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With the growing demand of cloud services, cloud data centers (CDCs) can provide flexible resource provisioning in order to
accommodate the workload demand. In CDCs, the virtual machine (VM) resource allocation problem is an important and
challenging issue to provide efficient infrastructure services. In this paper, we propose a unified resource allocation scheme for
VMs in the CDC system. To provide a fair-efficient solution, we concentrate on the basic concept of Shapley value and adopt its
variations to effectively allocate CDC resources. Based on the characteristics of value solutions, we develop novel CPU, memory,
storage, and bandwidth resource allocation algorithms. To practically implement our algorithms, application types are assumed as
cooperative game players, and different value solutions are applied to optimize the resource utilization. )erefore, our four
resource allocation algorithms are jointly combined as a novel fourfold game model and take various benefits in a rational way
through the cascade interactions while solving comprehensively some control issues. To ensure the growing demand of cloud
services, this feature can leverage the full synergy of different value solutions. To check the effectiveness and superiority of our
proposed scheme, we conduct extensive simulations. )e simulation results show that our algorithms have significant per-
formance improvement compared to the existing state-of-the-art protocols. Finally, we summarize our cooperative game-based
approach and discuss possible major research issues for the future challenges about the cloud-assisted DC resource
allocation paradigm.

1. Introduction

Nowadays, Internet of )ings (IoT) has created many ex-
citing applications, and they generate big volume of data.
)erefore, there is a strong need to conduct analysis on the
big data to support various data-driven services. To meet the
ever-increasing demand of applications and services, cloud
computing has recently been brought into focus in both
academia and industry. )e advent of cloud computing has
given rise to new and exciting prospects for individuals,
small- and medium-sized enterprises, and large organiza-
tions who can flexibly lease processing, storage, and network
resources on-demand. Due to their temporal needs of cloud
services, we have witnessed the rapid growth of cloud data
centers (CDCs) in the past few years, and expect the number
of CDCs will triple by 2020 [1, 2].

To handle the rapid increment of computation re-
quirements, CDCs provide unparalleled large-scale com-
putational capability and ubiquitous data accessibility,
which can make service more acceptable. Conventionally,
CDCs are warehouses that host tens of thousands of
servers, providing data-processing service and enabling
communications among large amounts of computing re-
sources. )ese servers may be used to provide different
services to individual users over the Internet and to benefit
from economy of scale to reduce computational costs.
)erefore, CDC infrastructures, which are maintained and
managed at scale by local as well as global operators such as
Amazon, Rackspace, Microsoft, and Google, are widely
used to offer as-a-services such as data-intensive applica-
tions, including query, web service, and big data analytics
[2, 3].
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)e properties of CDCs and the mechanisms for limited
resource allocations largely define the operation and per-
formance of the CDC system. In order to be sustainable, the
significant capital outlay required for building a CDC makes
maximization of Return on Investment (RoI) crucial, which
in turn necessitates efficient and adaptive CDC resource
usage. Moreover, the economic viability of a CDC greatly
depends on running the CDC at acceptable performance
levels and allowing users and applications to highly utilize
and share its infrastructure and resources. In summary, the
performance of CDCs is directly associated with how to
improve the resource usability. However, the average CDC
resource utilization has found to be low, typically ranging
from 10 to 20 percent. )erefore, it is necessary to increase
the resource utilization for the CDC system efficiency
[2, 4, 5].

Recently, virtualization technology has been touted as a
revolutionary technology to tackle the low-utilization
problem in CDCs. Initially, virtualization began in the
1960s, as a method of creating a virtual version of some-
thing, including virtual computer hardware platforms,
storage devices, and computer network resources. Since
then, the meaning of the term has broadened. In CDCs,
different physical resources are logically partitioned and
multiplexed among different applications. )rough virtu-
alization technology, virtual machines (VMs) are created
according to users’ demands, and users execute their ap-
plications on the VMs that are indeed running on physical
machines (PMs). Usually, multiple VMs can be created on a
PM using the virtualization software. )erefore, PM re-
source distribution for VMs is a hot research topic to
improve the PM utilization. With multiple resource re-
quests, finding an optimal solution of PM resource dis-
tribution problem will thus create a lot of challenges to the
researchers. However, under a complicated scenario, tra-
ditional resource allocation approach suffers from ex-
tremely high computational complexity and control
overhead. )erefore, we need a new control paradigm to
effectively mediate between the implementation practi-
cality and the system optimality [5, 6].

1.1. Cooperative Game-Based Value Solutions. Game theory
is a theoretical framework for conceiving situations among
competing players. In some respects, game theory is the
science of strategy, or at least the optimal decision-making of
independent and competing players in a strategic setting.
Game theory has two major subdivisions: noncooperative
and cooperative game theory. In cooperative game theory,
rational players will find ways to commit themselves to the
agreement and enjoy the benefits that arise from the
agreement. Indeed, one possibility is that a group of players
may cooperate to exploit another player or group of players.
)e value is a central solution concept in the cooperative
game theory. In 1953, the basic concept of value was in-
troduced by Shapley for the study of cooperative games. And
then, the idea of value solutions has been extended in dif-
ferent ways; some of the most notable values solutions are
developed by Harsanyi and Shapley [7].

Recently, value-based cooperative game approaches have
been widely investigated to solve the resource allocation
problems. In this study, we design a new VM resource al-
location scheme based on four value solutions; Shapley value
(SV), weighted Shapley value (WSV), proportional Shapley
value (PSV), and weighted-egalitarian Shapley value
(WESV). )ey exhibit a number of interesting axiomatic
properties and can be supported from a game-theoretic
perspective. To effectively distribute four different CDC
infrastructure resources, i.e., CPU, memory, storage, and
bandwidth, these four solutions can be individually applied
to ensure mutual advantages, and they are integrated into a
fourfold game model to reach an effective solution. During
the resource allocation process, CDC control agents make
their control decisions to achieve a globally desirable system
performance while effectively balancing between efficiency
and fairness.

