For NDA algorithms, an estimator based on the second-
and fourth-order moments (M2M4) is used for SNR esti-
mation in [9]. Higher-order moments are exploited to es-
timate SNR in multiple antenna systems according to [10].
In [11], sixth-order statistics based SNR estimation is pro-
posed for the signals with two different amplitude levels.
SNR estimation based on metric normalization frequency in
Viterbi decoder is discussed in [12]. SNR of orthogonal
frequency division multiplexing signal without the knowl-
edge of any pilot sequences is estimated by the use of cyclic

prefix in [13]. In [14], how to use a look-up table for SNR
estimation based on rank discrimination test is depicted. In
[15], a modified SNR estimation algorithm based on singular
value decomposition is investigated. In order to alleviate the
impact of signal leakage that impairs the performance of
SNR estimation, a weighting operator is suggested to predict
and retrieve the leaked signal in [16]. Although these al-
gorithms do not require pilot sequences, they usually suffer
from significant estimation errors, especially when SNR is
very low.

In recent years, with the prosperity of deep learning
(DL), DL based communications techniques have
attracted great attention. In [17], an intelligent eye-dia-
gram analyzer based on convolutional neural networks
(CNNs) is constructed for performance monitoring in
optical communications. In [18, 19], DL based mobile
traffic classification is discussed. In [20], multiple input
multiple output detection using deep neural networks is
investigated. Some applications of CNNs in wireless
communications are summarized in [21]. Due to the fact
that the constellation diagrams of different modulation
types are markedly different, [22] utilizes CNNs to rec-
ognize constellation diagrams and achieve DL based
modulation classification.
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Note that constellation diagrams also exhibit different
patterns at different SNRs. When SNR is higher, the points
on constellation diagrams are more concentrated. Other-
wise, the points are more scattered.*erefore, DL based SNR
estimation may be similarly achieved via constellation di-
agram recognition.

*is paper focuses on DL based SNR estimation using
constellation diagrams. *e issue of SNR estimation is
converted into a problem of constellation diagram recog-
nition and solved by DL. *e proposed algorithm comprises
two stages. In the off-line training stage, a CNN model is
trained by the use of a large number of constellation dia-
grams labeled by the SNR values. In the online estimating
stage, the received signal is preprocessed into a constellation
diagram and fed into the trained CNN model, with which
the SNR of the received signal is estimated.

*e rest of this paper is organized as follows. Section 2
formulates the signal model as well as the SNR estimation
task. Section 3 introduces two traditional algorithms for SNR
estimation. Section 4 illustrates the detailed steps of the DL
based SNR estimation algorithm. Experiments results are

provided in Section 5. Finally, Section 6 concludes this
paper.

2. Problem Formulation

In communications systems, SNR estimation is usually
performed by the receiver, where the received signal at the
kth observation can be generally expressed as

yk(n) � hk(n) · sk(n) + ωk(n), n � 1, 2, . . . , L, (1)

where hk(n) represents the channel impact, sk(n) is the
transmitted signal, and ωk(n) stands for the additive noise
with zero mean and follows the Gaussian distribution. hk(n),
sk(n) and ωk(n) are assumed to be uncorrelated to each
other and stationary. For the nonstationary signals, one
possible solution is to split the receiving period into multiple
slots in time domain. Each slot is very short, and the signal in
each slot is approximately stationary. In a detailed way, given
a signal observation composed of L samples
yk � [yk(1), yk(2), . . . , yk(L)]T, if yk is nonstationary, we
can split it into P segments,

yk,p � yk 1 +
(p − 1)L

P
 , yk 2 +

(p − 1)L

P
 , . . . , yk

p · L

P
  

T

, 1≤p≤P. (2)

Since the length of yk,p is much shorter than yk, each
segment yk,p is approximately stationary and can be used for
SNR estimation. Our task is to estimate SNR of the received
signal, which is defined by

ck �
E hk(n) · sk(n)



2

 

E ωk(n)



2

 
. (3)

*e signal may be modulated according to various
modulation types, such as binary-phase shift keying (BPSK),
quadrature-phase shift keying (QPSK), eight-phase shift
keying (8PSK), and sixteen-phase shift keying (16PSK). *e
M-ary PSK modulated signal can be expressed as

sk(n) � e
jθn , (4)

where θn is one of the M phases spaced evenly around the unit
circle. Taking the BPSK modulated signal for example, the
amplitude of sk(n) is always 1 (|sk(n)| � 1) and the phase is
randomly either 0 or π. Figure 1 shows both the amplitude and
the phase of the BPSK modulated signal. Moreover, the cor-
responding received signal corrupted by the additive white
Gaussian noise (AWGN) channel at SNR� 6dB is also depicted.

