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Delay, cost, and loss are low in Low Earth Orbit (LEO) satellite networks, which play a pivotal role in channel allocation in global
mobile communication system. Due to nonuniform distribution of users, the existing channel allocation schemes cannot adapt to
load differences between beams. On the basis of the satellite resource pool, this paper proposes a network architecture of LEO
satellite that utilizes a centralized resource pool and designs a combination allocation of fixed channel preallocation and dynamic
channel scheduling. *e dynamic channel scheduling can allocate or recycle free channels according to service requirements. *e
Q-Learning algorithm in reinforcement learning meets channel requirements between beams. Furthermore, the exponential
gradient descent and information intensity updating accelerate the convergence speed of the Q-Learning algorithm. *e
simulation results show that the proposed scheme improves the system supply-demand ratio by 14%, compared with the fixed
channel allocation (FCA) scheme and by 18%, compared with the Lagrange algorithm channel allocation (LACA) scheme. *e
results also demonstrate that our allocation scheme can exploit channel resources effectively.

1. Introduction

In recent years, with the development of wireless commu-
nication technology, the terrestrial cellular network is facing
the explosive growth of data traffic. Although the terrestrial
cellular network has the advantages of short delay and large
bandwidth, it still has some limitations [1]. Due to the limit
of geographical environment and economy, it is difficult for
cellular networks to cover special areas such as oceans,
deserts, forests, and islands. Ocean navigation, geological
exploration, environmental emergency rescue, and other
scenarios rescue require an all-weather, wide-coverage,
highly reliable communication mode. Satellite communi-
cation can solve the above problems well by virtue of wide
coverage, small geographic limitation, and large system
capacity.

*e satellite communication system has experienced
the development of global beams, regional beams, and spot

beams. Flexible resource allocation between spot beams can
further improve system performance. Among various types
of satellites, LEO satellites have the characteristics of low
path loss, short communication delay, and flexible orbital
position [2]. LEO constellations can achieve seamless
coverage of global regions [3, 4]. With the development of
satellite communication technology, intersatellite link
(ISL) and on-board processing (OBP) can support satellite
routing and data processing independently from the ter-
restrial network. *e maturity and reliability of IP tech-
nology also make the application of IP technology in
satellite networks become the trend in the future [5]. In
addition to communications payloads, the satellites carry
automated directed surveillance by broadcast (ADS-B)
payloads, which are primarily used for aircraft flight sur-
veillance and tracking aircraft position reports, as well as
navigation augmentation payloads. Ground-based gateway
stations are also capable of communicating with multiple
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satellites simultaneously, synthesizing data streams from
different satellites [6]. *e cost reduction of satellite
manufacture and launch has also promoted the rapid de-
velopment of the LEO satellite Internet industry. LEO
satellite network is becoming an important part of the
future global mobile communication system.

Satellite communication systems are typical resource-
constrained systems. Available spectrum, power, time slot,
and other resources are extremely scarce and precious [7].
An efficient network resource allocation scheme is urgently
needed to solve the above problem in the satellite com-
munication systems. Due to the dynamic coverage change
caused by satellite movement and nonuniform distribution
of ground users, the traffic load is changing all the time,
while satellite on-board resources are solidified at the factory
setting. Traditional fixed channel allocation (FCA) scheme is
difficult to adapt to rapidly changing business requests.
Dynamic channel allocation (DCA) can realize resource
cross-beam scheduling and has a higher resource utilization
rate than FCA [8].*e business request is a discrete dynamic
process in communication networks, and the allocation
results at the current time will affect the decision at a
subsequent time. *e existing dynamic channel allocation
algorithms focus on the instantaneous performance of the
LEO satellite system and ignore the time-domain relevance
problem in the channel allocation process [7].

Reinforcement Learning (RL), as an emerging technol-
ogy, provides a new solution to solve complex decision-
making problems [9]. Under the background of rapidly
growing data and complex system structure, RL can better
adapt to complex decision-making problems, which are
difficult for traditional algorithms. By combining satellite
resource allocation with RL, the decision-making ability of
the satellite system can be well enhanced [7].

