
Research Article
HAL-Based Resource Manipulation Monitoring on AOSP

Thien-Phuc Doan , Jungsoo Park , and Souhwan Jung

Communication Network Security Laboratory, Soongsil University, Seoul 06978, Republic of Korea

Correspondence should be addressed to Souhwan Jung; souhwanj@ssu.ac.kr

Received 25 September 2020; Revised 29 October 2020; Accepted 23 November 2020; Published 2 December 2020

Academic Editor: Vishal Sharma

Copyright © 2020 *ien-Phuc Doan et al. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Nowadays, Android malware uses sensitive APIs to manipulate an Android device’s resources frequently. Conventional malware
analysis uses hooking techniques to detect this harmful behavior. However, this approach is facing many problems, such as low
coverage rate and computational overhead. To solve this problem, we proposedHALWatcher, an alternative technique to monitor
resource manipulation on Android Open Source Project (AOSP). By modifying Hardware Abstract Layer (HAL) resource
accessing interfaces and their implementation, we can embed more monitoring functions at critical methods that are in charge of
transferring data between the Hardware Driver and the Framework Layer. Hence, HALWatcher provides a lightweight and high
coverage rate system that can perform resource manipulation monitoring for Android OS. In this paper, we prove that the
hooking technique is limited in detecting resource manipulation attacks. Besides that, HALWatcher shows an outperform
detection rate with a low computational effort.

1. Introduction

Many studies have been published in recent years on
malicious code on Android devices [1–5]. *ey have
invested a huge effort to generate effective architectures to
defend against Android malware [6]. Generally, a detection
solution has twomain parts: Malware analysis and Detection
algorithm. *e analysis part can be done by two main ap-
proaches: Static and Dynamic Approach. In the end, this
part provides a set of patterns or features which are fed to the
Detection algorithm.

Both Static and Dynamic approaches try to figure out the
malicious behaviors of malware. Resource manipulation is
one of the most popular harmful attacks. By different
techniques, the malicious apps manipulate user’s device
resources, e.g., Camera, Phone, and SMS, to steal sensitive
information or send messages to premium numbers without
user awareness [7]. *e privilege escalation attack is even
more dangerous. *ey can take over device resources
without user interaction. So there is a great need to design a
detecting model for resource manipulation attacks.

Existing analysis techniques can be applied to solve this
problem. One of the typical static analysis approaches is

building a flowgraph based on critical API calls. Based on
that, we can deduce what resources the malicious app
manipulates. However, Android malicious samples have
been obfuscated or encrypted using various evasion tech-
niques. *is difficulty significantly decreases detection ac-
curacy. Dynamic behavior analysis seems to be a good
supplementary solution. *is approach uses hooking tools,
such as xPosed, Frida, etc., to monitor and trace malware
behaviors. *ere are many sensitive APIs that are related to
controlling the device’s resources. Hooking into all of these
APIs may cause the computational overhead problem due to
mobile devices’ limited computing resources. *erefore,
malicious apps are often crashed while the analysis is op-
erating. Moreover, hooking tools are detectable due to its
direct interference with the process’s memory.

To address the limitation of hooking techniques, we
design HALWatcher, a general method for monitoring
Android hardware resources inside Hardware Abstract
Layer (HAL). *e idea is that HAL provides the interface for
the communication between the Android Framework Layer,
which handles the requests of getting resources from ap-
plications or processes, and the Hardware Driver inside the
kernel layer. By modifying HAL interfaces and

Hindawi
Mobile Information Systems
Volume 2020, Article ID 8863385, 9 pages
https://doi.org/10.1155/2020/8863385

mailto:souhwanj@ssu.ac.kr
https://orcid.org/0000-0001-7988-5953
https://orcid.org/0000-0003-1489-0342
https://orcid.org/0000-0003-2676-3412
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8863385

implementation codes, we can keep track of all the ma-
nipulating hardware resources without any knowledge
requirement about various vendors’ hardware drivers.
Moreover, HALWatcher does not require root permission
because it is already working as a part of the Android
system. Furthermore, the detection of HALWatcher in the
system is almost impossible because of the various ways of
modifying HAL in such a large number of developers.
Although the flexibility is not high, our method dra-
matically reduces the amount of data collection work from
dynamic analysis while also providing sufficient infor-
mation for Android devices’ protection service against
bad actors.

HALWatcher architecture can be applied to develop
various applications both in research and industry field. It is
a useful technology to track malware behaviors, then con-
structing a complete dataset for dynamic analysis is
achievable. Besides, this technology is suitable for all An-
droid mobile device hardware because it only interferes with
Hardware Abstract Layer. *erefore, developing a hard-
ware resources manipulation system on real-world An-
droid devices is uncomplicated. Moreover, root privilege
is nonessential for HALWatcher, in which other hooking
frameworks are strongly dependent.

