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In recent years, deep learning theories, such as Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN),
have been applied as effective methods for intrusion detection in the vehicle CAN network. However, the existing RNNs realize
detection by establishing independent models for each CAN ID, which are unable to learn the potential characteristics of different
IDs well, and have relatively complicated model structure and high calculation time cost. CNNs can achieve rapid detection by
learning the characteristics of normal and attack CAN ID sequences and exhibit good performance, but the current methods do
not locate abnormal points in the sequence. To solve the above problems, this paper proposes an in-vehicle CAN network
intrusion detection model based on Temporal Convolutional Network, which is called Temporal Convolutional Network-Based
Intrusion Detection System (TCNIDS). In TCNIDS, the CAN ID is serialized into a natural language sequence and a word vector
is constructed for each CAN ID through the word embedding coding method to reduce the data dimension. At the same time,
TCNIDS uses the parameterized Relu method to improve the temporal convolutional network, which can better learn the
potential features of the normal sequence. +e TCNIDS model has a simple structure and realizes the point anomaly detection at
the message level by predicting the future sequence of normal CAN data and setting the probability strategy. +e experimental
results show that the overall detection rate, false alarm rate, and accuracy rate of TCNIDS under fuzzy attack, spoofing attack, and
DoS attack are higher than those of the traditional temporal convolutional network intrusion detection model.

1. Introduction

With the development of technologies such as the Internet of
Vehicles, unmanned driving, and software-defined cars,
modern cars are equipped with more and more advanced
sensing devices and intelligent control systems [1], making
cars more intelligent and providing people with a more
comfortable driving service. However, with the increase of
the number of electronic control units (ECU), sensing de-
vices, ports, etc., and the diversity of networking, the attack
surface of automobiles has becomemore andmore extensive
[2] and many security researchers have demonstrated the
vehicles’ vulnerability to attacks. For example, Miller et al.
used WiFi open ports to invade a car’s in-vehicle CAN
network [3] by analyzing the CAN communication protocol
[4], i.e., sending protocol data to the bus to cause car brake

failure and engine stop. +erefore, the in-vehicle network
security problem has become the focus of automotive safety,
especially the CAN network commonly used in automobiles
[5].

Intrusion detection is an effective method to solve the
problem of in-vehicle network security, of which the study of
CAN data as a sequence is an important research field of
current intrusion detection. +e normal CAN ID sequence
features are extracted through sequence learning, and when a
nonexistent sequence appears in the network, the intrusion
detection system detects it as an abnormality [6, 7]. Taylor et al.
proposed an intrusion detection method based on Long Short-
Term Memory (LSTM) [8], which directly inputs the original
CANdata packets into themodel, and predicted network traffic
through a short time sequence of dozens of data packets. +is
method of learning sequence through recurrent neural network
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effectively realized intrusion detection, but establishing sub-
sequences and corresponding models for each independent
CAN ID will cause the loss of sequence relationships between
different IDs and reduce the efficiency of intrusion detection.
Song et al. proposed an intrusion detection method based on a
deep convolutional neural network [9], which learned normal
and attack CAN ID sequence features through the convolu-
tional network and achieved a higher detection rate while using
the parallel processing capability of the convolutional network
to reduce the time cost. However, it does not locate abnormal
points and the abnormal detection of the message level is not
realized.

To solve the above problems, an intrusion detection
system based on temporal convolution network is proposed
in this paper. We choose temporal convolution network
because it shows excellent performance and efficiency on
different tasks and data sets [10]. In our TCNIDS model, the
original CAN data are directly regarded as a sequence, the
probability of each CAN ID in the future sequence is pre-
dicted by word embedding encoding, and the time convo-
lution model is learned and decoded, so as to realize the
anomaly detection at the message level.

Contributions of this paper are the following:

(1) +e temporal convolutional network model is ap-
plied to the intrusion detection of in-vehicle CAN
network for the first time. +e model has a simple
structure, and effectively realizes the message-level
prediction and anomaly detection.

(2) CAN IDs are encoded as words by using the word
embedding method, which effectively represents the
potential features between IDs and improves the
performance of the model. At the same time, word
embedding reduces the dimension of data and im-
proves the computational efficiency of the model.