*is paper considers the difference in service distribu-
tion and the time correlation of channel allocation in satellite
communication systems. *e Q-Learning algorithm is used
for dynamic channel allocation in a LEO satellite. *e main
contributions are as follows:

(i) *e on-board resource pool is introduced to
manage channel resources in the LEO satellite
network. *e resource pool integrates information
processing, resource allocation and resource ac-
quisition, enabling cross-beam scheduling of
channels. So that the system can better adapt to
business differences between beams.

(ii) A two-step allocation scheme combining fixed
channel preallocation and dynamic channel
scheduling is proposed to schedule the channel. *e
system preallocates some fixed channels for each
beam cell before services arriving; dynamic channel
allocation schedules channel according to the ser-
vices request.

(iii) RL improves the decision-making ability of the
system on resource allocation. *e problem is de-
scribed as a Markov decision process with defining
state space, action space, and reward function. *e

system trains the optimal channel allocation strat-
egy through a Q-learning algorithm for channel
resource allocation.

(iv) Exponential gradient descent and information in-
tensity updating accelerate the convergence of the
algorithm and improve the decision-making speed
of the LEO satellite system.

*e rest of this paper is organized as follows. In Section
2, we give related works. In Section 3, we describe the ar-
chitecture of LEO satellite network based on on-board re-
source pool and establish the channel allocation model and
problem optimization strategy. We give the specific content
of the algorithm and distribution process in Section 4. In
Section 5, we present and discuss simulation results. Finally,
conclusions are presented in Section 6.

2. Related Work

In this section, we introduce some related works about LEO
satellite networks and satellite resource allocation.

2.1. LEO Satellite Communication System. *e size of the
LEO satellite constellation is becoming larger and larger due
to the advantages of technology and cost. A large-scale
constellation can better achieve global coverage and greatly
expand the system capacity [10]. In highly complex and
frequently changing systems, it is critical to consider the load
on the underlying network components due to user be-
havior. *e massive traffic loads also challenge the quality of
service (QoS) of LEO Satellite communication systems [11].
*e satellite system is different from the terrestrial network,
so researchers adopt some special frames and protocols
according to the particularity of satellite systems, including
data relay satellite (DRS) system, delay-tolerant network
(DTN), and performance enhancement system (PES).
However, these satellite communication protocols based on
TCP/IP have poor mobility, high overhead, and high
complexity [4]. Further, most of the existing satellite net-
work protocols are only applicable to medium Earth orbit
(MEO) geosynchronous Earth orbit (GEO) satellites.
*erefore, network architecture and resource management
system are particularly important for LEO satellites.

2.2. LEO Satellite Network Architecture. Recently, the
construction of commercial LEO satellite systems is active
all over the world, but it is hard to avoid some challenges
in the network architecture and resource management.
*e architecture of the O3b system in the MEO satellite
network and the OneWeb system adopts a transparent
forwarding mechanism. *ese two systems have no
interstar networking, outing, and switching function, and
the system resource utilization is low when business is
highly dynamic [12]. *e architecture of Iridium and
SpaceX relies on ISL to achieve intersatellite networking,
but their networking technologies are relatively backward,
the control plane and forwarding plane are highly

2 Mobile Information Systems



coupled, and the resource scheduling mechanism requires
more human intervention, which all reduce the resources
utilization efficiency [13]. To solve the above problems,
researchers have made a lot of efforts on LEO satellite
network architecture and corresponding resource allo-
cation scheme.

As a resource management unit that is widely used in the
terrestrial wireless network, a resource pool can realize re-
source sharing and dynamic scheduling according to service
requirements and improve spectrum efficiency. However,
current works mainly focus on the resource pool architecture
design of earth-gate-station (EGS) or the centralized man-
agement of satellite network virtualization, rather than sat-
ellite resource pool. Reference [14] proposes a design scheme
of EGS based on resource pool architecture. By integrating
digitizing, the resource pool can achieve signal processing and
baseband processing functions, the utilization of high-speed
data communication resources can be effectively improved in
satellite networks. In view of the problems existing in the
“chimney” architecture of EGS, [15, 16] propose architectures
based on resource pool to solve the instability of EGS systems.
*e researchers compare the two architectures with and
without resource pooling and found that the resource pooled
system architecture is more reliable while improving the
efficiency and flexibility of device resource use. Reference [17]
presently analyses the contradiction between resource con-
straint and business demand in satellite networks and pro-
poses the concept of “on-board resource virtualization”.
Further, researchers construct a mission-oriented satellite
network resource management model and conduct on-board
resource allocation by means of resource sharing and col-
laborative management. At the present stage, satellite com-
munications are creating suitable operational control systems
for different functions and different series of satellites in order
to achieve efficient utilization of resources [18].