1.2. Main Research Objectives. To provide a fair-efficient
solution for the VM resource allocation problem in the CDC
system, we concentrate on the cooperative game-based value
solutions. Our major research objectives are summarized as
follows:

(i) According to the cooperative game theory, we ex-
plore the main concepts of value-based solutions to
solve the VM resource allocation problem in CDCs.

(ii) By using the SV, WSV, PSV, and WESV solutions,
we develop novel CPU, memory, storage, and
bandwidth resource allocation algorithms for each
PM. )erefore, the CDC’s resource allocation
problem is divided into four component parts, and
our developed algorithms work together and act
cooperatively with each other to enhance the system
performance.

(iii) We create a new collaborative fourfold game model
by jointly employing four different resource allo-
cation algorithms. Our integrated fourfold game
approach can achieve mutual advantages through
attractive axiomatic properties.

(iv) We can effectively strike the appropriate perfor-
mance balance between contradictory requirements
based on the synergy effect, which is a consequence
of the reciprocal combination of different value
solutions.

(v) We conduct experiments on extensive simulations
and analyze empirical results to demonstrate the
effectiveness of our fourfold game approach. By
discussing and analyzing the simulation results, we
can confirm the superiority of our proposed
scheme compared with the existing state-of-the-art
protocols.

1.3. Organization. )e remainder of this paper is organized
as follows. In Section 2, we discuss and summarize the
related work followed by the objective of resource allocations
in CDCs. Section 3 introduces the overall infrastructure of
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CDCs and provides background preliminaries about the SV,
WSV, PSV, andWESV. And then, we outline the main steps
of proposed algorithms and formulate our fourfold game
model to design our CDC resource allocation scheme.
Section 4 presents the experimental setup, simulation re-
sults, and performance evaluation. To validate the effec-
tiveness of our approach, experiments are described while
comparing our proposed scheme against the existing pro-
tocols. Finally, we conclude this study and discuss the future
research directions in Section 5.

2. Related Work

Different resource allocation in CDCs has become a com-
pelling topic and has been widely studied in the literature.
Until now, state-of-the-art literature studies have discussed
the CDC resource allocation problem in various aspects,
including resource utilization, cost, scalability, overhead,
and system performance. In [8], authors propose two al-
gorithms to enhance the multicast capacity. Both algorithms
utilize the SDN-based controller system to handle multicast
routing. )e key motivation for this paper is the transition
happening in the uncompressed video transport technolo-
gies from legacy non-IP format based on Serial Digital
Interface (SDI) to transport based on IP. Major efforts are
underway in the standard bodies to define standards and
relevant encapsulations [8].

)e paper [9] proposes a network-aware VM relocation
algorithm, which optimizes the distribution of the VMs
running on the DC in order to conserve energy in both
servers and network switches. It targets the communicated
VMs and places them closer to each other while reducing the
traffic overhead between any communicating VMs. )is
approach also increases the VMs consolidation to some
servers while leaving other servers idle [9]. In [10], Wardat
et al. propose a new holistic view how to ensure the in-
creasing demands for cloud services while guaranteeing the
maximum revenue. )ey include the power usage optimi-
zation technique using a server consolidation approach
through a formulation of the problem taking into account
the need for DC expansion while reducing the total oper-
ational cost. )e server consolidation is achieved by pow-
ering off the underutilized servers without impacting the
system ability to satisfy the customers’ service requirements
[10].

)e Two-Tiered Resource Allocation (TTRA) scheme
proposes a two-tiered on-demand resource allocation
mechanism to find a dynamic resource allocation solution
[1]. To solve the problem of on-demand resource provision
for VMs, the TTRA scheme is consisting of the local and
global resource allocation methods to improve the efficiency
of CDCs. On each server, the local on-demand resource
allocation method optimizes the resource allocation to VMs
while considering the allocation threshold. )e global on-
demand resource allocation method optimizes the resource

allocation among applications at the macro level by
adjusting the allocation threshold of each local resource
allocation. Local and global resource schedulers reallocate
resources by evaluating the arriving workloads. To guide the
design of the on-demand resource allocation algorithms, the
TTRA scheme dynamically allocates CDC resources to VMs
according to the time-varying capacity demands and the
quality requirements of applications [1].

In the paper [6], the Multiobjective Resource Allocation
(MORA) scheme is a new Euclidean distance-based mul-
tiobjective resource allocation method for CDCs [6]. )is
scheme mainly focuses on the key goals of multiobjective
VM allocation on PMs in CDCs in terms of energy efficiency
and minimization of resource wastage. In particular, a hy-
brid mechanism based on genetic algorithm (GA), particle
swarm optimization (PSO), and Euclidean distance is de-
veloped to achieve an optimal point of energy efficiency and
resource utilization. )e core idea of this scheme is to apply
the GA for the generation of initial VMs allocation on PMs
and then apply the PSO for the improvement of the initial
solution. Finally, the hybrid approach can get the near global
optimal solution of the VM allocation problem. )e main
objectives of the MORA scheme are (i) to formulate the VM
allocation problem as a multiobjective multidimensional
combinatorial optimization problem and (ii) to adaptively
allocate the multiple resources of VMs while minimizing the
resource wastage at CDCs [6].

Dai et al. propose the Virtual Scheduling-based Resource
Allocation (VSRA) scheme by considering the placement of
VMs onto the servers in CDCs intelligently [11]. )e VM
placement problem is formulated as an integer program-
ming problem, and authors in [11] explore two greedy
approximation algorithms: the minimum energy VM
scheduling (MinES) algorithm and the minimum commu-
nication VM scheduling (MinCS) algorithm. )e main goal
of MinES and MinCS is to achieve a good feasible solution.
In particular, the MinES algorithm avoids powering up extra
servers and networking devices by placing VMs on active
servers. )e MinCS algorithm attempts to allocate the VMs
to decrease the total energy consumption on both network
and servers. Both algorithms start from the solution of the
relaxed original integer program and attempt to round the
solution intelligently to achieve the minimum energy con-
sumption. )e search for the solution in both heuristic al-
gorithms is guided by a relaxed version of the original
problem [11].

