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(e rapid development of the Internet of (ings has made the issue of privacy protection even more concerning. Privacy
protection has affected the large-scale application of the Internet of (ings. Fully Homomorphic Encryption (FHE) is a newly
emerging public key encryption scheme, which can be used to prevent information leakage. It allows performing arbitrary
algebraic operations on data which are encrypted, such that the operation performed on the ciphertext is directly transformed into
the corresponding plaintext. Recently, overwhelmingmajority of FHE schemes are confined to single-bit encryption, whereas how
to achieve a multibit FHE scheme is still an open problem. (is problem is partially (rather than fully) solved by Hiromasa-Abe-
Okamoto (PKC′15), who proposed a packed message FHE scheme which only supports decryption in a bit-by-bit manner.
Followed by that, Li-Ma-Morais-Du (Inscrypt′16) proposed a multibit FHE scheme which can decrypt the ciphertext at one time,
but their scheme is based on dual LWE assumption. Armed with the abovementioned two schemes, in this paper, we propose an
efficient packed message FHE that supports the decryption in two ways: single-bit decryption and one-time decryption.

1. Introduction

In recent years, the Internet of (ings (IoT) has become an
attractive system paradigm to drive a substantive leap on
goods and services and has been widely used in intelligent
transportation, intelligent power grid, environmental
monitoring and perception, intelligent home appliances, and
other fields. It covers traditional equipment to general
household equipment, which brings more efficiency and
convenience to the users. Because many of the data trans-
mitted in the Internet of(ings are confidential information
or personal privacy information, it usually needs to be
encrypted first. With more and more encrypted data stored
on the server, it is very frequent for us to retrieve and process
these data. Although there are some algorithms for re-
trieving encrypted data, they are only suitable for small-scale
data, and the cost is too high. (e encrypted data retrieval
method based on the Fully Homomorphic Encryption
(FHE) can solve this problem. By directly retrieving the

encrypted data, it not only ensures that the retrieved data
will not be analyzed, but also carries out homomorphic
operation on the retrieved data without changing the se-
quence of the corresponding plaintext. It can not only
protect the user’s data security but also improve the retrieval
efficiency. Since the first introduction of Gentry in 2009, the
construction and optimization of the Fully Homomorphic
Encryption scheme have been paid special attention by
researchers. However, most of the existing Fully Homo-
morphic Encryption schemes only allow cryptographic
calculations for a single bit, and the efficiency is not satis-
factory. Although the cascading (or simple combination)
approach can be used to implement message-encapsulated
calculations, the performance of such a simple message-
encapsulated FHE is not ideal.

In an application scenario, in many cases, it is necessary
to calculate data of multiple bits at a time, and thus, con-
structing an efficient Message-encapsulation Fully Homo-
morphic encryption becomes an urgent requirement. At
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present, the research in this area has made initial progress
[1, 2], which has increased the efficiency of FHE to a certain
extent, but comprehensively, its efficiency still needs to be
improved. Specifically, the following are considered:

(1) Brakerski’s scheme [1] is constructed on the basis of
the Brakerski’s [3] scheme and is a typical repre-
sentative of the second generation of FHE. But, the
latter scheme needs to implement homomorphic
calculations by calculating the evaluation key, which
increases the computational cost.

(2) Hiromasa-Abe-Okamoto (HAO) [2] is based on the
GSW [4] scheme and is a typical representative of the
third generation of FHE. HAO constructs a message-
encapsulation FHE scheme in the form of encap-
sulated messages, but it cannot implement one-time
decryption and only decrypts the ciphertext bit-by-
bit, so the scheme is still very inefficient.

An important question arises: Besides those mentioned
above, is it possible to design an efficient method to decrypt
the ciphertext of the message-encapsulation GSW-FHE
scheme at one time?

Li et al. [5] used dual Regev [6] to construct a public key
with multiple instances of the small short integer solution
(SIS). Inspired by this work, we will construct public keys
with multiple instances of LWEs (Learning with errors), and
this constructs a Message-Encapsulation FHE scheme that
can be decrypted at one time.

1.1.OurContribution. Firstly, the public key of theMessage-
encapsulation Fully Homomorphic Encryption scheme of
Hiromasa et al. [2] is as follows:

(B ≔ A · T + E(mod q) |A) ∈ Zm×t
q × Z

m×n
q . (1)

Among them are the secret matrix T⟵Zn×t
q and the

noise matrix E⟵χm×t. (en, the plaintext message is en-
capsulated in a matrix, and the public key of the above-
mentioned form is used to encrypt the message. However,
the obtained ciphertext matrix cannot recover all the
plaintext bits at one time, but can only be decrypted bit-by-
bit.

Secondly, we notice that the public key matrix of the
message-encapsulated fully homomorphic encryption
scheme constructed by Li et al. [5] is as follows:

A · e1, . . . ,A · et |A(  ∈ Zm×t
q × Z

m×n
q . (2)

Among them, there is e1, . . . ,A · et⟵χn×1. Although Li
et al.’s scheme [5] supports bit-by-bit encryption and one-
time decryption, the scheme relies on the minimum integer
solution hypothesis (see detailed analysis in [7]), and its
parameter size depends on m(m≥ n log q) instead of causing
the size of the evaluation key and the ciphertext to be too
large.