In summary, this paper has the following contributions.

We demonstrated that the hooking techniques might
not be useful for detecting resource manipulation
attacks.
We proposedHALWatcher, an efficient and lightweight
method to detect resource manipulation attacks. By
modifying HAL, this module runs along with the
Android system so that it is almost undetectable.

*e rest of this paper is organized as follows: the
background of HAL and resource manipulation moni-
toring is introduced in the second section. In the third
section, we discuss how to detect resource manipulation
attacks. After that, we present HALWatcher, a HAL based
resource monitoring system running along with the
Android OS. *e implementation and the design of ex-
periments are shown in the next section. Finally, we will
discuss future work and conclusions about our work.

2. Background and Related Work

2.1. Resources Manipulation. Android malware analysis is
well-studied nowadays [8]. Analytical techniques include
dynamic analysis [9–13] and static analysis [5, 14–17]. Some
frameworks seek to classify malicious code through appli-
cation behavior following signature [9, 14], while others
track data flow [15, 18]. Static analysis is the way to un-
derstand the application by finding the signatures of mali-
cious code (e.g., permissions that the application has
declared, APIs that the application uses). Dynamic analysis
directly executes malicious apps in a sandbox environment
[3], then collects the necessary information and organizes
them to process. *e data from dynamic analysis and static
analysis are then fed into algorithms to assess application
behavior. In particular, the application of machine learning

and deep learning in the classification of malicious apps is
trendy due to its high accuracy [6, 12, 19–22].

Data collection from the dynamic and static analysis has
always faced many difficulties and obstacles [4]. Evasion
techniques make it difficult for static analysis to locate the
used APIs or to figure out the execution flow of data [15].
Meanwhile, dynamic analysis has difficulty finding ways to
execute all the behavior of the application being analyzed
automatically [10], along with a large amount of information
that may not be needed after running malicious apps.
However, we must recognize the flexibility that current
dynamic analytical techniques are very high. *e hybrid
approach combines static analysis and dynamic analysis to
solve the limitations of each technique [4, 23]. Wong et al.
proposed IntelliDroid [24] that generates input for the
dynamic analysis using the static analysis technique.

Malware behavior tracking is a common problem. One
of the efficient ways to track malicious behavior is to detect
resources that are manipulated by malware from an Android
device. Almost all attackers’ purposes are trying to steal
sensitive data from the user by manipulating the phone
resources such as CAMERA, MICROPHONE, PHONE, and
SMS. Jiang et al. designed a resource management system
architecture to collect data for behavior detection [25]. Static
analysis is limited to detect unauthorized resource usage.
Meng et al. constructed a graph-based model to describe the
control flow of an application. However, their approach does
not seem much effective with 89.5% precision [26]. Zhao
et al. leveraged the power of Androguard to extract a set of
sensitive APIs to represent the application’s behavior [27].
*e dynamic analysis uses hooking techniques. Using Java
function hooking technology, Soewito and Suwandary
successfully illustrate that their proposal is applicable to data
leakage prevention [28]. Hooking technologies are easy to
install and detectable to monitor resource manipulation. For
instance, Frida, a hooking framework, interferes with the
application’s memory, which process it needs to analyze.*e
agent and then needs high privileged access because the
Linux kernel does not allow any processes to interfere with
each other’s memory without authorization. *erefore, to
use the hooking techniques, the devicemust be rooted, or the
agent of the hooking framework must be attached to the
application they want to analyze.

Frida framework has two ways to hook the function of
target APK. First, it needs to run frida server inside the
devices as root permission or nonroot permission with
enough capability to access other processes ‘memory. *e
frida server then modifies the memory to overwrite the
functions which are specified in the JavaScript-based
hooking script. *e target app will use the overwritten
function instead of the original function for its execution.
For the second way of using Frida, we need to attach the
frida-agent.so library into the target APK and repackage the
APK. frida-agent.so then acts as frida server but with no root
privileges requirement because the attaching agent is now a
part of the application to fully access its memory.

Strace is a possible solution to hide from evasion mal-
ware. However, the massive log of the system call is quite
complex to process.

2 Mobile Information Systems

2.2. Hardware Abstract Layer. A HAL (Hardware Abstract
Layer)1 defines a standard interface for hardware vendors to
implement, enabling Android to be agnostic about lower-
level driver implementation. Using a HAL allows you to
implement functionality without affecting or modifying the
higher-level or lower-level system. *e legacy HALs is the
old architecture for Android Nougat (7.0) and the previous
versions. In Android 8.0 and higher, the architecture is
designed to meet the requirements of modularity.