For each type of modulation, constellation diagrams of
the received signal are obviously different at different SNRs,
as shown in Figure 2. In a detailed way, the sample points on
constellation diagrams are more scattered when SNR is
lower, and it is more concentrated when SNR is higher,
which motivates us to perform SNR estimation via con-
stellation diagram recognition.

Furthermore, the signal may be corrupted by various
channels. *ree channels, including AWGN channel, Rician
fading channel, and Rayleigh fading channel, are considered
in this paper. Figure 3 shows the constellation diagrams of
QPSK modulation at different SNRs under three channels.
Likewise, for each channel, constellation diagrams exhibit
different patterns at different SNRs, and thus SNR estima-
tion using constellation diagrams can be performed re-
gardless of channel conditions.

3. Traditional Algorithms for SNR Estimation

3.1. M2M4 Based SNR Estimation. *e derivation of M2M4
based algorithm provided in [9] for complex channel is
described below; the second moment and the fourth mo-
ment of received signal yk(n) can be calculated as

M2,k � E yk(n)
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For any M-ary PSK signal, the SNR can be estimated by

ck �
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3.2. SVR-Based SNREstimation. A parameter named signal-
to-variation ratio (SVR) based on moments is proposed in
[23], which is developed to monitor channel quality. In [9],
SVR based SNR estimation algorithm is derived in detail
under AWGN channel.

SVR based SNR estimation algorithm is a function about
parameter β in fact. When the modulated signal is a complex
signal, β is defined as

β �
E yk(n)yk(n)

∗
yk(n − 1)yk(n − 1)

∗
 

E yk(n)yk(n)
∗

( 
2

  − E yk(n)yk(n)
∗
yk(n − 1)yk(n − 1)

∗
 

.

(7)

For any M-ary PSK signal, the SNR can be estimated by

ck � β − 1 +

�������

β(β − 1)



. (8)
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Figure 1: Amplitude and phase of BPSK modulated signal as well as the received signal under AWGN channel at SNR� 6 dB.
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Figure 2: Constellation diagrams of four modulation types at
different SNRs under AWGN channel.
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Figure 3: Constellation diagrams of QPSK modulation at different
SNRs under three channels.
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4. DL Based SNR Estimation

Since DL is a powerful tool for image recognition, this
section utilizes DL to recognize constellation diagrams and
achieve SNR estimation. *e algorithm comprises two
stages, as shown in Figure 4. *e off-line training stage has
four steps, including signal generation, signal preprocessing,
data labeling, and network training, in which massive signal
observations with known SNRs are generated and utilized to
train a network model. *e online estimating stage has two
steps, including signal preprocessing and SNR inferring, in
which a signal observation with unknown SNR is pre-
processed and fed into the trained model for SNR
estimation.

4.1. Signal Generation. Considering a type of modulation, a
large amount of bits are generated and modulated. *en, the
modulated signals are transmitted over either AWGN,
Rician fading, or Rayleigh fading channel. *e power of
modulated signals is assumed to be unit, and that of noise is
randomly configured, producing massive signal observa-
tions with random SNRs following a uniform distribution.

4.2. Signal Preprocessing. *e purpose of signal pre-
processing is to convert each signal observation into a
constellation diagram. Various formats of constellation
diagram can be exploited, and this paper uses three-channel
constellation image stated in [22]. In a detailed way, L

samples of the signal observation are mapped into a 7× 7
complex plane. An exponential decay model is applied to
alleviate the information loss that resulted from signal
mapping. *e three-channel constellation image consists of
three constellation diagrams derived from the same signal
observation but different exponential decay rates. Finally, all
images are resized to a proper resolution according to the
input layer of DL network.

4.3. Data Labeling. Supervised learning is conducted to
recognize constellation diagrams. In supervised learning,
labeling is necessary to pair the input training data with the
desired output labels. For the task of DL based SNR esti-
mation, the constellation diagrams of generated signals are
labeled by the corresponding SNR values, which can be
obtained according to the powers of signal and noise in the
step of signal generation.

4.4. Network Training. CNN is one of the representative DL
networks to process image data [24]. A complete CNN
consists of one input layer, one output layer, and multiple
hidden layers. *ree CNNs, including AlexNet, Incep-
tionV1, and VGG16, are selected for network training in this
paper.

4.4.1. AlexNet. AlexNet, as the winner of the ImageNet
Large Scale Visual Recognition Challenge-2012 (ILSVRC-
2012) competition, sparked a craze for DL. AlexNet consists

of five convolutional layers and three fully connected layers,
with a 1000-way softmax layer and a total of 62378344
parameters. *ere are several reasons for AlexNet’s
breakthrough.