Based on the abovementioned observations, in this
paper, we construct a public key matrix first with multiple
LWE instances. Different from the typical FHE scheme
[3, 4, 8] and follow-up works [9–13], its public key matrix

contains only one LWE instance. (en, using the new public
key, we construct a message-encapsulation GSW-class FEH
scheme (MFHE). We give an overview of the scheme in the
following:

(1) Firstly, we use a new public key matrix with multiple
LWE instances as follows:

A′ � b1, . . . , bt |A  ∈ Zm×(n+t)
q . (3)

Among them, b1 � A · ti + ei(modq) and i ∈ [t] is an
LWE instance. (is is significantly different from
existing message-encapsulation PKE schemes (for ex-
ample, [14, 15]) and message-encapsulation FHE
schemes (for example, [1, 2]) and is also the funda-
mental difference between other schemes and the FHE
scheme constructed in this paper. Private keys corre-
sponding to the public key [b1, . . . , bt]|A is shaped as
follows:

ski ≔ 0, . . . , 1, . . . , 0 ti
  ∈ Z1×(n+t)

q , i ∈ [t]. (4)

(2) Next, we use the public key matrixA′ we constructed
to encrypt multibit messages. (e difference is that
we use the message-encapsulation method of Li et al.
[5] and Hiromasa et al. [2] to embed multibit
messages into the plaintext of a diagonal matrix.(at
is,

M≔ diag m1, . . . ,mt

1, . . . ,1  ∈Z(n+t)×(n+t)
q , (5)

and while constructing a private key matrix with private
keys,

S ≔ E |

t1

⋮

tt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Z
(n+t)×(n+t)
q . (6)

E(n × n) is the identity matrix, and we can get

S · M ≔ diag m1, . . . , mt( 


t1

⋮

tt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

Finally, using the matrix W ≔ [diag((q/2), . . . ,

(q/2)) | 0] we constructed, calculation of SM · GG − 1(W)

can directly recover the message vector (m1, . . . , mt) . See
Section 4 for a detailed analysis.

1.2. Organization and Structure of the Paper. (e rest of this
paper is organized as follows. In Section 2, the definitions
and symbols used in this paper are introduced. In Section 3,
we review the scheme of Gentry-Sahai-Waters et al. In
Section 4, we introduce the Message-encapsulation FHE
(MFHE) scheme we constructed. Finally, we give a summary
of the full paper in Chapter 5.
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2. Preliminaries

In this section, we give the preparatory knowledge needed,
including definitions and lemmas.

2.1. Symbols. For n ∈ N, we use [n] to represent aggregation
1, . . . , n{ }. For a real number x ∈ R, we use ⌊x⌋ to represent
the largest integer that is not greater than x,
⌊x⌋ ≔ ⌊x + (1/2)⌋ to represent the nearest integer to x. We
represent vectors in bold lowercase letters, for example, x,
and the matrix in bold uppercase letters, for example, A. In
addition, we use Ai,j to represent elements in Ai,j from row i

and column j. We use “≔” to indicate the assignment. It is
worth noting that we use the definition of computationally
indistinguishable and statistics indistinguishable and they
are represented by ≈ c and ≈ s. In addition to this, we also
define ‖v‖∞ � max |v1|, . . . , |vn|  and ‖R‖ � maxi‖ri‖. For
convenience, we use ‖v‖ to represent its l2 norm.

We need to use the following variant of the Left-over
Hash Lemma (LHL) [16].

Lemma 1 (Matrix-Vector LHL). Let λ ∈ Z, n,

q ∈ N, m≥ n log q + 2λ, r⟵R 0, 1{ }m and y⟵R Zn
q. We select a

uniform random matrix A⟵R Zm×n
q , and then, the statistical

distance of the distribution (A,ATr) and (A, y) is as follows:

Δ A,AT
· r , (A, y) ≤ 2− λ

. (8)

2.2. Learning with Errors (LWEs). LWEs is the main com-
putational assumption that cryptosystems and our variants
rely on.

Definition 1 (LWE Distribution). For safety parameters, let
n � n(λ) and m � m(λ) be integers, let χ � χ(λ) be the Z

error distribution with the bound of B � B(λ), and let q �

q(λ)≥ 2 be an integer modulo of any polynomial p � p(λ)

that meets q≥ 2p · B. (en, we select a vector s ∈ Zn×1
q and

call it a secret, the LWE distribution As,χ in Zn
q × Zq is

selected uniformly and randomly, and we select e⟵χm×1

and output (A, b � A · s + e(modq)).
(ere are two kinds of the LWE hypothesis: the search-

LWE and the decision-LWE.(e decision-LWE is defined as
follows:

Definition 2 (Decision-LWEn,q,χ,m). Assume an independent
selected (A, b) ∈ Zm×n

q × Zm×1
q , which is selected according

to one of the following distributions: (1) for As,χ from a
uniform and random s ∈ Zn

q (i.e., (A, b):{

A⟵Zm×n
q , s⟵Zn×1

q , e⟵χm×1, b � A · s + e(modq)}) or
(2) uniform distribution (i.e., (A, b): A⟵Zm×n

q ,

b⟵Zm×1
q }). (e two distributions mentioned above are

computable indistinguishable.