2.3. LEO Satellite Resource Allocation Scheme. *e satellite
resource allocation scheme will directly affect the user’s
QoS and system performance. Reference [19] considers the
trade-off between the maximum total system capacity and
interbeam fairness to obtain the optimal allocation scheme
by a subgradient algorithm. Reference [20] optimizes the
allocation strategy by calculating and comparing user
transmission rates under different transmission modes and
strong interference. Reference [21] explains the physical
layer structure of a multibeam satellite system, simplifies
the three-dimensional coordinate system of the ground
user to the two-dimensional coordinate system in the
equatorial plane. Further, researchers calculate the maxi-
mum channel capacity according to the satellite beam
coverage area and transmission power. Reference [22]
proposes a beam-hopping algorithm, which adjusts the
beam size according to the business distribution. Reference
[23] uses a heuristic algorithm to achieve frequency band
selection and beam allocation and adopts Lagrangian dual
algorithm and water-filling-assisted Lagrangian dual al-
gorithm to achieve power allocation. Reference [24] pro-
poses a channel allocation scheme of mixed random access

and on-demand access, which reduces system delay within
the throughput threshold. *is scheme provides effective
solutions for services with different delay sensitivities. *e
above satellite resource allocation scheme improves the
system performance in some aspects. However, they only
focus on the instantaneous performance of the system and
ignore the time correlation in the resource allocation
process. *e allocation result of the previous time will
indirectly lead to the subsequent allocation effect, which
will undoubtedly affect the system resource utilization.

*e satellite channel allocation can be regarded as a
sequential decision problem, and a decision is made on the
arriving user request within each interval T. RL is a good
way to adapt to this decision-making problem. References
[25, 26] uses augmentation learning to solve channel al-
location and congestion control in satellite Internet of
things (SIoT). Compared with traditional algorithms, RL
can improve performance in terms of energy consumption
and blocking rate. Reference [27] extends single-agent deep
reinforcement learning (DRL) to multiagents and propose
a collaborative multiagent DRL method so as to improve
transmission efficiency and achieve the desired goal with
lower complexity. Reference [28] discusses a scheme of
combining RL and resource allocation in different het-
erogeneous satellites and multiple service requirements
and demonstrates the application effect of DRL in het-
erogeneous satellite networks (HSN). However, there are
few researches on LEO satellite resource allocation. Most of
the research has focused on MEO and GEO satellites.
*erefore, this paper applies RL to the LEO satellite re-
source allocation. We adopt emerging technologies to solve
LEO satellite channel allocation challenges in a different
way.

3. System Model

In this section, we propose a LEO satellite network archi-
tecture based on an on-board resource pool and explain the
centralized resource allocation in detail. Further, we es-
tablish an optimization model based on the user supply-
demand ratio.

3.1. Framework of LEO Satellite Network. Figure 1 shows a
LEO satellite network architecture. In the network layer,
adjacent satellites transmit data through ISLs, and multiple
satellites cooperate to complete the global coverage. *e
centralized resource pool can manage the channel, com-
puting, caching, and other resources. In the link layer, the
network control center (NCC) provides services for users by
uploading data from satellites. Edge cloud computing de-
vices are connected through multiple satellite relays. Idle
computing resources on the constellation network can also
be used as edge cloud devices. LEO constellation is com-
posed of numerous LEO satellites, which can provide ser-
vices for users in cities, suburbs, and oceans in the global
region.