3. Resource Manipulation Attack Detection

Currently, the dynamic analysis approach can use the
hooking technique for detecting resource manipulation
attacks. Figure 1(a) describes the method of using Frida to
keep track of the SendSMS function. To know whether the
app manipulates SMS resources by requesting SendSMS or
not, we hook into sendTextMessage(). *e logging method is
used in this example to gather the manipulation informa-
tion. We found some disadvantages to this method.

Detectable. Hooking techniques require access to ap-
plication memory during the analysis. Self-checking
memory is one way to figure out the strange agents
(e.g., frida-agent.so). Besides, the requirement of root
privileges (i.e., in the case of frida server) makes it
exposed to the Android system. Darvin claims in his
blog2 that there are many ways for an application to
detect the existence of Frida inside the execution en-
vironment. Szczepanik et al. proposed an algorithm
using stack-trace on detecting hooking tools[29].
Messy or Imperfect Data. Some SDK APIs call each
other when the app requests a resource. Even the
analyzer tries to reduce the number of sensitive APIs,
but this is hard work. On the other hand, some APIs
might be missed in the hooking list leading to the
increasing of False-positive and False-negative.
Inapplicable to End-User Products.Most of the hooking
techniques are applied in solving behavior analysis
problems. It is hard to include these techniques into
real end-user products due to the risk of misappro-
priation for wrong usage (i.e., bypass the protection
mechanisms of apps).

Modifying HAL is the best choice for monitoring ma-
nipulation resources for many reasons. Firstly, all hardware
resource requests go through HAL. *erefore, monitoring
resources based on HAL gives a high coverage rate. Sec-
ondly, HAL is independent of the hardware driver. *e
monitoring module in HAL can work correctly for a wide
range of Android devices. Last but not least, even the attack
aimed to get rooted in the Android device, it cannot disable
the monitoring module in HAL because this module is not
running as a service, a part of the Android Operation
System. We started to investigate the HAL source code and
then came to these conclusions.

First, we can simply add more functions to monitor the
manipulating resources with a small coding effort. Listing 1
shows a simple logging code of sendSms() function inside

HAL. Line 5 is the only code that we need to add. On the
other side, Frida needs more effort (i.e., see Listing 1 to hook
into sendTextMessage(), which will request for sending SMS
(i.e., the same resource of example in Listing 1).

Second, the information collected from HAL interfaces
or functions is sufficient for detecting resource manipulation
attacks. *ere are multiple Android APIs that act the same
behavior. For instance, both sendTextMessage() and
sendMultipartTextMessage() can be used to send SMS
through radio network. Moreover, sendTextMessage() have 2
different overloading methods. *erefore, there is a need to
develop two hooking functions for each sendTextMessage()
to cover all the resource manipulation APIs. Besides,
HALWatcher performs monitoring procedure accurately by
adding one line of code (i.e., for logging) into the sendSms()
implementation function (i.e., for the sendSms interface) as
shown in Listing 2.

4.HALWatcher: Resource Manipulation
Monitoring Module

HALWatcher, as shown in Figure 2, then works as a part of the
Android Operation System.*erefore, there is no requirement
of the rooted system or repackaging the target application. All
of the installed packages from the Play store or other Vendor
market can be monitored. Besides, the process generated from
a Remote Code Execution (RCE) attack is also under moni-
toring. Moreover, because of the diversity of vendor Android
firmware (or ROM) types, the detection of HALWatcher is
almost impossible. Ourmodel generates information whenever
the resource requests the hardware. *erefore, the amount of
information (e.g., logs) is significantly reduced but ensures that
all resourcemanipulation behavior is recorded and reported. In
the next subsection, wewill give some examples of how to build
HALWatcher in many types of hardware resources.

Based on the previous section’s conclusions examining
the HAL source code, we provide a detailed design for
HALWatcher. First of all, all requests to access hardware
information and resources will start from the Framework
Layer, namely, the Java Native Interface (JNI). We consider
the Malware or RCE attack in equal measure because all
hardware resource manipulating requests must go through
the JNI. *e information will then be moved down to the
Hardware Abstraction Layer (HAL). In HAL, interfaces are
feature independent; that is, there are no interfaces that
share the same purpose. At the critical methods of each
resource type (which we discuss in more detail in the next
section), we embed one or more code lines to record any
action and related information about the manipulated re-
source. *ese code lines are called resource monitoring
modules. Listing 2 shows an example of one resource
monitoring module. At line number 5, we add one line of
code into the RadioImpl::sendSms interface to monitor the
SMS resource by logging whenever this interface is called. In
short, all resource monitoring modules are developed fol-
lowing three steps: figure out resources implementing in-
terface source code in HAL, embed monitoring functions
into the interfaces, manage, and send monitoring infor-
mation to monitoring service.