Note 1. Regev and others [6, 17–19] introduce the con-
vention between the approximate shortest vector problem
(for appropriate parameters) in the LWE hypothesis. We

have omitted the lemma of the results of these schemes; see
[6, 17–19] for details.

2.3. Discrete Gauss. In our structure, we need to analyze the
behavior of choosing the wrong element from the Gaussian
distribution.

Definition 3 (B Bounded [3]). A distribution χ � χ(λ) on an
integer if the following exists:

Pr
x⟵$ χ

[|x|≥B]≤ 2− Ω(n)
, (9)

and then, it is called B-bound (represented as |χ|≤B).
For the analysis of our scheme, the vector selected from

the Gaussian distribution needs to have a certain bound on
its norm.

Lemma 2 (See [20]). 1. For ∀k> 0,Pr[|e|>
k · σ, e⟵D1

σ]≤ 2 · exp(− (k2/2)); 2. for ∀k> 0, there is
Pr[‖e‖> k · σ ·

��
m

√
e⟵Dm

σ ]≤ km · exp((m/2)· (1 − k2))

=erefore, in this paper, we set |e|≤B and ‖e‖≤ 2
��
m

√
B.

In this paper, we assume σ ≥ 2
�
n

√
. So, if e⟵Dm

σ , then on
average, ‖e‖ ≈

��
m

√
· σ. It can be known from Lemma 2.2 (2)

that there is a high possibility that ‖e‖≤ 2σ
��
m

√
. =erefore, in

this paper, we set |e|≤B and ‖e‖≤ 2
��
m

√
B.

2.4. Leveled Fully Homomorphic Encryption. In public-key
cryptography, the cipher keeps a public key and encrypts the
message in order that the corresponding private key holder
can recover the original plaintext message.

Definition 4 (See [21]). Let a fixed function L � L(λ) be the
level of Fully Homomorphic Encryption. For a kind of
circuit Cλ λ∈N, the L-FHE scheme includes four Probabi-
listic Polynomial Times (PPTs), and the algorithm is as
follows:

(KeyGen,Enc,Dec,Eval). (10)

(e key generation algorithm (KeyGen) is a random-
ization algorithm that inputs security parameters 1λ
and outputs public keys (pk) and private keys (sk)
(e encryption algorithm Enc is a randomization al-
gorithm that inputs a public key (pk) and a message
m ∈ 0, 1{ }∗ and outputs a ciphertext c

(e decryption algorithm Dec is a deterministic al-
gorithm that inputs the private key sk and ciphertext
and outputs the decrypted message m ∈ 0, 1{ }∗

(e homomorphic algorithm Eval inputs a public key
pk, a circuit C ∈ Cλ, and a sequence of ciphertexts
c1, . . . , cℓ(λ), here let ℓ(λ) be a polynomial related to λ
the and outputs the computed ciphertext c⋆

(e correctness requirements are as follows:
For arbitrary λ, m ∈ 0, 1{ }∗ and (pk, sk) output by
KeyGen(1λ), we have

Mobile Information Systems 3



m � Dec(sk, (Enc(pk, m))). (11)

For arbitrary λ, arbitrary m1, . . . , ml ∈ 0, 1{ }∗, and
C ∈ Cλ, we have

C m1, . . . , mℓ(  � Dec sk, Eval pk, C,Enc pk, m1( , . . . ,Enc pk, mℓ( ( ( ( ( . (12)

Definition 5 (CPA Security [21]). One FHE scheme is in-
distinguishable from the choice of plaintext attack
(IND − CPA): the condition that security needs to be sat-
isfied is that for any PPT adversary A, the following
probabilities related to are negligible:

|Pr A pk, Enc pk, m0( (  � 1 ,

− Pr A pk, Enc pk, m1( (  � 1 
 � negl(λ).

(13)

Among them, (pk, sk)⟵KeyGen(1λ) and m0 · m1 is
arbitrarily selected from the plaintext space by the adversary.

(e security definition of a message-encapsulation GSW
(MFHE) is the same as GSW for a single bit. Because in
public key settings, the security of single message encryption
implies the security of multiple message encryption. See
section 11 in [22] for more details.

Definition 6 (Compactness [21]). For a class of loops
Ck k∈N, if there is a polynomial α � α(λ) such that the
length of output ciphertext of Eval is at most α, then an L

Fully Homomorphic Encryption is compact (if it is non-
trivial, then for all λ, some C ∈ C{ }λ, and we have α(λ)≤ |C|).

2.5. Basic Tools. Let us review some of the basic tools
proposed by Brakerski and Vaikuntanathan [23] and Gentry
et al. [4].We fix q, m ∈ N. Let l � log(q) + 1, and therefore,
2l− 1 ≤ q< 2l and N � m · l.