Figure 2 shows the structure of a centralized resource
pool in a LEO satellite. Each centralized resource pool is the
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core of the whole system, which integrates information
processing, resource allocation, and resource collection.
Resources between the satellites are connected through
switch fabrics and resources are allocated in real time. A
central management unit centrally manages BBU under the
switching structure. For a single satellite, a centralized re-
source pool composed of high-performance processors can
process services of all beams within its coverage, as shown in
Figure 3. Compared with traditional dynamic resource al-
location, the satellite with centralized resource pool can
achieve resource allocation cross beams. *e centralized
resource pool not only processes and allocates resources for
user’s requests, but also schedules resource according to the
utilization of resources in each beam to adapt to the business
differences.

3.2. Channel Allocation Modelling. A LEO satellite has N
beams on the ground through phased array antennas,
represented by a set X � xn|n � 1, 2, . . . , N􏼈 􏼉. *e system
available channels are represented by a set
Y � ym|m � 1, 2, . . . , M􏼈 􏼉, and system total bandwidth is
Btot. Users in beam xn can be represented by a set
U � un,k| n � 1, 2, . . . , N, k � 1, 2, . . . , K􏽮 􏽯.

*e system allocates channels by frequency multiplexing
between beams. Furthermore, channel and power allocation
matrix are defined as follows:

V � V1, V2, . . . VN􏼂 􏼃
T

�

v1,1 · · · v1,M

⋮ vn,m ⋮

vN,1 · · · vN,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

P � P1, P2, . . . PN􏼂 􏼃
T

�

p1,1 · · · p1,M

⋮ pn,m ⋮

pN,1 · · · pN,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(1)

where vn,m ∈ 0, 1{ } in matrix V, vn,m � 1 represents the
channel ym is used in the beam xn, otherwise is not. *e
maximum transmits power of a beam and a system are Pc

and Ptot, respectively. *e channel gain of each beam can be
expressed by a gain matrix

Application layer

Rural area Urban area Ocean area

Link layer

Network layer
NCC

LEO LEO LEO

Trusted edge cloud Trusted edge cloud

Figure 1: LEO satellite network architecture.
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Central management
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Figure 2: Structure of on-board resource pool.

Centralized resource pool

Spot beam antenna array

Beam 1 Beam 2 Beam 3

Figure 3: Channel allocation mapping under a single satellite.
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H � H1, H2, . . . HN􏼂 􏼃
T

�

h1,1 · · · h1,M

⋮ hn,m ⋮

hN,1 · · · hN,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

For a user un,k in the beam xn, the useful signal and
cofrequency interference received in the channel ym are as
follows:

S
k
n,m � pn,mhn,m, (3)

R
k
n,m � 􏽘

N

i�1,i≠ n

pi,mhi,m. (4)

*e SINR of un,k can be calculated by equations (3) and
(4); further, the channel rate of un,k in the channel ym can be
calculated by the following equation:

C
k
n,m � B log2 1 +

S

N
􏼒 􏼓 � Bn,klog2 1 +

pn,mhn,m

􏽐
N
i�1,i≠ n pi,mhi,m + n0Bn,k

⎛⎝ ⎞⎠,

(5)

where n0 is the noise power spectral density, Bn,k is the
bandwidth allocated to the user un,k. To evaluate system
performance, a user supply-demand ratio is defined as
follows:

ηk
n �

C
k
n,m

C
k′
n,m

. (6)

In equation (6), Ck′
n,m is user’s request rate. Satellite

channel allocation can be seen as a sequence decision-
making problem in an interval T. Our optimization goal is to
maximize the user supply-demand ratio under limited
channel resources.*erefore, channel allocation is expressed
as the following optimization:

max 􏽘
N

n�1
􏽘

K

k�1
ηk

n, s.t.

􏽘

N

n�1
􏽘

K

k�1
C

k
n,m ≤Ctot,

􏽘

N

n�1
􏽘

M

m�1
pn,m ≤Ptot,

􏽘

M

m�1
pn,m ≤Pc.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

*e optimization objective in (7) is to maximize the
supply-demand ratio in the system. *e constraints indicate
that the sum of user service rate must not exceed system
capacity, the sum of channel transmit power must not ex-
ceed total transmit power limit, and the sum of channel
transmit power within a single beam must not exceed the
power limit of a single beam.