Mobile Information Systems 3

5. Resources Manipulation Monitoring
Module in HAL

*e resource monitoring modules are basically located in
many critical HAL interfaces and implementation functions.
In this work, we illustrate HALWatcher in monitoring SMS,
PHONE, and CAMERA resources in detail. For other
resources, we conduct a list of modules’ locations of
HALWatcher for further works.

5.1. SMS and Phone. Both SMS and Phone permissions on
the Android device allow the application of the right to
access carrier service. Android communicates with carrier
providers through SIM (subscriber identity module), which
needs a radio baseband device to run radio service. Each
baseband device has its own vendor’s driver represented as
“libril-vendor.so” file. Android HAL performs a RIL (Radio
Interface Layer) connecting Android Framework and ven-
dor’s driver.*erefore, all resource usage related to SMS and

SDK functions
(boot.oat)

frida-agent.so

Hooking script
JavaScript

Heap

Application memory
SmsManager

sendTextMessage
…….
…….
return …

SmsManager
sendTextMessage

…….
logD(“sendTextMessage”)
return …

O
ve

rw
rit

e
(a)

Application

Framework layer

Hardware abstract
layer

Resource monitoring
modules

Resource manipulation
information

Hardware
(baseband)

sendTextMessage()

Radio::sendSMS()

(b)

Figure 1: Frida vs. HALWatcher architecture for SMS resource monitoring. (a) Using Frida to monitor whether sending SMS API is called.
Note that there are several APIs to send SMS. (b) HAL based resource monitoring.

(1) var hook� Java.use(“android.telephony.SmsManager”);

(2) hook.sendTextMessage.overload(‘java.lang.String’, ‘java.lang.String’, ‘java.lang.String’,
‘android.app.PendingIntent’, ‘android.app.PendingIntent’).implementation �

(3) function(arg_0, arg_1, arg_2, arg_3, arg_4){
(4) var olog� Java.use(‘android.util.Log’);

(5) olog.d(‘sendT extMessage is called’);
(6) return this.sendTextMessage(arg_0, arg_1, arg_2, arg_3, arg_4);

}

LISTING 1: Example of Frida hooking into sendTextMessage() function (Android SDK).

(1) Return<void> RadioImpl:sendSms(int32_t serial, const GsmSmsMessage& message) {
(2) #if VDBG

(3) RLOGD(“sendSms: serial %d”, serial);
(4) #endif
(5) RLOGD(“[%d] [HALWatcher] RIL_REQUEST_SEND_SMS: serial %d”,(int)time(NULL), serial);
(6) dispatchStrings(serial, mSlotId, RIL_REQUEST_SEND_SMS, false,

(7) 2, message.smscPdu.c_str(),
(8) message.pdu.c_str());

return Void();
}

LISTING 2: Example of HAL modifying in sendSms() function (HAL).

4 Mobile Information Systems

Phone permissions go through RIL. While analyzing the
RILD, we found two types of RIL command: REQUEST and
UNSOL. REQUEST command is used by the Android
Framework Layer (i.e., rilj), to request data (e.g., signal
strength) or functions (e.g., send SMS, conduct a call).
UNSOL stands for unsolicited responses, which originate
from the baseband (e.g., new SMS).

5.2.Camera. Recently, sensitive information leaked through
Camera.*e Android application might run as a service that
has no activity screen. In that case, the malicious application
or vulnerable application attacked by an intruder can handle
a camera resource silently without any notification to the
user. HAL Camera interfaces have been implemented inside
hardware/camera/device/1.0/default/CameraDevice.cpp.

*ese interfaces provide methods to communicate to
Camera hardware driver such as getCameraInfo(),
dumpState(), etc. Some focus on managing the memory
resources for Camera device (e.g, CameraHeapMemory()),
others open or close Camera device (e.g., Camera::open(),
Camera::close()), and others provide normal task of the
Camera functions such as startRecording(), stopRecording(),
takePicture(), cancelPicture(). In order to keep an eye on
Camera resources, we create logs about the function when
the Camera is opened and closed. We also keep a log for the
working time of the Camera because of the irregular using
period.

5.3. Other Resources Monitoring. Similar to Camera re-
sources, other resources also have the implementation code
inside/hardware/resource_name. Table 1 shows the list of
hardware resources and their implementation source code.
Regarding resource monitoring, we can add more features
than logging the needed information for those resources.

5.4. ResourcesManipulationMonitoring Service. *is service
is responsible for getting data from the monitoring module
inside HAL. By using the logging method, this component is
not required because the log data can be got from logcat
command. HAL resources manipulation module does not
log for any sensitive data of the user or the phone so that this
log data can be public. *e service can be any application

inside or outside the phone, which is the only convenient
purpose for the user or analysis researcher.