Definition 7 (See [24, 25]). (e algorithm BitComp enters a
vector v ∈ Zm

q and outputs an N-dimensional vector
(v1,0, . . . , v1,l− 1, . . . , vm,0, . . . , vm,l− 1)

T ∈ 0, 1{ }N where vi,j is
the j bit in the binary representation of vi (sorted by
minimum impact to maximum impact). In other words,

vi � 

l− 1

j�0
2j

vi,j. (14)

Definition 8 (See [24, 25]). Algorithm enters a vector

v � v1,0, . . . , v1,l− 1, . . . , vm,0, . . . , vm,l− 1 
T
∈Nq (15)

and output (
l− 1
j�02j, . . . , v1,j, . . . , 

l− 1
j�02

jvm,j )T∈mq .
Note that the input vector v does not need to be binary

and any of the input vector algorithms in ZN are already
defined.

Definition 9 (See [24, 25]). (e algorithm Flatten enters a
vector v ∈ ZN

q and outputs an N-dimension binary vector
(i.e., an element from 0, 1N) defined as

Flatten(v) � BitDecomp BitDecomp− 1
(v) . (16)

Definition 10 (See [24, 25]). (e algorithm PoweOftwo
enters an m-dimension vector v ∈ ZN

q and outputs an
N-dimension vector in ZN

q . (e output is as follows:

v1, 2v1, . . . , 2l− 1
v1, . . . , vm, 2vm, . . . , 2l− 1

vm 
T

. (17)

Lemma 3 (See [26]). For any N≥mlog q, there is a fixed
effective computable matrix G ∈ Zm×N

q and a valid com-
putable deterministic “short-image” function G− 1(·) that
meets the following conditions. For arbitrary m′, we enter a
matrix M ∈ Zm×m′

q and the inverse function G− 1(M) outputs
a matrix G− 1(M) ∈ 0, 1{ }N×m′ so that GG− 1(M) � M.

Note 2. In fact, we can also express the abovementioned
definitions and results as follows using the language ofG and
G− 1. Micciancio and Peikert’s [26] matrix G can be
expressed as G � Im ⊗∈ Zm×N

q , where
g � (1, 2, 4, . . . , 2l− 1)T. For v ∈ Zm

q , there is (v) � vTG. For
v ∈ ZN

q , there is BitDecomp− 1(v) � Gv. For a ∈ Zm
q , the

algorithm BitDecomp(a) is renamed as G− 1(a). For v ∈ Zm
q ,

there is PowerOf two(v) � vTG. For v ∈ ZN
q , there is

BitDecomp− 1(v) � Gv. For a ∈ Zm
q , the algorithm

BitDecomp(a) is renamed as G− 1(a).

3. Gentry–Sahai–Waters (GSW) Scheme

Before our work, we first review the GSW scheme and, then,
summarize the safety of the scheme of Gentry et al. [4].

We review the algorithms which make up the GSW
scheme [4]. (ese algorithms were originally defined based
on functions BitDecomp, BitDecomp− 1, and Flatten, but the
ideas from [19, 27] borrowed into this paper are defined
using tool matrixG. Let λ be the security parameter and L be
the number of levels of homomorphic encryption.

GSW.Setup(1λ, 1L):

(1) Select a module q of bitK � mathcalK(λ, L), error
distribution χ � χ(λ, L) on the parameter
n � n(λ, L) ∈ N and Z, so that the (q, n, χ) − LWE
problem is at least 2λ secure for known attacks.
Choose a parameter m � m(λ, L) � O(n log(q)).

(2) Output: params � (n, q, χ, m). We express
l � log(q) + 1 and N � (n + 1) · l.

GSW.KeyGen(params):

(1) Select t � (t1, . . . , tn)T⟵Zn
q and calculate

4 Mobile Information Systems



s⟵ 1, − tT 
T

� 1, − t1, . . . , − tn( 
T ∈ Z(n+1)×1

q . (18)

(2) Generate a matrix B⟵Zmm×n
q and a vector e⟵χm.

(3) Calculate b � Bt + e ∈ Zm
q and construct matrix

A � (b | B) ∈ Zm×(n+1)
q . Obviously, we observed.

(4) Return to sk⟵s and pk⟵A.
GSW.Enc(params, pk, μ): in order to encrypt a
single-bit message μ ∈ 0, 1{ },

(1) Let G be the abovementioned matrix (n + 1) × N

(2) Select a matrix R⟵ 0, 1{ }m×N evenly
(3) Calculate

C � μG + A
TR(mod q) ∈ Z(n+1)×N

q (19)

In the original GSW scheme,
Flatten(μI + BitDecomp(RA)) ∈ 0, 1{ }N×N, where I is
an identity matrix.
GSW.Dec(params, sk, C):

(1) We have sk � s ∈ Zn+1
q .

(2) Let I meet (q/4)< 2I− 1 ≤ (q/2). Let CI be column I

of C.
(3) Calculate x⟵〈CI, s〉(mod q) within the scope of

(− (q/2), (q/2)]; note 〈CI, s〉 � CT
I s and

CTs � μGTs + RTAs � μ(1, 2, 4, . . .)
T

+ RTe. (20)

From that mentioned above, it can be seen that column
I of the ciphertext matrix C selected in the calculation
corresponds to coordinate I of the vector 〈CI, s〉, i.e.
μ2I− 1 + RT

I e.