4. Channel Allocation Scheme

*e purpose of RL is to improve the decision-making ability
of the LEO satellite system in the process of channel allo-
cation so as to improve resource utilization further. In this
section, we define the state space, the action space, and the

reward function of the Q-learning algorithm and adopt
Q-learning algorithm to train the optimal channel allocation
strategy.

Figure 4 shows the interaction process between a satellite
system and the environment. *e environment is the col-
lection of terrestrial users in the satellite system, and the state
is the channel allocation state of the system user. Furtherly,
the action is the system assigning channels to users. We
model the channel allocation of a satellite system as a
Markov decision process (MDP). MDP is a set of sequential
decision processes with Markov attributes. MDP contains a
set of state st ∈ s, action at ∈ A(s), reward rt ∈ R , and state
transition probability p(st+1|st, at). *e state transition
probability p(st+1|st, at) refers to the probability of envi-
ronment transition to a new state st+1 after performing an
action at under state st.*e goal of MDP is to specify a policy
that maximizes the agent’s reward from the environment.
We use a model-free method in this paper, which does not
need to model the state transition probability. According to
the established optimization problem, we define the states,
actions, and reward.

4.1. State Definition. *e state matrix is constructed
according to the channel assignment of users in each beam.

W �

w1,1 · · · w1,K

⋮ wn,k ⋮

wN,1 · · · wN,K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where wn,k ∈ −1, 0, 1{ }, wn,k � 0 represents no user, wn,k �

−1 represents a user allocated no channel, and wn,k � 1
represents a user allocated channels. *e number of matrix
columns is the maximum number of users in all beams, and
the rows are system beams. When all requesting users have
been allocated channels or the system has no available
channels, the training process reaches the termination status
and the allocation process ends.

4.2. Action Definition. *e system selects suitable channels
from the action set A(s) and allocates these channels to users
according to the current state. Channel assignment is de-
fined as action at:

at � m|m ∈ A(s), A(s)⊆Y{ }. (9)

*e agent randomly selects actions from the action set
A(s) with probability ε. Also the agent selects the action with
maximum Q value with probability 1 − ε. When the training
steps are enough, the action value of each state inQ table will
converge to the optimal value.

4.3. Reward Definition. Reward is the feedback from envi-
ronments to agent after agent acts according to the current
state, and it can be used to measure the performance of
actions. An appropriate reward setting can guide an agent to
train the optimal strategy better.*e goal in optimization (7)
is to maximize the system supply-demand ratio. *us we set

Mobile Information Systems 5



the reward function as a function that is positively related to
the supply-demand ratio.

rt � 100 × 􏽘
n,k

ηk
n. (10)

4.4. Algorithm Optimization. In order to accelerate the
convergence of the Q-Learning algorithm, we make two
improvements based on the original Q-Learning algorithm:

the exponential gradient descent and the information in-
tensity updating strategy.

*e exponential gradient descent is that the random
exploration probability ε decreases exponentially with the
increase of training steps in the course of action selection, as
shown in the following equation:

ε � ε0 · e
−

l

l0 ,
(11)

where l0 is the maximum number of training steps. Ex-
ploring with a greater probability can ensure the diversifi-
cation of action selection in the early training stage, and thus
can avoid falling into local optimum; with the training step
increasing, the exploration probability begins to decrease,
and selecting optimal action with a larger greedy probability
can accelerate the convergence of the algorithm.

*e information intensity updating strategy is to define
the information intensity to express the quality of the action
and to update the Q table by information intensity. *e
information intensity J(st, a) is defined in equation (12). It
reflects the quality of action in the current state, where Δ is 1
by default. *e Q table will update only when the reward is
greater than the maximum reward in the current state.
Further, Q table updates as shown in the heuristic function
are defined in the following equation:

J st, a( 􏼁 �

J st−1, a( 􏼁
rmax

rt

, a≠ at,

Δ, else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

H st, a( 􏼁 �
max

a
Q st, a( 􏼁 − Q st, at( 􏼁􏼂 􏼃 +

J st, at( 􏼁

􏽐iJ st, ai( 􏼁
, at is the best action,

0, else.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

Under the guidance of information intensity, the heu-
ristic function updates the optimal behavior. *rough it-
erative accumulation, the agent will train the state-action
decision plan with the largest reward.