(3) PReLU activation function is used to improve the
TCN model, and the performance of this activation
function in TCNIDS model is compared and
analyzed.

+e remainder of this paper is organized as follows. We
present the background material about CAN bus and in-
trusion detecting system in Section 2. +e framework of the
IDS is proposed and introduced in detail in Section 3. In
Section 4, we present our experiment environment, evalu-
ation metrics, and results, and give our conclusions in
Section 5.

2. Background

2.1. CAN Bus and Its Features’ Analysis. CAN is a field bus
with high reliability, strong real-time performance, and low
flexibility [4]. It is a standard bus of automobile in-vehicle
control system and realizes the communication between in-
vehicle electronic control units (ECUs). CAN network is an
important part of the entire in-vehicle network. It is a peer-
to-peer network, where each ECU node in the CAN network
not only receives messages but also sends messages actively.
Its main features are as follows:

2.1.1. Realize the Message Exchange between ECUs by
Broadcast. Each ECU node in the CAN network sends
messages by broadcast, and all ECU nodes in the CAN
network receive messages. +ere are 5 types of messages:
data frame, error frame, remote frame, inter-frame space,
and overload frame. Figure 1 shows the structure of CAN
standard data frame.

2.1.2. Adopt Arbitration Mechanism to Avoid Message
Conflict. +e CAN network provides an arbitration
mechanism to avoid conflicts caused by different ECU nodes
sending messages to the CAN network simultaneously. Each
ECU carries out line and operation between its own mes-
sages to be sent and the ID of other messages, that is,
comparing the bits of the arbitration field, if it is the
dominant bit 0, it will continue to get the control of the bus;
if it is the recessive bit 1, it will lose the arbitration, and turn
to be the receiving state from the next bit, until the bus is
idle.

2.1.3. Increase ECU and External Interfaces. With the im-
provement of vehicle intelligence, more and more me-
chanical parts are replaced by ECU. At present, the number
of ECUs in some luxury cars is more than 100 [11], while the
increasing demand for network communication and en-
tertainment experience has greatly enriched the external
interface of vehicles. For example, Tesla carries out remote
software upgrade of ECU through OTA (Over-the-Air) [12],
which is a technology to download new software update
packages from a remote server through the network to
upgrade its own system.

2.1.4. Implement Simple Data Check Code. In order to en-
sure the real-time performance and functional requirements
of the vehicle to the greatest extent, the CAN network only
includes a simple data check code when designing the
message structure, and does not identify the identity ID of
the message sender. +erefore, the protocol lacks security
mechanism, such as encryption, access control, and message
authentication. At the same time, this broadcast method
allows all ECUs to easily obtain message information, which
is easy to be sniffed by attackers.