)ere is also much work done on the resource allocation
methods related to the VM placement in CDCs. Especially,
the TTRA, MORA, and VSRA schemes have attracted a lot
of attentions, recently; they have introduced unique chal-
lenges to efficiently solve the resource allocation problem in
the CDC system. Compared to these existing schemes in
[1, 6, 11], we demonstrate that our proposed scheme attains a
better performance during the CDC resource allocation
operations.
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3. Proposed CDC Resource Allocation Scheme

In this section, we introduce the infrastructure of the CDC
system. Afterward, the basic ideas of SV, WSV, PSV, and
WESV solutions are demonstrated to design our CDC re-
source allocation scheme. And then, the proposed protocol
is presented in detail based on the fourfold game model.
Finally, we describe concretely the proposed scheme in the
nine-step procedures.

3.1. Cloud-Based DC System Infrastructure. )e CDC ar-
chitecture is a well-known multitier system infrastructure,
which is composed of routers, switches, and a large number
of PMs P � PM1, PM2, . . . , PMn􏼈 􏼉. Each PM has four dif-
ferent resources, and the resource of PM1≤i≤n is characterized
by a tuple RPMi

����→
� RC

PMi
,RM

PMi
,RS

PMi
,RB

PMi
􏽮 􏽯, indicating the

available resource capacities of PMi in terms of CPU power
capacity (RC

PMi
), memory size (RM

PMi
), storage space (RS

PMi
),

and communication bandwidth (RB
PMi

), respectively. To
monitor the available resources, an intelligent agent (IA) is
deployed in each PM and periodically adjusts its RPM

���→
. Each

IA distributes its associated PM’s resources according to the
currently updated RPM

���→
information [6, 11, 12].

To implement the CDCmanagement paradigm, the time
axis is partitioned into equal intervals of length unit_time
(Δt). At each Δt, application tasks are received in the CDC,
and VMs are generated to support the requested tasks. In
this study, we assume four different application types
I, II, III, IV{ }. Based on the application types, execution of
VMs requires different resource amounts with diversified
preferences. For a given VMj ∈ V � VM1,VM2, . . .􏼈 􏼉,
the required resource specification and preference are

described by RVMj

�����→
� RC

VMj
,RM

VMj
,RS

VMj
,RB

VMj
􏼚 􏼛 and

αVMj

����→
� αC

TVMj

, αM
TVMj

, αS
TVMj

, αB
TVMj

􏼚 􏼛, respectively, where

TVMj
∈ I, II, III, IV{ } is the application type of VMj.

During the CDC operation, |V | ⋟ |P| andRVM
�����→

and αVM
���→ are

differently decided for each VM. )erefore, multiple VMs
are nested in each PM [6, 11, 12]. )e utility function
(UVMj

(RVMj

�����→
, αVMj

����→
)) of VMj is defined based on the al-

located resources of associated PM; UVM(·) maps service
quality of the target to a benefit value:

UVMj
RVMj

�����→
, αVMj

����→
,TVMj

, X) � 􏽘
X∈ C,M,S,B{ }

αX
TVMj

×
1

1 + exp AX
VMj

/RX
VMj

􏼒 􏼓

− β
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ (1)

where AC
VMj

, AM
VMj

, AS
VMj

, and AB
VMj

are the allocated CPU,
memory, storage, and bandwidth resources, respectively,
from the associated PM. β is a control parameter to cal-
culate the UVM(·). When a new application is arrived at the
CDC, the corresponding VM is generated. And then, it
should be assigned a specific PM by the CDC controller. In
the proposed scheme, we design a novel VM placement

method by considering the PM’s resource availability.
From a commonsense standpoint, our VM placement
approach can be interpreted as a compromise solution
between the weighted proportionality and the utilitarian
solution. According to (2), the new VMj is matched the
selected PMi ∈ M where the PMi is the most adaptable PM
to nest the VMj:

MAT VMj,TVMj
,PMi􏼒 􏼓 ≔ max

PMi∈P
􏽘

X∈ C,M,S,B{ }

αX
TVMj

× R
X
PMi

− R
X
VMj

􏼒 􏼓􏼒 􏼓⎛⎝ ⎞⎠. (2)

At each PM, the IA monitors and distributes its re-
sources for assigned VMs. To effectively share the limited
resources, we adopt the cooperative game approach. In this
paper, we assume that each PM has four different resources
C, M, S, B{ }. )erefore, four different cooperative games are
developed individually and independently for each re-
source distribution in a PM. At each Δt, these games are

executed in a dispersive and parallel manner. )erefore, we
can effectively reduce the computation complexity. At each
game model, each application type (TVM ∈ I, II, III, IV{ })

of VM is assumed as an individual game player, i.e., PI, PII,
PIII, and PIV, and utility functions for players are formu-
lated. First, in the PMi, the utility functions for the CPU
capacity (C), i.e.,UC

I , U
C
II,U

C
III, andU

C
IV, are defined as follows:
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UC
I RVMk

�����→
, αVMk

����→
􏼒 􏼓 � 􏽘

VMk∈PMi

log R
C
VMk

+ c􏼐 􏼑
αC
I ×RC

VMk
􏼐 􏼑

􏼠 􏼡,

UC
II RVMk

�����→
, αVMk

����→
􏼒 􏼓 � 􏽘

VMk∈PMi

log R
C
VMk

+ c􏼐 􏼑
αC
II×R

C
VMk

􏼐 􏼑
􏼠 􏼡,

UC
III RVMk

�����→
, αVMk

����→
􏼒 􏼓 � 􏽘

VMk∈PMi

log R
C
VMk

+ c􏼐 􏼑
αC
III×R

C
VMk

􏼐 􏼑
􏼠 􏼡,

UC
IV RVMk

�����→
, αVMk

����→
) � 􏽘

VMk∈PMi

log R
C
VMk

+ c􏼐 􏼑
αC
IV×RC

VMk
􏼐 􏼑

􏼠 􏼡,⎛⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where c is a control factor to calculate the UC
I∼ IV(·). And

then, as the same manner as the UC
I∼ IV, utility functions for

other PM resources such as M, S, and B, i.e., UM
I∼ IV, U

S
I∼ IV,

and UB
I∼ IV, are defined, respectively. At each Δt, UC

I∼ IV,
UM
I∼ IV,U

S
I∼ IV, andU

B
I∼ IV are examined periodically by the IA,

and the C, M, S, and B resources in each individual PM are
distributed for its corresponding VMs.