(4) Output μ′ � |(x/2)I− 1

.

So, if it is |x|< 2I− 2 ≤ (q/4), then it returns to 0, and if it
is |x|> 2I− 2, then it returns to 1.
GSW.Eval(params, C1, . . . , Cl):
GSW.Mult(C1,C2): calculate and output

C1G
− 1 C2(  � μ1G + ATR1 G− 1 C2( 

� μ1C2 + ATR1G
− 1 C2( 

� AT R1G
− 1 C2(  + μ1R2 + μ1μ2G(modq) .

(21)

GSW.Add(C1,C2) ∈ Z(n+1)×N
q : output

C1 + C2 � μ1 + μ2( G + AT R1 + R2( . (22)

Note that C1G− 1(C2) ∈ Z(n+1)×N
q . In addition, use G −

C1G− 1(C2) to calculate homomorphic NAND gates.

Note 3. Note that, in [19], the decryption algorithm is to
select a suitable vector w and calculate sCG− 1(wT). It is

much less efficient than the original one (all about calcu-
lation time and error item size). So, we used the GSW
decryption algorithm in our scheme.

When q is a power of 2, there is also a variant of the
message in Zq. See more details in [4].

3.1. Security. A brief proof of the following theorem is given
in [4].

Theorem 1. Let (n, q, χ) be public parameter so that the
LWE(n,q,χ) hypothesis is true, and let m � O(n log(q)). =en,
we can say that the GSW scheme is IND − CPA safe.

=e most important step of the proof is to prove that
(A,RA) and the uniform distribution is computational
indistinguishable.

Note 4. (e correctness of the GSW scheme is obtained by
analyzing the scale of the noise during encryption, de-
cryption, and homomorphism. Always ensure that the
maximum noise level in the abovementioned process is still
less than 1/4, which can be decrypted correctly. (is work is
not the focus of this paper, so it will not be repeated. See
more details [4].

4. Message-Encapsulation FHE

4.1. Message-Encapsulation FHE (MFHE Scheme). Now, we
introduce our MFHE scheme as follows: a message-en-
capsulation public-key encryption scheme based on the
difficulty of the LWE hypothesis. We give the security pa-
rameter λ, set t to be the private keys number, and then, can
encrypt the t-bit messages at one time.

Let q � q(λ) be an integer, and let χ � χ(λ) be a dis-
tribution set on Z. (e definition of the variant of the GSW
scheme is similar to the cryptosystem proposed in
[19, 27, 28]. More specifically,

params⟵MFHE.Setup(1λ, 1L):

(1) In particular, we first select the modulo q � q(λ),
and the dimension of lattice n � n(λ, L). We ap-
propriately select the error distribution for
χ � χ(λ, L) for 2λ security against known LWE
attacks, Finally, we select the parameter
m � m(λ, L) � O(n log q) and a parameter
t � O(log(n)).

(2) Let l � log q + 1 and N � (n + t) · · · l, and then,
output params � (n, q, χ, m, t).

(pk, sk)⟵MFHE.KeyGen(params):

(1) For i ∈ [t], select tT
i � (ti,1, . . . , ti,n) from Z1×n

q and
output

ski≔ si � Ii ∣ − tTi 
T

� 0, . . . ,1, . . . ,0 | − ti,1, . . . , − ti,n 
T
∈Z(n+t)×1

q ,

(23)

the i position of which is 1.
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(2) Select a matrix B⟵Zm×n
q and t vectors ei⟵χm×1,

i ∈ [t] evenly, and then, calculate
bi � B · ti + ei(mod q) and output

pk � P � b1| · · · |bt |B  ∈ Zm×(n+t)
q , (24)

where the size of pk is O(nm · log2 q). In addition, we
observed that P · si � ei(mod q).

(3) Output pk⟵P and sk⟵S ≔ s1, . . . , st . It is
worth noting that P · S � [e1, . . . , et](mod q).

C⟵MFHE.Enc(params, pk,M):

(1) To encrypt t-bit μi ∈ 0, 1, μi ∈ 0, 1, embed the t bits
into a (t × t)-dimension matrix first,
U � diag(μ1,1, . . . , μt,t) ∈ 0, 1t×t, where μi,j � 0,
i≠ j, and j ∈ [t]. Later, for simplicity, μi,j will be
abbreviated as μi, and the message matrix is con-
structed using a plaintext matrix U.

M �
Ut×t 0t×n

0n×t En×n

  ∈ 0, 1{ }
(n+t)×(n+t)

, (25)

where U is a random diagonal matrix, and note that E
is a (n × n)-dimensional matrix.

(2) (en, select a uniform matrix R⟵0, 1m×N. Cal-
culate and output cipher text:

C � M · G + PT
· R(mod q) ∈ Z(n+t)×N

q . (26)

Now, we propose a decryption algorithm for the
MFHE scheme which allows us to recover all the
message bits at the one time.
U⟵MFHE.Dec(params, pk,C):

(1) First, assume that the user has a private key matrix
S � (s1, . . . , st) ∈ Z(n+t)×t

q as follows:

S ≔ s1, . . . , st(  �

1 · · · 0

⋮ ⋱ ⋮

0 · · · 1

− t1,1 · · · − tt,1

⋮ ⋱ ⋮

− t1,n · · · − tt,n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

What needs to be noted here is

P · S � b1 − Bt1, . . . , bt − Bbt  � e1, . . . , et  mod ∈ Zm×t
q .