2.2. Intrusion Detecting System. +ere have been many re-
searches on intrusion detection of in-vehicle CAN networks.
Hamada et al. learned the behaviour patterns under normal
and attack environments by analyzing the periodicity of CAN
messages [11]. Ji et al. believed that although the frequency of
the ECU transceiver is fixed, the clock drift [13] would occur
because the crystal oscillator was not exactly the same, so the
accumulation of clock drift was used as the fingerprinting
feature of the ECU [14]. Müter and Asaj applied information
entropy to intrusion detection of in-vehicle network through
maximum entropy estimation method [15], which can detect
abnormal conditions of network traffic. However, these in-
trusion detection models are targeted at specific attacks, and
so their application is limited.
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In view of these limitations, some literature studies
[8, 16, 17] build intrusion detection model of in-vehicle
CAN network through deep learning theory.We divide deep
learning methods into 3 categories: RNN, CNN, and others.
RNN, as a deep learning model for time series data pro-
cessing, has been widely used in many fields. Taylor et al.
proposed an intrusion detection method based on LSTM [8]
to solve the problems of gradient disappearance, and short
memory existed in RNN itself, which directly input original
CAN packets into the model and can predict network traffic
within a short time scale of dozens of packets. Another
advantage of this raw traffic forecasting is that the model
does not require domain knowledge. Hanselmann et al.
proposed an intrusion detection system CANet based on
LSTM and AutoEncoder [18]. +e system introduced an
independent LSTMmodel for each CAN ID to learn the time
dynamic characteristics of each message-related signal, and
then aggregated all IDs and used the AutoEncoder model to
learn the interdependence between signals. +e AutoEn-
coder included an Encoder and a Decoder. +e Encoder
mapped the high-dimensional input data to the low-di-
mensional embedding space, which could be used for di-
mensionality reduction. At the same time, the Decoder was
used to reconstruct the low-dimensional embedding space of
the representation, which could be compared with the
original input data for deviation comparison, so as to ef-
fectively identify anomalies. In addition, for the first time, it
used an Autoencoder to naturally process the data structure
of the high-dimensional CAN bus. Wang et al. proposed a
distributed anomaly detection system based on the hierar-
chical timememory (HTM) algorithm [19], which effectively
realized the real-time prediction of the original CAN traffic
data at the bit level. +e method in [8, 18, 19] causes the loss
of some information and relationships in the CAN network
by establishing a model for an independent CAN ID or ECU
[20], and the model becomes more complicated. Kang and
Kang proposed a deep neural network (DNN)-based in-
trusion detection method [21], which used an unsupervised
deep belief network (DBN) to pretrain the initialization
parameters and test it on the simulation data set generated
by the OCTANE platform. Usually, when training a model,
it is considered that DNN and LSTM consume more time
than CNN. Based on this fact, Song et al. proposed an in-
trusion detection method based on deep convolutional
neural network [9], by simplifying the Inception-ResNet
model. +e method achieves a higher detection rate and
reduces the time cost. However, this method cannot effec-
tively locate themessage level detection by detecting whether
the sequence has an attack. In addition, some current studies

do not use a single method but use the advantages of various
methods to mix them. Xiao et al. combined LSTM and CNN
to treat CAN network traffic data as a whole from the two
dimensions of time and space [20], and proposed a
convLSTM model, which can better extract the potential
features of normal data flow, so as to predict the deviation
attack behaviour of the time series more effectively. How-
ever, it needs to be improved in terms of threshold selection
and real-time detection performance.

3. Methodology

In this section, first we present the overview of the TCNIDS
model for in-vehicle CAN network.+en, we introduce each
model component in detail.

3.1. Model Overview. +e traffic data in the in-vehicle CAN
network appears in the form of sequence. Due to the ar-
bitration mechanism of CAN network and the periodicity
of message transmission, there is a dependency on the
appearance of the message sequence [22]. On the bus, each
ECU in the CAN network follows the CAN protocol to send
and receive messages, and there is a certain relationship
between the previous message and the next message.
+erefore, we convert the intrusion detection of CAN
traffic data into sequence prediction for research. We learn
to extract normal sequence features, and when a nonex-
istent sequence appears in the network, the intrusion de-
tection system will identify it as an abnormality and
determine which message is inconsistent with the predicted
sequence result. At present, in the field of time series
forecasting, time convolutional networks have shown ex-
cellent performance and efficiency on various data sets and
tasks. +erefore, this paper chooses time convolution as the
basis of the entire model. Assume that there is an input
sequence Xt− s: t � xt− s, xt− s+1, . . . , xt− 1, xt  at each time
interval t, the objective is that the model can predict the
corresponding output sequence Yt− s: t � yt− s, yt− s+1, . . . ,
yt− 1, yt}. Formally, the model is an arbitrary function f:
Xt− s: t⟶ Yt− s: t:

Yt− s: t � f Xt− s: t( . (1)

+e goal of the model is to train the function f to
minimize the loss function Loss(Yt− s: t, f(Xt− s: t)) between
the model output sequence and the real sequence. +e loss
function of this model training adopts cross entropy, and the
specific expression is as follows:
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Figure 1: CAN standard data frame.
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where S denotes the number of messages in the sequence,M
denotes the number of CAN message types, yi denotes the
true label of message category i, and pi is the probability that
the model predicts to belong to message category i.