6. Implementation and Evaluation

6.1. Implementation. We implemented our approach using
AOSP version 9.0.0_r47 on a Hikey960 board3. *e limi-
tation of the Hikey960 is that it does not support full
hardware that usually exists on a real phone (e.g., Vibrator).
*erefore, to prove that the HAL modifying method for
resource monitoring is possible, we focused on SMS and
PHONE resources. *ese resources HAL interface are
implemented in hardware/ril/ as known as Radio Interface
Layer Deamon, which stands in the middle of the com-
munication between the Android Framework Layer (RILJ)
and the Hardware driver (i.e., carrier baseband).

Hikey960 board has a list of hardware devices that need
the corresponding HAL modules to work with. *ese
components are defined in hikey/device-common.mk and
hikey/hikey960/device-hikey960.mk config file. Because of
the limitation of hardware that the Hikey960 board supports,
we can only see the impact of HAL modifying when we
change the source code of the component that we listed in
Table 2.

Hikey960 does not have a SIM card reader.*erefore, we
used the Huawei 4G E173 USB stick as a SIM card reader.
*en we added the Huawei lib-ril (i.e., the driver that
supports E173 USB stick to work as a baseband device) at the
driver layer of the final compiled AOSP. Typically, the Linux
kernel will accept USB as a storage device. *erefore, to
make the kernel recognize the dongle as a 3G/4G USB
device, we switched the USB mode of the device using
usb_modeswitch tool. *en we needed to customize the
Hikey960 kernel (i.e., kernel 4.9) and add more kernel
module that supports the usb_modeswitch function. We also
customized the RIL daemon to automatically switch the USB
device to PPP mode before loading the driver.

We evaluate our method by modifying directly to log
information that goes through radio methods in RIL. In
total, we customize several requesting methods, which are
most related to send SMS and conduct phone calls. We also
can hook the other implementation functions in the same
way.

6.2. Evaluation

6.2.1. High Coverage Rate. We used the default Messaging of
AOSP to send normal SMS, Premium SMS, conduct Phone
calls, and send USSD.*en, we tried to send an SMS without
using the application.We found a way to send SMSmessages
through iSms service-a default service in AOSP. We denote
that Frida can not work in this situation of monitoring SMS
resources.*e iSms service is called by service call command
through ADB shell4 with the form: adb shell service call isms
7 i32 0 s16 “com.android.mms.service” s16 “+1234567890”
s16 “null” s16 “Hello” s16 “null” s16 “null”. To prove that
HALWatcher can work without root privileges, we removed/
xbin/su binary and built a non-userdebug version of AOSP to
unroot the ADB shell. Finally, we ran Trojan-SMS on both

Framework layer (JNI)

Hardware abstract layer
Resource

monitoring
modules

Monitoring
service

HAL watcher

Hardware driver

Figure 2: HALWatcher general design.

Mobile Information Systems 5

rooted and nonrooted systems to prove the limitation of
Frida hooking.

*e result in Table 3 shows that 100% of data can be
logged using HALWatcher. For some samples of Trojan-
SMS, they detect root device so that the app immediately
crashes. Somemalware samples use obfuscation techniques,
so the frida-agent.somay be wrongly embedded and leads to
crash the app after spawning. Obviously, HALWatcher
performs resource monitoring better than the Frida
framework.

6.2.2. Compact and Complete Data. In comparison with
hooking techniques, HALWatcher is less flexible (i.e., the
need for rebuilding AOSP). However, this method gives
compact and complete data that can be used for real-time
hardware resources manipulation and malware analysis. To

observe this possibility, we compared HALWatcher with
Frida by hooking into sensitive APIs that require the use of
SMS [27]. We looked at two datasets, benign and malicious
applications (e.g., FakePlayer). For HALWatcher, we
recorded RIL requests related to SMS. Both Frida and
HALWatcher used the same logging method, which logged
only the called function’s name and the timestamp of the
calling. We ran and triggered the app to send SMS, then
terminate the apps.

*e result in Figure 3 shows that the log from HAL-
Watcher is less than hooking techniques, while the testing
application manipulates the same hardware resources.
Listing 3 shows the example of different log sizes between
HALWatcher and Frida on monitoring send SMS resources.
*e log size retrieved from hooking on the normal app is
much larger than malware. We found that the normal
message application has call getSubscriptionId() API

Table 1: HAL implementation source code related to some group of Dangerous and Protection permission.

Resource hardware Permission level HAL interface
CAMERA Dangerous Hardware/interface/camera/device/1.0/default/
LOCATION Dangerous Hardware/interface/GNSS/1.0/default/
PHONE/SMS Dangerous Hardware/ril/
SENSORS Dangerous Hardware/interface/sensors/1.0/default/
AUDIO Dangerous Hardware/interface/audio/core/2.0/default/
NFC Protection Hardware/interface/nfc/1.0/default/
BLUETOOTH Protection Hardware/interface/bluetooth/1.0/default/
WIFI Protection Hardware/interface/wifi/1.2/default/
VIBRATOR Protection Hardware/interface/vibrator/1.0/default/

Table 2: Hikey960 HAL components.