(28)

(erefore, it is easy for us to get the bound of P · S

which is less than or equal to t|e|, i.e. ‖P · S‖≤ t|e|.

(2) Define the matrix WZt×((+t)
q as follows:

WT ≔

⌈
q

2
⌉ · · · 0

⋮ ⋱ ⋮

0 · · · ⌈
q

2
⌉

0 · · · 0

⋮ ⋱ ⋮

0 · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

(3) Calculate and output

Vi,j � 〈S,C〉 · G− 1 WT
 (mod q) ∈ Zt×t

q . (30)

Among them, we have 〈S,C〉 ∈ Zt×t
q , i.e.,

〈S,C〉 �STPTR+STMG� e1, . . . ,et 
TR+STMG(modq).

(31)

(4) Finally, use the results mentioned above to output
the complete message U � ‖Vi,j/(q/2))

����� ∈
0, 1{ }t×t.
MFHE.Eval(params,C1, . . . ,Cl):there are two algo-
rithms, which are, homomorphic addition and homo-
morphic multiplication. For any two plaintext matrices
U1,U2 ∈ 0, 1{ }t×t, we get the ciphertext separately.

C1 � M1 · G + PT
· R1,

C2 � M2 · G + PT
· R2.

(32)

(erefore, the homomorphic addition and multipli-
cation are as follows:
MFHE.Mult(C1,C2) ∈ Z(n+t)×N

q : output

C1G
− 1 C2(  � M1G + PTR1  · G− 1 C2(  � PTR1G

− 1 C2( 

+ M1P
TR2 + M1M2G(mod q).

(33)

MFHE.Add(C1,C2) ∈ Z(n+t)×N
q : outputC1 + C2

� (M1 + M2)G + PT(R1 + R2).
Here, we can calculate a homomorphic NAND gate
from the output.

Note 5. Generally, we can choose different private keys ski to
decrypt column j of the ciphertext Cj bit-by-bit and get the i
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bit message of Cj, that is, we can get the bit in row i and
column j under the i private key. However, it is actually
possible to recover the entire message using the private key
matrix S based on the abovementioned decryption algo-
rithm. We calculate Vi,j � STC · G− 1(WT) as follows:

Vi,j � ⌈
q

2
⌉ · U +

eT
1R

⋮

eT
t R

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· G− 1 WT

  ∈ Zt×t
q . (34)

(emagnitude of the noise can be simply calculated and
verified to grow linearly compared to single-bit decryption
algorithm.

μi,j⟵MFHE.bitDec(params, ski,C,wj):

(1) Suppose we want to decrypt the bit μi,j of row i and
column j, so let ski � si ≔ , then define a vector so
that the position is, and the other positions are 0,
j ∈ [t].

wT
j � 0, . . . , ⌈

q

2
⌉j, . . . , 0

√√√√√√√√√√√√√√
t

0, . . . , 0√√√√√√
n



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (35)

(2) For i, j to t, calculate

]i,j � sT
i C · G− 1 wT

j (mod q) ∈ Zq. (36)

(e inner product of 〈si,C〉 equals to

sT
i P

TR + sT
i MG � eT

i R + sT
i MG(mod q)Z

1×N
q . (37)

(3) Output a message μi,j � ‖Vi,j/(q/2))
����� ∈ 0, 1{ }, in

which ⌊ · ⌋ represents the operation that rounds to
the nearest integer. (erefore the value belongs to
0, 1{ }. 4. Finally, by repeating it t2 times, the entire
message can be recovered.(e bitDec algorithm here
is similar to the algorithm in [2], which is achieved by
recovering each element separately.

Note 6. It should be noted here that due to the structural
characteristics of the public key in our scheme, accurate
decryption is achieved by dynamically adjusting the position
of ⌈(q/2)⌉ in the vector w. (at is, dot-multiply sT

i C and
G− 1(wj) to obtain the bits of the row and column of the
plaintext matrix.

We can get all the bits of the message by using the bitDec
decryption algorithm and appropriate private key.

Note 7. It can be seen that our message-encapsulation GSW
scheme is to implement t × t-bit homomorphic addition.
However, since the (i, j) element ofU1 × U2 is not a product
of μ1i,j

× μ2i,j
, only t-bit homomorphic multiplication is

supported.

4.2.CorrectnessAnalysis. Next, we analyze the correctness of
the MFHE scheme.

Definition 11. We call the message matrix U ∈ Zt×t
q which is

obtained by decrypting the ciphertext under t different
private keys si, i ∈ [t] (see (2)). (e noise of a single-bit
message is as follows:

noise si ,M( ) � sT
i C − sT

i MG � sT
i P

TR � eT
i R. (38)

For flexible single-bit decryption algorithm bitDec, we
represent the noise vector as noise ∈ Z1×N

q . For simplicity,
we abbreviate noise(si ,M)(C) to noisesi

whenM and C do not
affect the contextual understanding.