TCN proposed the network structure shown in Figure 2.
First, since the output length generated by the network in
sequence prediction needs to be consistent with the input
length, TCN uses a 1D fully convolutional network (FCN),
and each hidden layer uses zero padding for length padding.
Second, using future information to predict the past will lead
to information leakage [10], so TCN introduces causal
convolution [10] to ensure that the output at the current
moment comes from the convolution of current and his-
torical information. +ird, having a longer historical
memory requires a deeper network, but it will increase the
number of parameters. +erefore, TCN uses expanded
convolution to expand the receptive field of the convolution,
thereby reducing the depth of the network as much as
possible. Fourth, normalization can solve the problem of
gradient vanishing or gradient exploding caused by the
increase of network depth to a certain extent, but it will also
bring about degradation problems. +erefore, the residual
network [23] is introduced to solve this problem in TCN.

+is paper, by extending TCN, proposes the intrusion
detection model TCNIDS for in-vehicle CAN network. +e
overview of the model is shown in Figure 3.

+e model has two stages: training and detection. +e
training stage learns the normal CAN data sequence and
realizes the prediction of the next sequence by extracting
potential sequence features, thereby learning the sequence
law of normal behaviour.+e detection stage checks all CAN
data sequences including attack behaviours. +rough ob-
servation, there is more than one possibility of the message
predicted by the CAN sequence. +erefore, this paper uses
the Top g probability strategy to detect anomalies in each
message in the prediction sequence. If the predicted real
message is in the message set with the top g probability, it is
detected as normal, otherwise it is detected as abnormal. +e
following will introduce each component in the model in
detail.

3.2. Data Preprocessing. +e data set includes timestamp,
CAN ID, DLC, Data, and Label. We only need to extract the
two fields of CAN ID and Label to form the original ID
sequence. Among them, CAN ID is extracted in the training
phase, and CAN ID and Label are extracted in the anomaly
detection phase for evaluating the performance of the
TCNIDS model proposed in this paper.

3.3. Encoder. Since in One Hot encoding CAN ID, the
distance between all IDs is the same, there is a disadvantage
that the potential relationship between IDs cannot be
extracted during model training; on the other hand, the
word embedding coding method maps a word to a point in

the semantic space, which makes the semantically similar
words relatively close, and it can effectively characterize the
relationship between IDs [24]. +erefore, this paper uses the
word embeddingmethod to treat each type of CAN ID in the
data set as a word, uses a word vector to represent the CAN
ID, and learns to extract the potential relationship between
IDs, thereby improving the performance of the model.
Figure 4 shows the process of CAN ID Embedding:

Step 1. Various types of IDs in the original CAN ID
sequence are extracted to construct an embedding
matrix. Each type of CAN ID is expressed as a word
vector of the same dimension, and the initial vector is
assigned a random value.
Step 2. Replace each ID in the original ID sequence
according to the embedding matrix of CAN ID, which
is represented by the word vector in Step 1.
Step 3. +e embedded matrix constructed by Step 1 and
the ID sequence represented by Step 2 are added to the
corpus for the input data of model training and testing.

3.4. Temporal Convolutional Network. +e TCNIDS model
proposed in this paper extends on the general TCN model
described in Ref. [10]. +e TCN model has two main
constraints. +e output of the hidden layer in the middle of
the model has the same length as the input, and the pre-
diction at time t can only rely on the information before time
t. For the first constraint, TCN uses a 1-D fully convolutional
network (FCN) to convolve time series data, and uses zero
padding to ensure the same length of the front and back
network layers. Regarding the second constraint, TCN in-
troduces causal convolution, so that the output at time t can
only be convolved with time t and previous information,
ensuring that the past cannot be predicted by future in-
formation, thereby causing information leakage. As shown
in Figure 5, through causal convolution, one-dimensional
convolution of past information is realized, and the potential
features of CAN data sequence are effectively extracted.

Formally, set the convolution filter F � (f1, f2, . . . , fk).
For any element xj in sequence Xt− k: t � xt− k, xt− k+1, . . . ,

xt− 1, xt}, the causal convolution at xj is defined as follows:

(F⊕X) xj  � 
K

i�1
fixj− K+i, (3)

where K denotes the size of the convolution kernel.