4.5. Trade-Off Analysis. Firstly, in order to simplify the al-
location process, we assume that the transmit power and
SNR of each channel are the same.*en, the training time of
the Q-DCA is highly dependent on the number of states and
actions. *e number of states and actions largely determines
the quality of the final allocation scheme. Due to the strict
latency requirements of satellite communication systems, we
reduce the number of states and actions appropriately to
shorten the training time of the algorithm.

4.6. Allocation Process. *e allocation scheme has two steps:
fixed channel preallocation and dynamic channel allocation
on demands. Before each service request arrives, the system

first preallocates some fixed channels for each beam cell;
after fixed preallocation is finished, if channel resource
cannot meet user’s demands in some beams, the resource
pool will perform dynamic channel allocation. Table 1 shows
the process of satellite system channel allocation.

5. Simulation Results and Discussions

In order to verify the performance of the proposed dynamic
channel allocation scheme, we carry out simulation exper-
iments on theMATLAB platform and compare the proposed
scheme with the FCA scheme and LACA scheme.

*e system receives the user’s request in each beam at
each service interval (the service arrival model system is
subject to the Poisson distribution with parameter λ, the
service duration is subject to the negative exponential dis-
tribution with parameter μ1, and the bandwidth request is
subject to the normal distribution with parameters μ2, σ2).
After centralized statistics of requests, the system allocates

State st

State st+1

Reward rt Action at

Figure 4: Dynamic channel allocation model based on RL.

6 Mobile Information Systems



channel resources to each user, counting supply-demand
ratios and blocking rates. Table 2 shows the specific pa-
rameters of the satellite system.

Compared with the proposed algorithm in simulation,
the FCA scheme adopts the average allocation. *e band-
width resources are evenly distributed to all users. *e
LACA scheme adopts the minimum variance of supply and
demand (MDSV), comparing the performance of three
schemes in different scenarios.

5.1. Ce System Performance in Beam Number Variation
Scenario. In this scenario, all beam traffic distribution pa-
rameters are the same. *e number of beams increases from
10 to 50, simulating that the numbers of accessing users
increase gradually and the available resources transition
from rich to scarce. Figures 5 and 6 show the system per-
formance of three schemes in the scenario of a gradual
increase in the number of beams.

As shown in Figure 6, with the increase in the number of
beams, the system blocking rate also increases. *e reason is
that with the expansion of the beam range, more users are
connected to the current satellite communication system,
and the bandwidth resources allocated to each user are also
reduced. When the number of beams is increased to 16, the
system starts to overload and block; meanwhile, the pro-
posed Q-DCA scheme can further improve the system
supply-demand ratio compared with the FCA scheme and
LACA scheme. For example, when the number of beams
reaches 20, the system supply-demand ratio of the three
schemes are 0.725, 0.645, and 0.615 respectively, which
means that the performance of the proposed Q-DCA al-
gorithm is 12% and 18% better than FCA scheme and LACA
scheme.

We analyze the differences in calculation time between
the three allocation schemes, as shown in Figure 7.

Table 1: Allocation process.

Initialize system parameters
1 Preallocation: Assign M channel to each beam
2 for Business request time t� 1 :T
3 if Resource is rich; recycle surplus resources
4 else resource is poor:Dynamic allocation
5 Allocate resources from resource pool
6 initialize parameter, learning rate α discount factor c, initial explore probability ε0, Q table
7 Reconstruct state based on business request s � I

8 for Episode� 1:max_episode
9 while (st+1 is terminal state)
10 Confirm initial state st

11 Update explore probability ε
12 Choose best a∗t or Choose randomly at

13 Execute action, get reward rt

14 Update Q table
15 Jump to next state st+1
16 End
17 End of training, output Q table
18 Choose best strategy according to Q table π∗
19 Channel allocation
20 End
21 End

Table 2: System simulation parameter.