AlexNet adopts the Rectified Linear Unit (ReLU) to
greatly shorten the training time. It is a piecewise linear
function, and the value of ReLU is 0 when the input is less
than or equal to 0, and it is the input itself if the input is
greater than 0. ReLU can make the output of partial neurons
zero, which contributes to the sparsity of the network. At the
same time, the codependence of parameters is reduced, and
the overfitting problem can be efficiently alleviated.

*e introduction of Dropout effectively alleviates
overfitting. Dropout reduces the codependence between
nodes by randomly zeroing some weights that the hidden
layer outputs, so as to achieve regularization of the neural
network. *e computation cost can be slashed as well.

When the training data is limited, some new data can be
generated from the existing training data set through some
transformations to rapidly expand the training data. AlexNet
randomly cropped an image from 256× 256 to 227× 227 and
then flipped it horizontally.

*e principle of Local Response Normalization (LRN) is
to mimic the biologically active neurons’ inhibition of
neighboring neurons (lateral inhibition), which is simply the
normalization of neurons in the same location among dif-
ferent feature map layers. *e value is proportional to the
size of the neuron, thus increasing the generalization ability
of the network. In essence, LRN layer is designed to prevent
the saturation of activation function.

4.4.2. InceptionV1. InceptionV1, also known as GoogLe-
NetV1, is an efficient CNN classification model proposed by
Google in the ILSVRC-2014 competition. Inception module
is proposed to increase the depth and width of the network
while maintaining computational costs. In order to reduce
the thickness of the feature map, the 1× 1 convolution kernel
is added separately before the 3× 3 as well as 5× 5 convo-
lution kernels and after the max pooling layer. In addition,
global average pooling layer is utilized to replace the fully
connected layer inspired by Network In Network, which

Off-line training

Signal generation

Signal preprocessing

Signal
preprocessing

Constellation diagram

Constellation
diagram

Data labeling

Network training

Trained model

SNR Inferring

Online estimating

γkyk ^

Figure 4: Algorithm flowchart for DL based SNR estimation.
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saves computation overhead a lot, effectively alleviating
overfitting. As a 22-layer CNN, only 5000000 parameters are
owned, and its input size is 224× 224.

4.4.3. VGG16. *e core of VGG lies in the repeated use of
3× 3 convolution kernels and the 2× 2 pooling layers to
increase the depth of the network. *e VGG16 adopted in
this paper consists of 13 convolution layers and 3 fully
connected layers. One improvement of VGG16 over Alex-
Net is to replace the larger convolution kernels in AlexNet
(11× 11, 5× 5) with successive 3× 3 convolution kernels.*e
input size of VGG16 is 224× 224, and a total of 138M
parameters lead to a long training time.

Note that, different from conventional image classifi-
cation tasks, DL based SNR estimation is a regression task. In
order to handle this task, some modifications on the CNNs
are necessary. As depicted in Figure 5, the mean squared
error (MSE) is utilized instead of the cross-entropy function
as the loss function, and the loss value is employed instead of
the accuracy value as the monitor index.

In order to train the networks above, labeled constellation
diagrams are fed according to supervised learning. Partial
settings of network training are listed in Table 1.*e training is
conducted on a computing server configured with Ubuntu
16.04, Keras, CUDA, Intel i7 8700, and Nvidia GTX 1080Ti.
AlexNet, InceptionV1, and VGG16 take about 2, 9, and 20
hours, respectively, to obtain a trained network model.

4.5. SNR Inferring. In online estimating stage, the received
signal observation yk with unknown SNR is firstly pre-
processed into a constellation diagram similar to that in off-
line training stage. After that, according to the step of SNR
inferring, the constellation diagram is fed into a trained
network model derived from the off-line training stage to
infer the estimated result ck.

5. Experiments Results

5.1. Experiment Settings. In experiments, the signal may be
modulated according to different modulation types and
corrupted by different channels. For each modulation type
and channel, K � 2000 testing observations with random
SNRs uniformly distributed in a closed interval from −4 dB
to 14 dB are utilized. Each testing observation is composed of

L � 1000 samples and converted into a constellation dia-
gram. *e resolution of constellation diagrams is 227× 227
when utilizing AlexNet and is 224× 224 when utilizing
InceptionV1 and VGG16. Both the Rayleigh and Rician
fading channels are constructed by filters, where the sam-
pling interval is Ts � 10− 6 s, the maximum Doppler shift is
Fd � 50Hz, the vector of path time delays is
τ � [0, 0.004, 0.008, 0.012] s, the vector of average path gains
is PdB � [0, −3, −6, −10] dB, and the Rician factor is κ � 3.
Moreover, M2M4 based and SVR based SNR estimation
algorithms are adopted for comparison.