Hardware Package name
WIFI https://android.hardware.wifi@1.0-service

AUDIO

https://android.hardware.audio@2.0-impl
https://android.hardware.audio.effect@2.0-impl

https://android.hardware.broadcastradio@1.0-impl
https://android.hardware.soundtrigger@2.0-impl

PHONE/SMS rild
DRM android.hardware.drm@1.0-impl
BLUETOOTH android.hardware.bluetooth@1.0-service.btlinux
POWER android.hardware.power@1.0-impl
LOCATION android.hardware.gnss@1.0-impl
KEYMASTER android.hardware.keymaster@3.0-impl
SENSORS android.hardware.sensors@1.0-service

Table 3: HALWatcher vs. Frida in resource manipulation monitoring.

Test cases HALWathcer Frida
Ability to hook into the process which

Send SMS with normal app on rooted device 100% 100%
Send SMS with normal app on nonrooted device 100% 0%
Trojan-SMS request sendSMS on rooted device 100% 76%
Trojan-SMS request sendSMS on nonrooted device 100% 93%
Send SMS using ADB shell on rooted device 100% 0%
Send SMS using ADB shell on nonrooted device 100% 0%
Log size retrieved in the test of (#line)
Normal SMS apps 1 6.8
Trojan-SMS apps 1.84 3.84

6 Mobile Information Systems

https://android.hardware.wifi@1.0-service
https://android.hardware.audio@2.0-impl
https://android.hardware.audio.effect@2.0-impl
https://android.hardware.broadcastradio@1.0-impl
https://android.hardware.soundtrigger@2.0-impl
https://android.hardware.drm@1.0-impl
https://android.hardware.bluetooth@1.0-service.btlinux
https://android.hardware.power@1.0-impl
https://android.hardware.gnss@1.0-impl
https://android.hardware.keymaster@3.0-impl
https://android.hardware.sensors@1.0-service

multiple times before calling sendTextmessage(). Moreover,
the default Messaging app of AOSP calls both sendText-
message() and sendMultipartMessage(). Note that the log is
always collected from the start of opening the applications.

We compared the total CPU usage andMemory usage in
three scenarios: (1) run the samples without Frida hooking
and HALWatcher; (2) run the samples with Frida hooking;
(3) run the samples withHALWatcher. For Frida hooking on
(2), we conducted hooking progress on the target process
only.

As shown in Figure 4, both CPU andMemory usage rates
in (2) are more 5% higher than (1) and (3). We denote that
the hooking script is injected into only the target application.
However, in a practical resource monitoring system, we
should implement instrumentation for all running pro-
cesses. At that time, the system might be crashed (i.e., 5%
extra computational resource for each process). Meanwhile,
the indicators are almost no different in (1) and (3) whether
the sample is malware or benign. Besides, the crashing
samples rate is dramatically increased while we were running
the test.*is crashing happens because some samples are not
suitable in AOSP 9.0; some samples are only crashed while
we start Frida for hooking progress.

7. Conclusions and Discussion

Resource manipulation attacks are the most widespread
malicious behaviors of Android malware. Current solutions,
including static and dynamic analysis, are not efficient

6

95

16

29

0
10
20
30
40
50
60
70
80
90
100

Normal SMS
app

FakeInsta FakePlayer Erop

HalWatcher
Frida
sample

0

1

2

3

4

5

6

7

8

Li
ne

s

Figure 3: Average log size retrieved by HALWatcher and Frida.

(a) HALWatcher log of the default SMS app

(1) [1590389070] [HALMonitor] RIL_REQUEST_SEND_SMS: serial 485
(b) Frida hooking log of the default SMS app

(1) [1590389069] [android.telephony.SmsManager] [getSubscriptionId]
(2) [1590389069] [android.telephony.SmsManager] [getSubscriptionId]

(3) [1590389069] [android.telephony.SmsManager] [getSubscriptionId]
(4) [1590389069] [android.telephony.SmsManager] [getSubscriptionId]

(5) [1590389069] [android.telephony.SmsManager] [sendTextMessage]
(6) [1590389069] [android.telephony.SmsManager] [sendMultipartTextMessage]

LISTING 3: Example of log content of HALWatcher (a) and Frida (b) c. Low computational effort.

0

5

10

15

20

25

30

35

CPU usage Mem usage % crashing

(%)

Normal system (1)
Frida hooking (2)
HALWatcher (3)

Figure 4: Computational evaluation result for (1) Normal system,
(2) System with Frida hooking framework, (3) System with
HALWatcher.