3.2. Main Concepts of Value-Based Cooperative Solutions.
In 1953, the concept of value in cooperative games was
introduced by Shapley. It is the most eminent allocation
rule for cooperative games with transferable utility. His
initial idea was to answer the question of what a player may
reasonably expect from playing a game. As a normative tool
to achieve efficiency and symmetry, the SV has received
considerable attention in numerous fields and applications.
Many axiomatic characterizations have helped to under-
stand the mechanisms underlying the SV. In 1959, the
concept of dividend was introduced by Harsanyi; it can be
defined inductively. )e dividend of the empty set is zero
and the dividend of any other possible coalition of a player
set equals the worth of the coalition minus the sum of all
dividends of proper subsets of that coalition. )erefore, the
dividend identifies the surplus that is created by a coalition
of players in a cooperative game, and it can be interpreted
as the pure contribution of cooperation in a game. Harsanyi
shows that the SV coincides with the payoff that results
from the equal division of dividends within each coalition
[13, 14].

In 1953, Shapley did consider the possibility for sym-
metric players to be treated differently. )is asymmetric
version of the SV is obtained by introducing exogenous
weights in order to cover asymmetries. )e concept of WSV
was introduced as an allocation rule based on weighted
contributions, and it had been axiomatized by Kalai and
Samet in 1987. Simply, the SV splits equally the dividend of
each coalition among its members, but the WSV splits the
Harsanyi dividends in proportional to the exogenously given
weights of its members. Weights are given by the stand-
alone worths of the players, and the value associated with
positive weights turns out to result from a weighted division
of dividendswithin each coalition.)us, it coincides with the
SV whenever all such worths are equal [14].

PSV is another value solution. It is similar in spirit to the
WSV. )erefore, the PSV inherits many of the properties of
the WSV. However, contrary to the WSV, the PSV reserves
the equal treatment property; it is a well-defined solution for
games in which the worths of all singleton coalitions have
the same sign. Based on the proportional principle, the PSV
satisfies proportional aggregate monotonicity, but does not
satisfy the classical axioms of linearity and consistency [13].

After the introduction of SV-related solutions, many
other axiomatic foundations for the rule were intensively
studied. Usually, the SV is an efficient rule that satisfies
strong monotonicity and symmetry. As redistribution rules,
these two properties focus on each player’s contributions in
a game to determine their rewards.)erefore, the SV can be
thought of as an allocation rule completely based on each
player’s performance. Recently, we face the following
question: what allocation rule reconciles performance-
based evaluation with a solidarity principle and takes
players’ heterogeneity into consideration? To answer this
question, a new solution, called WESV, was introduced
based on the combination of the SV and the weighted
division. )is solution satisfies weaker monotonicity; this
property does not require each player’s evaluation to de-
pend only on his contribution but rather allows it to depend
also on the worth of the grand coalition to reflect a soli-
darity principle [15].

To characterize the basic concepts of value-based solu-
tions, we preliminarily define some mathematical expres-
sions. R (R+,R++) denote the set of all (nonnegative,
positive) real numbers. N will denote the set of positive
integers. LetU ⊆N be a fixed and infinite universe of players.
Denote byU the set of all finite subsets ofU is denoted by U.
A cooperative game is a pair (N, v) where N ∈ U and
v : 2N⟶ R such that v(∅) � 0. For a game (N, v), we
write (S, v) for the subgame of (N, v) induced by S⊆N by
restricting v to 2S; the real number v(S) is the worth of S,
which the members of the coalition S can distribute among
themselves. Let RN(RN

+ , RN
++) be the N-fold Cartesian

product of R (R+,R++). A game (N, v) is individually
positive if v( i{ })> 0 for all i ∈ N and individually negative if
v( i{ })< 0 for all i ∈ N [13].

Define C as the class of all games with a finite player set
N. Let (N, v) ∈ C, and the Harsanyi dividends ΔN,v(S),
where S⊆N, are defined inductively as follows [13, 16]:
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ΔN,v(S) �
v(S) − 􏽐

T ⊂ S

ΔN,v(T), if S ∈ 2N,

0, if S � ∅,

⎧⎪⎨

⎪⎩

s.t., v(S) � 􏽘
T⊆S
ΔN,v(T).

(4)

)is formula shows that dividends uniquely determine
the characteristic function. Another well-known formula of
the dividends is given for all S⊆N and S≠∅, by the following
equation [17]:

ΔN,v(S) � 􏽘
T⊆S

(−1)
s− t

× v(T)􏼐 􏼑i.e.,

Δv( i{ }) � v( i{ })

Δv( i, j􏼈 􏼉) � v( i, j􏼈 􏼉) − v( i{ }) − v( j􏼈 􏼉)

Δv( i, j, k􏼈 􏼉) � v( i, j, k􏼈 􏼉) − v( i, j􏼈 􏼉) − v( i, k{ }) − v( j, k􏼈 􏼉) + v( i{ }) + v( j􏼈 􏼉) + v( k{ })

⋮

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

In terms of the distribution of the Harsanyi dividends,
the SV is the value ϕ on C defined as follows [13]:

ϕi(N, v) � 􏽘

S∈2N;

i∈S

1
|S|

× ΔN,v(S)􏼠 􏼡, s.t.,∀(N, v) ∈ C,∀i ∈ N.

(6)

)e WSV with weights w, where w � (wi ∈ R++)i∈N and
􏽐i∈Nwi � 1, is the value ϕw on C defined as follows [13]:

ϕwi (N, v) � 􏽘

S∈2N;

i∈S

wi

􏽐j∈Swj

× Δv(S)􏼠 􏼡, s.t.,∀(N, v) ∈ C,∀i ∈ N.