Simulation parameter Value
Satellite height 500 km
Downlink frequency 10.7–12.7GHz
Maximum beams 40
Number of channels 16
Maximum transmission rate 1000Mbps
Service rate threshold 100 kbps
Maximum transmitting power 23 dBW
Maximum power of beam 20 dBW
Antenna angle of beam 1°
Learning rate 0.1
Discount factor 0.9
Initial explore probability 0.9
Maximum step 10000
Service arrival rate [10, 40] times/hour
Business duration [3, 6] minutes

10 15 20 25 30 35 40
Beam numbers

0

0.3

0.6

0.9
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Figure 5: Supply-demand Ration under varying beam number.
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Because the FCA scheme adopts a uniform allocation
principle, the number of calculations is relatively small,
and therefore its calculation time is minimal. For the
LACA scheme, as the beam increases, it takes longer to
calculate the function extremes. And in Q-DCA, we use
the trained strategy for channel allocation. Under each
service request, only the Q table needs to be updated each
time to get the optimal allocation scheme. Although the
FCA scheme takes the least amount of time, it has the
highest blocking rate when resources are tight. And the
time complexity of the Q-DCA scheme is lower than the
LACA scheme.

5.2.Ce System Performance in BeamNumber Fixed Scenario.
In this scenario, the number of satellite beam is fixed as 10,
while the business request in beam increases from 900Mbps
to 1700Mbps, simulating the scene in which the user
changes from sparse to dense. Figures 8 and 9 show the
system performance of the three schemes in the scene in
which the number of beams is fixed.

When the number of beams is fixed at 10, the system
supply-demand ratio decreases with the increase of the total
system traffic. It can be seen that when the total numbers of
business requests exceed 1000Mbps, the system starts to
block. At this time, the system business requests have
exceeded the system payload. When the business request is
1500Mbps, the system supply-demand ratio of the three
schemes is 0.589, 0.542, and 0.475, respectively. At the same
time, when the blocking rate is 30%, the system traffic
volumes of the three schemes are 1620Mbps, 1500Mbps,
and 1430Mbps, respectively. In other words, the proposed
Q-DCA scheme can further improve the system business
processing capacity compared with the previous two algo-
rithms while ensuring the same system blocking rate.

5.3. Spectrum Utilization and Algorithm Convergence
Performance. In this scenario, the number of satellite beams
is 10, and the total business volume of the system is
1000Mbps. Comparing the convergence speed of the
original Q-learning algorithm and the improved Q-learning
algorithm when the system resources are exactly exhausted.
Figure 10 shows the comparison of the convergence per-
formance of the two algorithms.

As shown in Figure 10, the original Q-Learning algo-
rithm starts to converge after about 4000 steps, while the
improved Q-Learning algorithm starts to converge after
about 2000 steps. Reflected in the actual application sce-
nario, the improved Q-Learning algorithm can already
shorten the system processing time by one time, thereby
shortening the on-board processing delay.

Figure 11 analyzes the channel utilization of the
original Q-Learning algorithm and the improved the Q-
Learning algorithm when the system resources are
abundant and scarce. It can be seen that the channel
utilization of the two algorithms is almost the same
whether the system resources are abundant or scarce,
except for the convergence speed of the algorithm.
*erefore, the improved algorithm will not change its
utilization rate of the system resources.
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Figure 6: Blocking Ration under varying beam number.
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Figure 7: Calculation time of three schemes.
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6. Conclusion

*is paper proposes a LEO satellite network architecture
based on a satellite resource pool. *e system manages
channel resources through a centralized resource pool to
adapt to the traffic difference between beams. We adopt the
Q-learning algorithm in RL for dynamic channel allocation.
*e simulation section analyzes the system performance and
time complexity of FCA, LACA, and Q-DCA schemes in
different scenarios. Analysis shows better performance of the
proposed scheme in terms of channel allocation. Further-
more, we analyze the convergence of the Q-Learning al-
gorithm and its impact on channel utilization. Simulation
results show the effectiveness and the convergence perfor-
mance of our proposed scheme.
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