Mobile Information Systems 7

enough to detect this attack.HALWatcher is a new approach
that modifies Hardware Abstract Layer to monitor re-
sources. *is approach addresses the limitations of hooking
techniques. HALWatcher provides a high coverage rate in
monitoring hardware resources with low computational
effort. In addition, HALWatcher can be applied to build a
protecting mechanism in real-world devices because of the
nonrooted environment requirement. However, HAL-
Watcher faces some limitations. First, there is a need for
strong knowledge about the Hardware Abstract Layer de-
velopment to extend and deploy HALWatcher. Second,
HALWatcher is only capable of monitoring hardware re-
sources, not for others, which are already stored in system
storage (e.g., CALENDAR, CONTACT, PHOTO, etc.). For
our future research, we plan to research the new approach to
monitoring other system resources that can integrate with
HALWatcher to make a complete resource manipulation
defending framework.

Data Availability

*e source code and log file can be found at https://github.
com/josebeo2016/HALModifying.

Disclosure

*is paper is a revised version of the presented Poster: “HAL
Based Resource Manipulation Monitoring on AOSP” in
WISA 2020, Jeju, South Korea.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is work was supported by the Institute of Information &
communications Technology Planning & Evaluation
(IITP) grant funded by the Korean government (MSIT)
(no. 2020-0-00952, Development of 5G Edge Security
Technology for Ensuring 5G+ Service Stability and
Availability) and supported by the Institute of Information
& communications Technology Planning & Evaluation
(IITP) grant funded by the Korean government (MSIT)
(No. 2019-0-00477, Development of android security
framework technology using virtualized trusted execution
environment).

References

[1] M. Fan, J. Liu, X. Luo et al., “Android malware familial
classification and representative sample selection via frequent
subgraph analysis,” IEEE Transactions on Information Fo-
rensics and Security, vol. 13, no. 8, pp. 1890–1905, 2018.

[2] L. Nguyen-Vu, J. Ahn, and S. Jung, “Android fragmentation
in malware detection,” Computers & Security, vol. 87, Article
ID 101573, 2019.

[3] N.-T. Chau and S. Jung, “Dynamic analysis with Android
container: challenges and opportunities,” Digital Investiga-
tion, vol. 27, pp. 38–46, 2018.

[4] A. T. Kabakus and I. A. Dogru, “An in-depth analysis of
Android malware using hybrid techniques,” Digital Investi-
gation, vol. 24, pp. 25–33, 2018.

[5] H. Zhou,W. Zhang, F.Wei, and Y. Chen, “Analysis of android
malware family characteristic based on isomorphism of
sensitive API call graph,” in Proceedings of the IEEE Second
International Conference on Data Science in Cyberspace,
pp. 319–327, DSC), Shenzhen, China, June 2017.

[6] J. Qiu, S. Nepal, W. Luo et al., “Data-driven android malware
intelligence: a survey,” inMachine Learning for Cyber Security.
Lecture Notes in Computer Science, X. Chen, X. Huang, and
J. Zhang, Eds., Springer International Publishing, Midtown
Manhattan, New York, pp. 183–202, 2019.

[7] Y. Zhou and X. Jiang, “Dissecting android malware: char-
acterization and evolution,” in Proceedings of the IEEE
Symposium on Security and Privacy, pp. 95–109, NW
Washington, DC; USA, 2012.

[8] S. Y. Mahmud, A. Acharya, B. Andow, W. Enck, and
B. Reaves, “Cardpliance:${$PCI$}$${DSS}$ compliance of
android applications,” in Proceedings of the 29th ${$USE-
NIX$}$ Security Symposium (${$USENIX$}$ Security 20), San
Diego, CA, United States, May 2020.

[9] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for Android,” in
Proceedings of the 1st ACMWorkshop on Security and Privacy
in Smartphones and Mobile Devices, pp. 15–26, Chicago,
Illinois, USA, October 2011.

[10] L. K. Yan and H. Yin, “Droidscope: seamlessly reconstructing
the ${$OS$}$ and dalvik semantic views for dynamic android
malware analysis,” in Proceedings of the Presented as Part of
the 21st ${$USENIX$}$ Security Symposium (${$USENIX$}$
Security 12), pp. 569–584, Berkeley, CA, August 2012.

[11] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: an input
generation system for android apps,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engi-
neering, pp. 224–234, ACM, Saint Petersburg, Russia, August
2013.

[12] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer DL-Droid, “DL-
Droid: deep learning based android malware detection using
real devices,”Computers & Security, vol. 89, Article ID 101663,
2020.