(7)

)e PSV is the value ϕP on C defined as follows [13]:

ϕPi (N, v) � 􏽘

S∈2N;

i∈S

v( i{ })

􏽐j∈Sv( j􏼈 􏼉)
× Δs(S)􏼠 􏼡,

s.t.,∀(N, v) ∈ C,∀i ∈ N.

(8)

)eWESV is the value ϕw− E on C defined as follows [15]:

ϕw−E
i (N, v) � δ × ϕi(N, v)( 􏼁 + (1 − δ) × wi × v(N)( 􏼁

s.t., ∀(N, v) ∈ C,∀i ∈ N, δ ∈ [0, 1] , wi∈N ∈ R++.
(9)

If δ � 1, the ϕw−E
i (N, v) values coincides with the SV and

distributes the surplus v(N) based only on the players’
contributions. If δ � 0, the ϕw−E

i (N, v) coincides with the
weighted division [15].

All the value-based solutions are characterized by a col-
lection of desirable axioms—Homogeneity, Monotonicity,
Weak Monotonicity, Symmetry, Balanced Contributions, Effi-
ciency, Proportional Balanced Contributions, w-Balanced
Contributions, Dummy Player Out, Ratio Invariance for Null
Players, Proportional Aggregate Monotonicity, Proportional
Standardness, Standardness, Weak Linearity, Consistency,
WeakConsistency,WeakDifferentialMarginality for Symmetric

Players, and Nullity [13, 15]. To explain these axioms, we need
some prior definitions. A value onC is a functionf that assigns
a payoff vector f(N, v) ∈ RN to any (N, v) ∈ C and
S ∈ 2N\ ∅{ }. Let QA denote the class of all quasiadditive
games. In a quasiadditive game, the worths of all coalitions are
additive except, possibly, for the grand coalition for which there
can be some surplus or loss compared to the sum of the stand-
alone worths of its members. Based on the S andf, the reduced
game (S, v

f

S ) is defined for all ∈ 2S [13]:

v
f

S (T) � v(T ∪ (N\S)) − 􏽘
i∈N\S

fi(T ∪ (N\S), v). (10)

)e concept of the reduced game is used to define the
axiom consistency. If f satisfies the axiom efficiency, v

f

S (T) �

􏽐i∈Tfi(T∪ (N\S), v) [13]:

(i) Homogeneity (H): for all (N, v) ∈ C, i ∈ N, and
α ∈ R, we have fi(N, αυ) � αfi(N, υ).

(ii) Monotonicity (M): for all(N, v) ∈ C and i ∈ N such that

fi(υ)≥fi υ′( 􏼁,

s.t., υ(S) � υ′(S), for S ⊊N,

υ(S)≥ υ′(S), for S � N.
􏼨

(11)

(iii) Weak Monotonicity (WM): for all
(N, v), (N, v′) ∈ C with v(N)≥ v′(N), if
v(S) − v(S\ i{ })≥ v′(S) − v′(S\ i{ }) for all S ⊆N with
i ∈ S, then fi(v)≥fi(v′).

(iv) Symmetry (Sym): for all (N, v) ∈ C and i, j ∈ N

such that i and j are symmetric in (N, υ), we have
fi(N, υ) � fj(N, υ).

(v) Balanced Contributions (BC): for all (N, v) ∈ C and
all i, j ∈ N,

fi(N, v) − fi(N\ j􏼈 􏼉, v) � fj(N, v) − fj(N\ i{ }, v).

(12)

(vi) Efficiency (E): for all (N, v) ∈ C, we have
􏽐i∈Nfi(N, v) � v(N).
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(vii) Proportional Balanced Contributions (PBC): for all
(N, v) ∈ C and all i, j ∈ N,

fi(N, v) − fi(N\ j􏼈 􏼉, v)

v( i{ })
�

fj(N, v) − fj(N\ i{ }, v)

v( j􏼈 􏼉)
. (13)

(viii) w-Balanced Contributions (w-BC): for all
w � (wi)i∈U with wi ∈ R++ for all i ∈ U, all
(N, v) ∈ C, and all i, j ∈ N,

fi(N, v) − fi(N\ j􏼈 􏼉, v)

wi

�
fj(N, v) − fj(N\ i{ }, v)

wj

. (14)

(ix) Dummy Player Out (DPO): for all (N, v) ∈ C, if
i ∈ N is a dummy player in (N, v), then for all
j ∈ N\ i{ }, fj(N, v) � fj(N\ i{ }, v).

(x) Ratio Invariance for Null Players (RIN): for all
(N, v), (N, v′) ∈ C and i, j ∈ N such that i and j are
null players in v, v′, we have
fi(v) × fj(v′) � fi(v′) × fj(v).

(xi) Proportional Aggregate Monotonicity (PAM): for
all b ∈ R and all (N, v) ∈ C such that n≥ 2, and all
i, j ∈ N,

fi(N, v) − fi N, v + buN( 􏼁

v( i{ })
�

fj(N, v) − fj N, v + buN( 􏼁

v( j􏼈 􏼉)
.

(15)

(xii) Proportional Standardness (PS): for all
( i, j􏼈 􏼉, v) ∈ C,

fi( i, j􏼈 􏼉, v) �
v( i{ })

v( i{ }) + v( j􏼈 􏼉)
􏼠 􏼡 × v( i, j􏼈 􏼉). (16)

(xiii) Standardness (S): for all ( i,j􏼈 􏼉,v)∈C, fi( i,j􏼈 􏼉,v)�

v( i{ })+(1/2)(v( i,j􏼈 􏼉)−v( i{ })−v( j􏼈 􏼉)).

(xiv) Weak Linearity (WL): for all a ∈ RN
++, all b ∈ R,

and all (N, v), (N, w) ∈ C, if (N, bv + w) ∈ C,
then f(N, bv + w) � bf(N, v) + f(N, w).