Note that, in our setup, due to the structure of the new
public key, noisesi

is the noise of row i of the plaintext matrix
U, not the single-bit noise.

Lemma 4. Obviously, using Definition 4.1, for convenience,
for a decryption algorithm Dec, if the noise meets

Noise(S,M)(C) � ST
· PT

· R �

noises1
⋮

noisest

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(modq), (39)

where S � [s1, . . . , st] is a one-time private key matrix, we can
represent the entire noise matrix as

Noise(S,M)(C) � noises1
, . . . , noisest

 
T
∈ Zt×N

q . (40)

For convenience, we will abbreviate Noise(S,M)(C) as
NoiseS when M and C do not affect the contextual
understanding.

In order to analyze the correctness, for convenience, we
first define the following noise ciphertext concept.

Definition 12 (E-Noise Ciphertext). A ciphertext matrix
C ∈ Z(m+1)×N

q with E noise, which makes in a private key
si ∈ Z(n+t)×1

q , for a corresponding message
M, 〈si,C〉 � sT

i · M · G + eT
i · R. (en, let the norm of noisesi

be

noisesi

�����

�����≤ eT
i R

����
����≤ eT

i

����
����2 · ‖R‖∞ ≤

��
N

√
· 2

��
m

√
B≤E. (41)

Lemma 5. For a one-time private key matrix S ∈ Z(n+t)×t
q , we

can get NoiseS � [e1, . . . , et]
T · R when we run the Dec al-

gorithm. So, in this case, we get

NoiseS
����

����≤ t · noisesi

�����

�����≤ t · E. (42)

Lemma 6. For a plaintext matrix U (a combination of M )
and a private key si, i ∈ [t], the noise vector of the ciphertextC
meets

t noisesi

�����

����� � NoiseS
����

����. (43)

In the following, we analyze the correctness of the
decryption.
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Lemma 7. Let C be an E noise encryption of M. If we can
recover μi,j (an element of U ) from the ciphertext C under the
private key si, then there is

μi,j ≔ 〈si,C〉 · G− 1 wT
j  � noisesi

+ sT
i MG  · G− 1 wT

j ,

(44)

so that

noisesi
· G− 1 wT

j 
�����

�����∞
≤ noisesi

�����

����� · G− 1 wT
j 

�����

�����≤N · E<
q

8
.

(45)

Proof. Obviously, by using Lemma 4.2 we can simply prove
Lemma 4.7, and we will not go into details here. □

Lemma 8. Let C be an E noise encryption in M. If we can
recover all U from the ciphertext C, then there is a private key
matrix S such that

V � 〈S,C〉 · G− 1 WT
  � NoiseS + STMG  · G− 1 WT

 ,

(46)

where ‖NoiseSS · G− 1(WT)‖∞≤N · tE< (q/8).

Proof. (is proof can be obtained directly from Lemma 4.2
and Lemma 4.7. Now, we know that as long as
‖NoiseS · G− 1(WT)‖∞≤ (q/8), the decryption runs cor-
rectly, i.e., E< (q/4tN). (erefore, we call the value E �

(q/4tN) as the bound of noise.
(e analysis of the homomorphic operation is given in

the following. Before introducing the boundary of noise, the
following notes are given. □

Note 8. For the convenience of reading, let
ΥC1
≔ Noise(S,M1)(C1) and ΥC2

≔ Noise(SS,M2)(C2).

Lemma 9 (See [8]). =e boundary of the noise of homo-
morphic addition, homomorphic multiplication, and homo-
morphic negative is as follows:

Addition: for M1,M2 ∈ 0, 1{ }(n+t)×(n+t), the following
condition is met:

Noise S,M1+M2( ) C1 + C2( 
�����

�����≤ ΥC1

�����

����� + ΥC2

�����

�����. (47)

Multiplication: for M1,M2, the following condition is
met:

Noise S, M1 ·M2( )( ) C1G
− 1 C2(  

�����

�����≤ U1
����

����2

· ΥC2

�����

�����∞
+ G− 1 C2( 

����
����∞ · ΥC1

�����

�����∞
.

(48)

NAND: for M, the following condition is met:

Noise(S,M)(G − C)
����

���� � Noise(S,M)(C)
����

����. (49)

Proof. Let S ∈ Z(n+t)×t be a private key matrix. Let
C1,C2 ∈ Z(m+1)×N

q be the ciphertext of the encrypted mes-
sage M1,M2 ∈ 0, 1{ }(n+t)×(n+t) separately. (en,

Homomorphic addition, that is, add ciphertext and
ciphertext CAdd � C1 + C2(mod q), so that

〈S,CAdd〉 � Noise SS,M1+M2( ) + ST
· MAdd

· G. (50)

Where MAdd � M1 + M2 and the noise is

Noise S,M1+M2( ) � Noise S,M1( ) + Noise S,M2( ). (51)

Obviously, the noise is t · (E1 + E2).
Homomorphic multiplication: that is, multiply the
ciphertext and ciphertext CMult � C1G− 1(C2) ∈
Z(n+t)×N

q , so that

CMult
� M1M2G + PTR1G

− 1 C2(  + M1P
TR2 . (52)

(en, we have 〈S,CMult〉 which equals to

ST M1M2G + PTR1G
− 1 C2(  + M1P

TR2  . (53)

For convenience, we first set the noise to

Noise S,M1M2( ) � ST PTR1G
− 1 C2(  + M1P

TR2 . (54)

Obviously, according to Lemma 4.2, there is

ΥC1

�����

����� � STPTR1
����

����≤ e1, . . . , et 
T

· R1

�����

�����≤ tE1, (55)

andC2 is a (n + t) × N binary matrix (G− 1 ∈ ZN×(n+t)
q ).