[13] A. De Lorenzo, F. Martinelli, E. Medvet, F. Mercaldo, and
A. Santone, “Visualizing the outcome of dynamic analysis of
Android malware with VizMal,” Journal of Information Se-
curity and Applications, vol. 50, Article ID 102423, 2020.

[14] Y. Feng, O. Bastani, R. Martins, I. Dillig, and S. Anand,
“Automated synthesis of semantic malware signatures using
maximum satisfiability,” 2020, https://arxiv.org/pdf/1608.
06254.pdf.

[15] W. Enck, P. Gilbert, S. Han et al., “TaintDroid: an infor-
mation-flow tracking system for real-time privacy monitoring
on smartphones,” ACM Transactions on Computer Systems
(TOCS), vol. 32, no. 2, p. 5, 2014.

[16] C. Zheng, S. Zhu, S. Dai et al., “Smartdroid: an automatic
system for revealing ui-based trigger conditions in android
applications,” in Proceedings of the Second ACMWorkshop on
Security and Privacy in Smartphones and Mobile Devices,
pp. 93–104, CA, USA, October 2012.

[17] H. Fereidooni, M. Conti, D. Yao, and A. Sperduti,
“ANASTASIA: ANdroid mAlware detection using STatic
analySIs of Applications,” in Proceedings of the 2016 8th IFIP
International Conference on New Technologies, Mobility and
Security (NTMS), pp. 1–5, Larnaca, Cyprus, November 2016.

8 Mobile Information Systems

https://github.com/josebeo2016/HALModifying
https://github.com/josebeo2016/HALModifying
https://arxiv.org/pdf/1608.06254.pdf
https://arxiv.org/pdf/1608.06254.pdf

[18] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A combination
method for android malware detection based on control flow
graphs and machine learning algorithms,” IEEE Access, vol. 7,
pp. 21235–21245, 2019.

[19] P. Faruki, A. Bharmal, V. Laxmi et al., “Android security: a
survey of issues, malware penetration, and defenses,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 2,
pp. 998–1022, 2015.

[20] J. Saxe and K. Berlin, “Deep neural network based malware
detection using two dimensional binary program features,” in
Proceedings of the 10th International Conference on Malicious
and Unwanted Software (MALWARE), pp. 11–20, Fajardo,
PR, USA, October 2015.

[21] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multi-
modal deep learning method for android malware detection
using various features,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 3, pp. 773–788, 2018.

[22] M. Ijaz, M. H. Durad, and M. Ismail, “Static and dynamic
malware analysis using machine learning,” in Proceedings of
the 16th International Bhurban Conference on Applied Sci-
ences and Technology (IBCAST), pp. 687–691, Islamabad,
Pakistan, January 2019.

[23] T. Vidas, J. Tan, J. Nahata, C. L. Tan, N. Christin, and P. Tague,
“A5: automated analysis of adversarial android applications,”
in Proceedings of the 4th ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices, pp. 39–50,
Scottsdale, AZ, USA, November 2014.

[24] M. Y. Wong and D. Lie, “IntelliDroid: a targeted input
generator for the dynamic analysis of android malware,”
National Down Syndrome Societ, vol. 16, pp. 21–24, 2016.

[25] J.-G. Jiang, Z.-S. Liu, M. Yu, and C. Liu, “A resource man-
agement system design for malware behavior detection,” in
Proceedings of the Computer Science, Technology and Appli-
cation, pp. 467–474, World Scientific, Changsha, China,
March 2016.

[26] G. Meng, R. Feng, G. Bai, K. Chen, and Y. Liu, “DroidEcho: an
in-depth dissection of malicious behaviors in Android ap-
plications,” Cybersecurity, vol. 1, no. 1, p. 4, 2018.

[27] C. Zhao, W. Zheng, L. Gong, M. Zhang, and C. Wang, “Quick
and accurate android malware detection based on sensitive
APIs,” in Proceedings of the 2018 IEEE International Con-
ference on Smart Internet of Fings (SmartIoT), pp. 143–148,
Xi’an, China, August 2018.

[28] B. Soewito and A. Suwandaru, “Android sensitive data leakage
prevention with rooting detection using Java function
hooking,” Journal of King Saud University - Computer and
Information Sciences, 2020, Published online July 21, 2020.

[29] M. Szczepanik, M. Kędziora, and I. Jóźwiak, “Android methods
hooking detection using dalvik code and dynamic reverse
engineering by stack trace analysis,” inFeory and Applications
of Dependable Computer Systems. Advances in Intelligent Sys-
tems and Computing, W. Zamojski, J. Mazurkiewicz, J. Sugier,
T. Walkowiak, and J. Kacprzyk, Eds., Springer International
Publishing, Midtown Manhattan, New York, pp. 633–641,
2020.

Mobile Information Systems 9