(xv) Consistency (C): for all (N, v) ∈ C, all ∈ 2N, and
all i ∈ S, fi(N, v) � fi(S, v

f

S ).
(xvi) Weak Consistency (WC): for all (N, v) ∈ QA, all

S ∈ 2N such that (S, v
f

S ) ∈ QA, and all i ∈ S,
fi(N, v) � fi(S, v

f

S ).
(xvii) Weak Differential Marginality for Symmetric

Players (WDMSP): for all (N, v), (N, v′) ∈ C and
i, j ∈ N such that i and j are null players in v, if
i, j are symmetric in v′ and v(N) � v′(N), then
fi(v) − fi(v′) � fj(v) − fj(v′).

(xviii) Nullity (NY): let Θ be the null game. For any
i ∈ N, fi(Θ) � 0.

)e main notable difference between PBC and w-BC is
that the weights are endogenous, i.e., they can vary across
games. )e consequence is that the system of equations
generated by PBC together with E is not linear. Nevertheless,
it gives rise to a unique nonlinear value. WL is combined
with the axioms E and DPO.WM states that a player’s payoff
weakly increases as his marginal contributions and the total
value weakly increase. In contrast with M, WM does not
insist that each player’s evaluation totally depends on his
contributions but rather allows that it can depend on the
total value. RIN requires that as long as some players say i, j

and contribute zero in both games v and v′, the ratio of their
payoffs, fi(v)/fj(v), does not vary. N is a weak feasibility
condition, which requires that every player receives nothing
if every coalition’s worth is zero [13, 15]. In conclusion, SV
can be characterized by axioms—BC, S, Sym, E, C, H, M,
DPO, WL, and WC. )e WSV can satisfy the axioms E, H,
M, w-BC, DPO, and WL for all possible weights w. )e PSV
is the unique value on C that satisfies E, H, M, DPO, PAM,
PS, WL, WC, and PBC. )e WESV satisfies the axioms E,
Sym, WM, RIN, WDMSP, and N [13, 15].

3.3. PM Resource Allocation Algorithms for VMs. In general,
the limited CDC resource distribution problem mathe-
matically corresponds to a bankruptcy game situation. A
standard bankruptcy game is given by a finite game player
set N, a real positive estate number E, and a nonnegative
claim vector d � d1, . . . , dn􏼈 􏼉 ∈ RN while satisfying
􏽐i∈Ndi ≽ E. In the analysis of bankruptcy situation, the main
objective is to obtain a satisfactory mechanism for distrib-
uting the estate while verifying two properties: the estate has
to be completely distributed among the game players, and
each player has to obtain a nonnegative quantity not greater
than their demand. A bankruptcy rule is a map f which
assigns to a payoff vector f(N, E; d) ∈ RN such that [18]

􏽘
i∈N

xi � E, s.t., 0 ≼ xi ≼ di for all i ∈ N. (17)

For the bankruptcy problem (N, E; d), a corresponding
cooperative bankruptcy game (N, vE;d) can be defined as
follows [18]:

vE;d(S) � max 0, E − 􏽘
j∉S

dj}.
⎧⎪⎨

⎪⎩
(18)

For the SV, WSV, PSV, and WESV, the above bank-
ruptcy rule can be applied to calculate the characteristic
function ] for the coalition S (](S)). From the viewpoint of
PMi, the IA of PMi observes its resource distribution status
and adjusts its tuple RPMi

����→
at each Δt. If the PMi’s available

resources are not sufficient to support the corresponding
VMs’ requests, the limited resources must be shared intel-
ligently taking into account differences of application types.
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In this study, we adopt the value-based cooperative
solutions to design our PM resource allocation algorithms.
For each PM, its RC

PM,RM
PM,RS

PM, and RB
PM resources are

shared by game players PI∼IV, which represent application
types. According to (3), each player has its own utility
function UX with X ∈ C, M, S, B{ } where UX represents the
amount of satisfaction of a player toward the outcome of
resource distribution. )e higher the value of the utility, the
higher the satisfaction of the player for that outcome. To
calculate the characteristic function (v(S)) of each coalition
S, we use the PI∼IV’ claim vector dX � dX

I , dX
II , dX

III, dX
IV􏼈 􏼉

where dX
I � UX

I (RVM
����→

, αVM
���→

), dX
II � UX

II(RVM
����→

, αVM
���→

),
dX
III � UX

III(RVM
����→

, αVM
���→

), and dX
IV � UX

IV(RVM
����→

, αVM
���→

).
For the PMi, we individually develop the

RC
PMi

,RM
PMi

,RS
PMi

, and RB
PMi

resource allocation algorithms.
First, to design the RC

PMi
resource allocation algorithm, we

consider the features of CPU computation and emphasize
the characteristics of S and C axioms. )erefore, we adopt
the SV idea as a solution. Based on the UC

I ∼IV(RVM
����→

, αVM
���→

),
the players’ claim vector dC is defined, and v(S) values are
obtained using the bankruptcy rule. And then, the players
PI∼IV share the limited RC

PMi
resource according to (6).

)erefore, the RC
PMi

is divided at the rate of ϕ values, and the
assigned RC

PMi
for the PI(C

PMi

PI
) is given by

C
PMi

PI
�

ϕPI
(N, v)

􏽐i∈N ϕi(N, v)( 􏼁
􏼠 􏼡 × R

C
PMi

,

s.t., N � PI, PII, PIII, PIV􏼈 􏼉 ,R
C
PM � 􏽘

i∈N
C
PMi

i .

(19)

Finally, the C
PMi

PI
should be distributed to the type I VMs

in the PMi. In our proposed algorithm, the utilitarian idea is
taken. In the viewpoint of efficiency, this idea attempts to
maximize the sum of VMs’ effectiveness:

arg max
..., AC

VMj
,...􏼔 􏼕

􏽘
VMj∈PMi

UVMj
RVMj

�����→
, αVMj

����→
,TVMj

, C􏼒 􏼓

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

s.t., C
PMi

PI
� 􏽘

VMj∈PMi

A
C
VMj

.