(erefore, in this case,

STPTR1 · G− 1 C2( 
����

����≤ tE2 · G− 1 C2( 
����

����≤N · tE2 (56)

exists. Also, pay attention to that

ST
· M1P

T
  �

uib
T
1 − tTi B

T
 

⋮

uib
T
t − tTi B

T
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (57)

(e boundary of (ui · bT
i − tTi · BT) is |eT

i |. (erefore,

ST
· M1P

T
 

�����

�����≤ eT
1 , . . . , eT

t 
T

������

������≤maxi e
T
i

����
����. (58)

In this case, we can easily get the boundary
‖ΥC2

‖ ≔ ‖ST · (M1PTR2)‖≤ ‖eT
i R‖≤E2. In other words,

‖U1‖2 · ‖ΥC2
‖∞≤

�
t

√
· E2. (erefore, we have

‖Noise(SS,(M1 ·M2))(C1G− 1(C2))‖≤NtE2 +
�
t

√
E2, and

the ciphertext CMult is ((Nt +
�
r

√
) · E) noisy.
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NAND gate: the same operation is true for the NAND
gate, and output matrix product is G − C1G− 1(C2).
Consider a Boolean circuit whose computational depth
is L while containing NAND gates. It takes the new
ciphertext as input, that is, the E noise ciphertext, the
noise multiplied by a factor which is at most (Nt +

�
t

√
)

at each level, that is, the norm of the error element
increases by a factor which is, at most, (Nt +

�
t

√
).

(erefore, the wrong element norm of the final ci-
phertext is bounded as Efinal � (Nt +

�
t

√
)L · E.

In order to ensure the correctness of the decryption,
Efinal ≤ ((q/2)/4) needs to be true. (at is to say, the in-
equality (Nt +

�
t

√
)L · E≤ ((q/2)/4) must be true, which is

guaranteed by the parameters we choose. (e proof is
completed. □

4.3. IND − CPA Security Analysis. In the following, we use
(eorem 4.1 to prove that the message-encapsulation GSW
scheme based on the LWE assumption that it is IND − CPA
safe and that the scheme is indistinguishable from the
original GSW scheme [4].

Theorem 2. Let m> n ∈ N, q ∈ N and χ be a discrete
Gaussian distribution on Z, which makes the (n, q, χ, m) −

LWE problem difficult. Let t be an integer that makes t �

O(log(n)) true. Define two distributionsX andY as follows:

X is a distribution on the m × (t + n) matrix
[b1| · · · |bt |B]. Among them, B ∈ Zm×n

q is uniformly
selected, for all 1≤ i≤ t, bi � Bti + ei(modq), in which ti
are uniformly selected from Zn

q, and ei is selected from a
discrete Gaussian distribution χ.
Y is evenly distributed on Zm×(t+n)

q .

=erefore, the distribution X and Y is computational
indistinguishable.

Theorem 3. Let params � (n, q, χ, m, t) so that the as-
sumption LWEn,q,χ,m is true and m � O(n log q). =en, the
MFHE scheme is IND − CPA safe.

Proof. (e proof of security contains two steps:

First, we use (eorem 4.11 to prove that, under the
LWE assumption, the matrix P � [b1, . . . ,

bt,B] ∈ Zm×(n+t)
q and the randomly chosen matrix are

computationally indistinguishable
(en, using the Left-over Hash Lemma, a uniform
random value C′ can be used to replace the ciphertext
C � MG + PTR, that is, PT · R is indistinguishable from
the uniform distribution

(e brief proof is over. See more details in [4]. □

5. Conclusions

In this paper, we construct an efficient message-encapsulation
FHE scheme. (e scheme can achieve the decryption at one
time and can also flexibly decrypt bit-by-bit. In Table 1, we
give a comparison of the parameters of this scheme with the
existing schemes. It can be seen from the comparison that
compared with the previous ones, the scheme keeps the key
length substantially, and this scheme is based on more
conventional assumptions and, meanwhile, reduces the ci-
phertext length to some extent. (e proposal of this scheme
makes the full homomorphic encryption take a big step from
theoretical research to large-scale application. It is conducive
to greatly improving the efficiency of encrypted data pro-
cessing (such as retrieval and operation) in the Internet of
things, saving the energy consumption of nodes in the In-
ternet of(ings, and ensuring that the data are not statistically
analyzed, which has a better application scenario [29–31].

In addition, there are many interesting open issues that
may be resolved in the future. For example, our thinking has
certain reference value for enhancing big data security and
constructing a message-encapsulated casual transmission
protocol, but it also has certain challenges.
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