3.4.1. Dilated Convolutions. For the prediction of CAN data
series, we expect the model to remember more historical
information, so that the prediction performance will be
more stable. However, with the above causal convolution
method, to achieve a larger receptive field, it is necessary to
stack many network layers to reach the goal. In order to
overcome this problem, the dilated convolution is used to
expand the receptive field of the convolution, which greatly
reduces the number of intermediate hidden layers, which is
also the biggest feature of the dilated convolution. In dilated
convolution, filters are applied by skipping a certain number
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of steps according to the expansion factor d to achieve
convolution of a larger area. As shown in Figure 6, this
growth method of the receptive field is different from
pooling operation, as it skips some existing elements. In
general, d will increase exponentially as the network depth i
increases, so the model can build a long memory.

Formally, set the convolution filter F � (f1, f2, . . . , fk).
For any element xj in sequence Xt− k: t � xt− k, xt− k+1, . . . ,

xt− 1, xt}, the causal convolution at xj is defined as follows:

F⊕dX(  xj  � 

K

i�1
fixj− (K− i)d. (4)

Among them, d is the expansion factor of the dilated
convolution, and when d� 1, the convolution kernel de-
generates into a general convolution operation.

3.4.2. Residual Connections. Since the receptive field of the
TCN model depends on the network depth n, filter size k,
and expansion factor d, making the TCN deeper and larger is
the key to obtain a large enough receptive field [25]. +e
residual connection can simplify deep network training. +e
deep network through this structure has been proved to be
very effective, which can speed up the training process and
avoid the disappearance of gradients. As shown in Figure 2,
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Figure 2: TCN network structure.
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the model is constructed by residual blocks in TCN. Each
residual block contains two network layers, and each layer is
composed of four parts: causal dilated convolution, nor-
malization, activation function, and regularization. For
normalization, we apply weight normalization to the con-
volution filter. Regularization can effectively prevent the
over-fitting phenomenon of the model. In addition, in the
standard ResNet [23], the input is directly added to the
output of the residual function. While in TCN, the input and
output may have different channel dimensions. In order to
be able to perform residual operations, we use an additional
1 ∗ 1 convolution to ensure that the output and input of each
layer have the same shape.

3.4.3. Activation Function Selection and Improvement.
+e original TCN model uses a one-dimensional convolu-
tional network to extract features, and uses the Relu acti-
vation function to nonlinearly map the features [26]. As
shown in Figure 7(a), when x≥ 0, the gradient of the Relu
activation function is 1, and when x< 0, the gradient reduces
to 0, so that the network can converge faster. +is activation
function is widely used in CNN. However, when x< 0, the
output value of the convolution kernel operation is always 0,
which causes many features to be masked, and the network
cannot extract effective features. +is phenomenon in which
the Relu activation function is killed in the negative region is
called “Dying” [27].
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Figure 3: Illustration of the TCNIDS model.
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In order to solve the problems of Relu, He et al. proposed
a parameterized Relu function method [28], as shown in
Figure 7(b). +e parameter α is introduced in the param-
eterized Relu function. When x< 0, the gradient of the
activation function will automatically change with the
learning of the network, so as to obtain the optimal value of
the model.

3.5. Decoder. One goal of the model is to predict the
probability of which type of CAN ID each message in the
sequence belongs to, that is, the target dimension is the
number of CAN ID types, but the output dimension ob-
tained through the time convolutional network model is
different from this target dimension, so it is necessary to

realize the transformation of these two dimensions through
decoding. Since the number of CAN IDs in the in-vehicle
network is not much, generally within 100, we adopt the
simple method of full connection to directly realize the
transformation of two dimensions.

4. Experiments

+is section firstly introduces the CAN data sets, exper-
imental environment, and evaluation metric, and then
illustrates the optimized parameter settings for the
training and detecting. Finally, the performance of the
model is deeply analyzed through the experimental
results.
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4.1. Data Sets and Experimental Environment. +is paper
adopts the public CAN data sets provided in [12], which are
collected by the Kia Soul test vehicle and contain 17558346
CAN messages. +e data sets can be divided into Normal,
Fuzzy Attack, Spoof Gear attack, Spoof RPM Attack, and
DoS Attack. +e information of the CAN data sets is shown
in Table 1.