(20)

To design the RM
PM resource allocation algorithm, we

consider the features of memory space and emphasize the
characteristics of w-BC axiom.)erefore, we adopt theWSV
idea as a solution to develop the RM

PM resource allocation
algorithm, and the weight w of each player is assigned as his
preference αM

T . And then, the players PI∼IV share the limited
RM

PM resource according to (7), and the assigned RM
PM for

each player is distributed among the same-type individual
VMs by using the utilitarian idea as the same manner as the
RC

PM resource allocation algorithm.
To design the RS

PM resource allocation algorithm, we
consider the features of PM storage and emphasize the
characteristics of PAM, PS, and PBC axioms. )erefore, we
adopt the PSV idea as a solution to develop theRS

PM resource

allocation algorithm.)e playersPI∼IV share the limitedRS
PM

resource according to (8), and the assigned RS
PM for each

player is distributed among the same-type individual VMs as
the same manner as the RC

PM and RM
PM resource allocation

algorithms. To design the RB
PM resource allocation algo-

rithm, we consider the features of PM communication
bandwidth and emphasize the characteristics of RIN,
WDMSP, and N axioms. )erefore, we adopt the WESV idea
as a solution to develop theRB

PM resource allocation algorithm,
and the players PI∼IV share the limitedRB

PM resource according
to (9), and the assigned RB

PM for each player is distributed
among the same-type individual VMs as the same manner as
the RC

PM, R
M
PM, and RS

PM resource allocation algorithms.

3.4. Main Steps of the Proposed CDC Resource Allocation
Scheme. )e advent of cloud computing is looking forward
to leasing out multiple instances of data centers. In addition,
CDC resources can be shared amongst multiple users by
using the virtualization technology while preventing hard
resource commitment and low system utilization. VMs can
be dynamically allocated over a DC infrastructure in order to
improve application performance for the users and at the
same time efficiently utilize the CDC’s physical resources. In
this study, we focus on the main ideas of SV, WSV, PSV, and
WESV solutions to solve the resource allocation problem for
VMs in the CDC system. As we have asserted throughout
this study, the proposed fourfold cooperative game approach
is effectively advantageous under different and diversified
CDC system situations.

Our fourfold cooperative game approach can be ana-
lyzed in two different ways. From a theoretical point of view,
each solution for separate resource allocation process can be
featured by different axioms; they characterize each solution
concept and provide a sound theoretical basis. From a
practical point of view, our main concern is to reduce the
computation complexity. Usually, traditional optimal so-
lutions need huge computational overheads according to
their complicated and complex computation formulas.
)erefore, they are impractical in real-time process. In our
game model, game players are not individual applications,
but application types; it can effectively reduce the compu-
tational load. )e principle novelties of our approach are a
judicious mixture of different value-based solutions and its
adaptability, flexibility, and practicality to current system
conditions of the CDC infrastructure. )e main steps of the
proposed scheme are described as follows:

Step 1: at the initial time, system factors and control
parameters are determined by a simulation scenario
(refer to simulation assumptions and Table 1 in Section
4).
Step 2: at each Δt, application tasks are received in the
CDC, and VMs are generated as one of four types
I, II, III, IV{ }. Each VM has the resource specification

(RVM
����→

) and preference (αVM
���→

). )e utility function of
VM is defined according to (1).
Step 3: using (2), the new VM is nested to the most
adaptable PM. In each PM, there are four resources
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RC
PM,RM

PM,RS
PM,RB

PM􏼈 􏼉, and multiple VMs are placed. To
design a game model, VM types are assumed as players,
who compete with each other for the limited resources.
Step 4: each game player’s utility functions for four
resources are defined based on equation (3). At each Δt,
they are examined periodically by each individual IA in
a dispersive and parallel manner.
Step 5: for the RC

PM resource allocation, the SV idea is
adopted, and the limited RC

PM is shared among game
players according to (6). By using (20), the assigned
RC

PM for each player is distributed to the same-type
individual VMs in the associated PM.
Step 6: for theRM

PM resource allocation, theWSV idea is
adopted, and the limited RM

PM is shared among game
players according to (7). By using the same manner as
the RC

PM resource allocation algorithm, the assigned
RM

PM for each player is distributed to the same-type
individual VMs in the associated PM.
Step 7: for the RS

PM resource allocation, the PSV idea is
adopted, and the limited RS

PM is shared among game
players according to (8). By using the same manner as
the RC

PM and RM
PM resource allocation algorithms, the

assignedRS
PM for each player is distributed to the same-

type individual VMs in the associated PM.
Step 8: for the RB

PM resource allocation, the WESV idea
is adopted, and the limited RB

PM is shared among game
players according to (9). By using the same manner as
theRC

PM,R
M
PM, andR

S
PM resource allocation algorithms,

the assigned RB
PM for each player is distributed to the

same-type individual VMs in the associated PM.
Step 9: at each time period, each PM’s RPM

���→
and utility

functions of VMs are dynamically estimated in an
online manner. Constantly, each IA in PM is self-
monitoring, and proceed to Step 2 for the next fourfold
cooperative game iteration.

4. Simulation Results and Discussion

In this section, the performance of our proposed scheme is
evaluated via simulation, and compared with that of the
existing TTRA, MORA, and VSRA schemes [1, 6, 11]. First

of all, we introduce the scenario setup of the simulation, and
simulation parameters are listed in Table 1.

(i) Simulated DC system consists of one DC controller
and n PMs. )is structure can be extended hier-
archically and recursively.

(ii) In order to represent application tasks, four dif-
ferent applications types —I, II, III, and IV—are
assumed. Application tasks are randomly received
in the CDC system from these four types.

(iii) Application tasks generate their corresponding
VMs, which have different resource requirements
RVM
����→

� RC
VM,RM

VM,RS
VM,RB

VM􏽮 􏽯 and their pref-
erences αVM

���→
� αC

TVM
, αM

TVM
, αS

TVM
, αB

TVM
􏽮 􏽯 for four

PM resources.
(iv) Durations of VM execution are exponentially

distributed with different means for different ap-
plication types.