In our task, the signal and the noise are possibly confused
with each other. Whenmistaking the signal for the noise, the
estimated SNR value becomes smaller, causing a negative
estimation error. On the contrary, when mistaking the noise
for the signal, the estimated value becomes larger, producing
a positive estimation error. *is paper quantifies the esti-
mation errors using MSE. Based on the estimated SNR ck,
MSE can be calculated as follows:

MSE ck, ck(  �
1
K



K

k�1
ck − ck( 

2
. (9)

5.2. Performance Comparison. Figure 6 shows the MSEs of
different algorithms versus SNR for QPSK modulation
under AWGN channel. According to this figure, theMSEs of
DL based algorithms, including AlexNet, InceptionV1, and
VGG16, are all smaller than 0.055 throughout the SNR
region. However, the M2M4 based algorithm exhibits ex-
tremely high MSE when SNR is low, and so does the SVR
based algorithm. *erefore, no matter which CNN is uti-
lized, DL based SNR estimation algorithm is far better than
the traditional algorithms, especially under low SNR
scenarios.

MSE

Estimated SNRs

Feature extraction

Constellation diagrams
Low-level features High-level features

Figure 5: Network training in regression tasks.

Table 1: Partial settings of network training.

Parameters Values
Activation function Linear
Loss function MSE
Monitor index Loss
Batch size 128
Epochs 50
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5.3. Impacts of Modulation Types. In order to demonstrate
the impacts of modulation types on estimation accuracy,
Figure 7 shows the MSEs of BPSK, QPSK, 8PSK, and 16PSK
averaged in SNR under AWGN channel. For each estimation
algorithm, MSE increases with the increase of modulation
order, but the increment is not significant. *e gap of
performance between the M2M4 based algorithm and the
SVR based algorithm narrows with the increase of modu-
lation order. Furthermore, nomatter whichmodulation type
is adopted, the MSEs of three DL based algorithms are al-
ways lower than those of traditional algorithms. Among DL
based algorithms, InceptionV1 performs slightly better than
AlexNet and VGG16 and, thus, has the best estimation
accuracy.

5.4. Impacts of Channels. Besides AWGN channel, similar
experiments are conducted under Rayleigh and Rician
fading channels. InceptionV1 is taken as an example of DL
based SNR estimation algorithm. Figure 8 shows the MSEs
of two algorithms versus SNR under different channels. It
can be seen from this figure that both algorithms perform the
best under AWGN channel and the worst under Rayleigh
fading channel. Compared with the traditional algorithms,
DL based algorithm is less affected by the channel and always
superior regardless of channel conditions. In addition, the
difference of MSEs between the M2M4 based and the SVR

based algorithm is the largest under Rayleigh fading channel,
which decreases as the channel environment gets better, and
the smallest under AWGN channel.

5.5. Complexity Analysis. To analyze the computational
complexity of different algorithms, Table 2 records their
average running time of handling one testing observation.
Note that the traditional algorithms are computed with a
central processing unit (CPU) of Intel i7 8700, while DL
based algorithms are computed with a graphic processing
unit (GPU) of Nvidia GTX 1080Ti. As shown in Table 2,
traditional algorithms have the longer running time, es-
pecially the M2M4 based algorithm. Benefiting from the
parallel computing capability of GPU, the running time of
DL based algorithms is reduced. Among the three imple-
mentations of DL based algorithms, VGG16 consumes
more running time than AlexNet and less running time
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Figure 8: MSEs of two algorithms versus SNR under different channels.

Table 2: Comparison on running time.

Algorithms Running time
M2M4 based 21.11ms
SVR based 16.9ms

DL based
InceptionV1 12.46ms
VGG16 5.40ms
AlexNet 1.58ms
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than InceptionV1. It is because the network depth of
AlexNet is the smallest, and that of InceptionV1 is the
largest.

6. Conclusion

*is paper proposes a DL based SNR estimation algorithm
using constellation diagrams. *e received signal is con-
verted into a constellation diagram and recognized by
AlexNet, InceptionV1, and VGG16 for SNR estimation. No
matter which modulation is adopted and no matter which
channel is considered, the proposed algorithm is always
superior to the traditional algorithms, especially in low SNR
scenarios. Moreover, the proposed algorithm consumes less
running time and can be effectively calculated with GPU.

Our algorithm is characterized by the combination of
constellation diagram representation and CNN based re-
gression. *e former can be explored to deal with similar
communication problems, e.g., channel recognition and
interference analysis. *e latter is also beneficial for other
parameters estimation tasks in communications systems,
e.g., frequency offset estimation and time delay estimation.
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