+e length of the CAN ID of the data sets used in this
paper is 11 bits. Before input to the model, CAN ID of all the
data sets above will be extracted to form the corresponding
ID sequence data. In this paper, the data sets are not divided
according to the fixed time, but are divided according to the
sequence length specified in the model parameters, and the
method of sliding window is used to extract the next se-
quence. 80% of the normal data set is selected as the training
set, and 20% of the normal data set and the other 4 attack
data sets are selected as the test set.

+e experimental environment in which the TCNIDS
model is tested in this paper is shown in Table 2.

4.2. Evaluation Metric. In order to evaluate the detection
performance of the proposed TCNIDS model, we firstly

define the confusion matrix for intrusion detection shown in
Table 3.

Among them, TP denotes the number of CAN messages
that are abnormal and predicted to be abnormal, FN denotes
the number of CAN messages that are abnormal but pre-
dicted to be normal, FP denotes the number of CAN
messages that are normal but predicted to be abnormal, and
TN denotes the number of CAN messages that are normal
and predicted to be normal. According to this confusion
matrix, three indicators are specifically defined to evaluate
the ability of real CANmessages to be predicted by TCNIDS
as normal or abnormal.

4.2.1. Detecting Rate. Detecting Rate is also known as True
Positive Rate (TPR). +is paper uses TPR to represent the
detection rate, which represents the proportion of abnormal
packets predicted to be the total number of abnormal
packets. +e higher the value, the better the performance.
+e specific formula is as follows:

TPR �
TP

TP + FN
. (5)
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4.2.2. False Positive. False Positive Rate represents the ratio
of the number of normal packets predicted to be abnormal to
the total number of normal packets. +e lower the value, the
better the performance. +e specific formula is as follows:

FPR �
FP

TN + FP
. (6)

4.2.3. Accuracy. Accuracy represents the proportion of the
number of correctly predicted packets to the total number of
packets. +e higher the value, the better the performance.
+e specific formula is as follows:

accuracy �
TN + TP

TN + TP + FP + FN
. (7)

For the normal data and four types of attack data in the
test set, this paper adopts the same sequence length as the
training set, and inputs the sequence data to the model for
intrusion detection according to the detection process. If the
predicted sequence satisfies the ID of the CAN message in
the first qmessage categories with high probability, then the
model will update TN or FN according to the real message
label, and otherwise update TP or FP.

4.3. Parameter Setting. In this paper, through repeated ex-
periments with different parameter combinations, the op-
timal parameters of the model are determined, and
subsequent experiments all use the optimal parameters for
experimental evaluation and comparison. +e specific pa-
rameter settings are shown in Table 4.

We apply the SGD algorithm to ensure the convergence
in the experiment, and for a faster convergence, a learning
rate (lr) annealing method is adopted. When the loss is
greater than the loss of the previous 5 times, set lr� lr/2.

4.4. Result Analysis

4.4.1. Overall Result. +e test results of TCNIDS proposed in
this paper on the test data sets are shown in Table 5

It can be seen from Table 5 that TCNIDS exceeds 93% on
both TPR and Accuracy indicators, and the FPR is not
higher than 5%. Especially for normal behaviour, Fuzzy
attack, and DoS attack, the TCNIDS model has good de-
tection capabilities. +e TPR and Accuracy detected by the
model on the normal data set are close to 100%, and the FPR
is close to 0. In the case of DoS attacks, TPR is also close to
100%. In addition, the model’s TPR and Accuracy indicators
for detecting Fuzzy attack are not less than 98%. Since DoS
attack and Fuzzy attack themselves are uncommon CAN ID
injections, according to the given method of word em-
bedding, their value in the word vector will gradually differ
from the normal CAN ID as the model is trained; so,
TCNIDS can easily detect these two attacks. At the same
time, the model also shows good performance in Gear Spoof
Attack and RPM Spoof Attack. TPR and Accuracy also
exceed 93%, and FPR is lower than 3%.