(v) )e arrival process for offered number of appli-
cations (task generation rate) is Poisson process
(ρ). )e offered rate range is varied from 0 to 3.

(vi) Each PM’s initial resources are 100 THz for RC
PM,

100GMB for RM
PM, 1 PMB for RS

PM, and 1.5Gbps
for RB

PM.
(vii) )e CDC system performance measures obtained

on the basis of 100 simulation runs are plotted as
functions of the offered task generation rate (ρ).

According to the simulation metrics, the CDC system
throughput, normalized application payoff, and average CDC
resource utilization are mainly evaluated to demonstrate the
validity of the proposed approach.)e simulation parameters are
presented in Table 1. Each parameter has its own characteristics.

In Figure 1, we compare the system throughput in the
CDC environment. In this study, system throughput is the
rate of successful VM execution in the CDC system. Typ-
ically, throughput is a measure of how many tasks a system
can process in a given amount of time. From the viewpoint
of the system operator, it is a main criterion on the per-
formance evaluation. In Figure 1, it is observed that our
proposed approach performs better at all levels of task

Table 1: System parameters used in the simulation experiments.

Type RC RM RS RB αC
I , αM

II , αS
III, αB

IV􏼈 􏼉 Execution duration average
I 1.2GHz 350MB 15GB 35Mbps {0.3, 0.3, 0.2, 0.2} 120 unit_time (Δt)

II 1.8GHz 250MB 20GB 30Mbps {0.2, 0.4, 0.3, 0.1} 200 unit_time (Δt)

III 2.5GHz 150MB 10GB 45Mbps {0.1, 0.2, 0.3, 0.4} 150 unit_time (Δt)

IV 3.3GHz 100MB 12GB 25Mbps {0.4, 0.1, 0.2, 0.3} 250 unit_time (Δt)

Parameter Value Description
n 12 Number of PMs in the CDC system
β 0.5 A control parameter to calculate the UVM(·)

c 1 A control factor to calculate the UC(·)

δ 0.5 A control parameter to calculate the ϕw− E(·)

RC
PM 100 THz Initial CPU capacity for each PM

RM
PM 100GMB Initial memory size for each PM

RS
PM 1 PMB Initial storage space for each PM

RB
PM 1.5Gbps Initial communication bandwidth for each PM
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generation rate, although the gain is very little profit at lower
task rates. Note that our fourfold cooperative gamemodel can
effectively allocate the four different CDC resources while
improving the system throughput. )erefore, it is easy to
confirm that we can accommodate the increased application
tasks in the CDC system and maintains the stable perfor-
mance superiority under different task load intensities
compared to the existing TTRA, MORA, and VSRA schemes.

Figure 2 shows the normalized application payoff with
different task generation rates. From the viewpoint of end
users, it is a major factor in the performance analysis.
Usually, as the task generation rate increases, the VM execution
delay may occur. )erefore, normalized application payoff de-
creases gradually. However, in our proposed scheme, each IA in
PM periodically monitors its available resources and adaptively
distributes the limited PM resources based on the value-based
solutions. In our fourfold game approach, each resource is in-
telligently shared among different-type VMswhile attempting to
maximize the sum of same-type VMs’ effectiveness. )erefore,
we can exhibit consistently better performance in application
payoff compared to the existing schemes.

Figure 3 presents a comparison of performances for the
average CDC resource utilization. As can be observed, all
schemes have many similarities with the performance of
system throughput. Traditionally, resource utilization is
strongly related to system throughput. When the offered
application load increases, the utilization of PM resources also
increases. It is intuitively correct. In the proposed scheme,
each IA adaptively intervenes to maximize the resource
utilization according to the viewpoint of utilitarian idea, and
different application types reach binding commitments for
each PM resource distribution. )erefore, individual PM’s
resources are strategically distributed in the step-by-step
interactive online manner while satisfying desirable features,
which are defined as axioms of value-based solutions.

)e simulation results displayed in Figures 1–3 dem-
onstrate that the actual outcome of our scheme is fairly dealt

out compared to the existing schemes, and our fourfold
game approach can attain an appropriate performance
balance between the viewpoints of system operator and end
users; conversely, the TTRA, MORA, and VSRA schemes
cannot offer such an attractive outcome under widely dif-
ferent CDC application load intensities.

5. Summary and Conclusions

Modern CDCs need to tackle efficiently the increasing de-
mand for different resources and address the system effi-
ciency challenge.)erefore, it is essential to develop efficient
resource allocation policies that are aware of VM charac-
teristics and applicable in dynamic scenarios. )is study
highlights the value-based cooperative game approach and
formulates the CDC resource allocation algorithms based on
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Figure 3: Average CDC resource utilization.
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the SV, WSV, PSV, and WESV solutions. To effectively
distribute the CPU, memory, storage, and bandwidth re-
sources, individual cooperative game models are designed
separately. )ey exhibit a number of interesting axiomatic
properties and can be supported from a game-theoretic
perspective. According to the developed fourfold game
model, different resources in each PM are assigned for
corresponding VMs to achieve a “win-win” situation under
dynamic CDC environments. Compared to the existing
protocols, the extensive simulations show that our proposed
scheme delivers near-optimal CDC resource efficiency with
various different application demands while other TTRA,
MORA, and VSRA schemes cannot provide such a well-
balanced system performance.

Given the extensiveness of the CDC resource allocation
methods, it is also concluded that more rigorous investi-
gations are required with greater attentions. )erefore, there
will be different open issues and practical challenges for the
future study. First, we will further explore the VMmigration
issue among PMs in CDCs and moreover, we will develop
more metrics to measure the quality of related algorithms.
Second, we will also investigate the network topology of
CDCs and the different network capabilities among them.
Another important factor is the network topology. Running
VMs may need to communicate with each other due to the
workload dependencies. )erefore, by monitoring the VM’s
communications, we will develop an efficient VM allocation
method to decrease the overhead of data communications.
Last but not least, we are keen to implement our protocol to
real test-bed and analyze the CDC performance, which is
hopeful to achieve valuable experience for practitioners.
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