4.4.2. Detail Performance. In order to thoroughly analyze
the performance of the TCNIDS model in intrusion de-
tection, we collected more experimental results. Figure 8
shows the change of loss during a single epoch of training. It
can be seen from Figure 8 that the loss drops and converges
rapidly. In this paper, a variety of methods, such as weight
normalization, regularization, time convolution network,
and residual network, are used to deal with the problem of
gradient dispersion and disappearance, which improves the
stability of model training and further verifies the effec-
tiveness of the model.

In order to observe the loss of the model on each data set,
we trained the model for 50 epochs. Figure 9 shows the
changes of loss on each data set. It can be seen from the
figure that, in the training stage, with the increase of model
training times, loss in the normal data set rapidly declines
and converges. In the test stage, the trainedmodel carries out
loss calculation for each data set, and it is not difficult to find
that the normal data set still maintains the loss similar to that
in the training stage, but the loss of each attack data set is at a
high level and fluctuates greatly due to the attack behaviour,
especially the gear spoofing attack. +erefore, loss can be

Table 1: CAN data set information.

Data set Total messages Normal
messages

Attack
messages

Normal 988871 988871 0
Fuzzy attack 3838860 3347013 491847
Gear spoof 4443142 3845890 597252
RPM spoof 4621702 3966805 654897
DoS attack 3665771 3078250 587521

Table 4: Parameter setting.

Parameter item Parameter value
Embedding size 200
Kernel size 5
Layer number 4
Hidden units 150
Convolution dropout 0.45
Embedding dropout 0.25
Initial learning rate 0.50
Gradient clip 0.35
Batch size 16
Sequence length 60
Top g 16

Table 2: Experiment environment.

Configuration item Configuration parameter
CPU Intel Xeon Gold 5118@2.3GHz ∗ 24
RAM 16.0GB
GPU NVIDIA Quadro P4000 GPU
Operating system Windows Server 2012 R2

Table 3: Confusion matrix of TCNIDS.

Packet Predicted attack Predicted normal
True attack TP FN
True normal FP TN

Mobile Information Systems 9



Table 5: Detecting results using TCNIDS.

Data set (%) TPR FPR Accuracy
Normal 99.999 0.001 99.999
Fuzzy attack 97.552 0.027 98.345
Gear spoof 93.526 0.039 96.290
RPM spoof 93.078 0.046 94.626
DoS attack 100.000 0.034 98.496
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used to distinguish between normal and abnormal behav-
iour patterns.

It can be seen from Figure 10 that after improving the
model by parameterizing the Relu activation function, the
convergence rate is faster. It can be seen from Figures 11 and
12 that the TPR and Accuracy have been improved to a
certain extent, indicating that the existing features should be
preserved as much as possible when nonlinear mapping of
the features through the activation function and the full
shielding method cannot be adopted when x< 0. +is also
verifies the effectiveness of the parameterized Relu method
in Section 4 to improve the model.

5. Conclusion

With the increase of the attack surface of modern auto-
mobiles, intrusion detection systems have become the most
important technology for in-vehicle network security pro-
tection. In view of the current problems in the imple-
mentation of the in-vehicle CAN network anomaly
detection through the deep learning network model, this
paper proposes an intrusion detection system based on time
convolution network. +e structure of the model is simple,
and the sequence data are predicted by word embedding
encoding, time convolution network and decoding, and the
intrusion detection is realized by top g strategy. In the
model, the word embedding method encodes CAN ID into
words, which effectively characterizes the potential features
between IDs, improves the performance of the model, re-
duces the dimensionality of the data, and improves the
computational efficiency of the model. At the same time, the
TCNIDS model uses the parameterized Relu activation
function to try to retain the characteristics of nonlinear
mapping when x< 0, and optimize the performance of the
model. +e experimental results show that the TCNIDS
model proposed in this paper has high performance in Fuzzy
attack, Spoof attack, and DoS attack, especially Fuzzy attack
and DoS attack. At the same time, compared with the or-
dinary time convolutional network model, the improved
model has a certain improvement in detection rate, false
alarm rate, and accuracy rate, which also proves the effec-
tiveness of the method. +erefore, the TCNIDS proposed in
this paper can strengthen the security of the in-vehicle CAN
network. Since the model uses an unsupervised learning
method, in the future, we will apply it to more data sets and
attack scenarios, and further improve the performance of the
model.
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