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-e future high-speed cellular networks require efficient and high-speed handover mechanisms. However, the traditional cellular
handovers are based upon measurements of target cell radio strength which requires frequent measurement gaps. During these
measurement windows, data transmission ceases each time, while target bearings are measured causing serious performance
degradation. -erefore, prediction-based handover techniques are preferred in order to eliminate frequent measurement
windows. -us, this work proposes an ultrafast and efficient XGBoost-based predictive handover technique for next generation
mobile communications. -e ML algorithm in general prefers 70–30% of training and test data, respectively. However, always
obtaining 70% of training samples in mobile communications is challenging because the channel remains correlated within
coherence time only. -erefore, collecting training samples beyond coherence time limits performance and adds delay; thus, the
proposed work trains the model within coherence time where this fixed data split of 70–30% makes the model exceed coherence
time. Despite the fact that the proposed model gets starved of required training samples, still there is no loss in predication
accuracy. -e test results show a maximum delay improvement of up to 596ms with enhanced performance efficiency of 68.70%
depending upon the scenario. -e proposed model reduces delay and improves efficiency by having an appropriate training
period; thus, the intelligent technique activates faster with improved accuracy and eliminates delay in the algorithm to predict
mmWaves’ signal strength in contrast to actually measuring them.

1. Introduction

-e next generation mobile communication promises low
latency and delay. Traditionally, during a handover process
[1], the user equipment (UE) measures radio parameters of a
target cell called a measurement gap (MG). During the MG,
data transmission stops and introduces an unwanted delay
which contradicts the notion of uninterrupted high-speed
data transfer in next generation mobile communications.
MGs are critical time periods where transmission tempo-
rarily stops and even a call drop may occur. Despite at the

cost of temporarily suspending data transmissions to execute
MG, it still does not guarantee success of a handover request
due to target cell radio bearings. -us, repeated use of MGs
causes performance degradation; therefore, this work pro-
poses an ultrafast and efficient XGBoost-based algorithm
which facilitates the network to enable MG only if the
probability of handover success is higher than a given
threshold. -us, all MGs that are expected to return with
unsuccessful handover requests are eliminated.

Previously, authors in [1] made contributions in this
field; however, their work has limitations, such as their
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proposed model is novel in nature; however, the authors
claim that their model follows channel coherence time (Tc)

but there is no solution given for determination of Tc. If the
samples are collected within Tc duration, then authors have
not given any solution regarding how the proposed model
handles the situation where the sample collection period
exceeds Tc since as a recommended practice ML algorithm
requires 70% of training data and 30% test data [2–5], which
the authors also used for justification of results where sample
collection time is set to be 0.7 × simulation time (Ts) for
demonstrating results of Ts � 40ms. It is further claimed
that model sample collection time does not exceed Tc i.e.,
model is trained within Tc but it is found that, at lower Ts

settings, such as below 200ms,Tc becomes greater thanTs so
how does samples’ collection occurs if total Ts is less than Tc.
-e net results given also do not provide any reference to
model training durations since Tc and 0.7 × Ts are not equal
time durations.

As discussed, in ML-driven algorithms, preferably 70%
of data is used for training the model and remaining 30% is
used as test data but this percentage might vary based upon
applications. However, in mobile communications, gath-
ering 70% of training data becomes challenging because the
sample collection period should strictly follow Tc since
beyond this period the channel does not remain correlated.
So, if a model keeps on collecting samples beyondTc in order
to collect above required percentage of training samples, the
proposed model becomes unable to predict accurate channel
state information (CSI). -e test results performed in this
work suggest that 70% of samples can only be collected if the
sample collection period remains within limits of Tc because
beyond that the proposed model begins to collect unrealistic
samples of the given channel since channel parameters
change after Tc.

At first, this work provides solution how sample col-
lection should be restricted to within Tc. -e test results
show that, for Ts > 200 ms, Tc becomes small enough that if
70% of samples are to be collected, then the model breaches
coherence time limits. -erefore, to solve this problem, the
proposed work exploits advanced error control of the
XGBoost algorithm [6] where it is capable to compensate for
missing samples without trading off its prediction capability
or loss to HSR. Moreover, the proposed technique despite of
being starved of required samples makes the model response
time even far better.

1.1. Contributions. -e contributions of the proposed work
are as follows:

(1) Determination of proper channel coherence time
(2) Accurate training period of the model
(3) Improved delay and the proposed algorithm acti-

vates much faster
(4) Less memory consumption because number of

samples are reduced
(5) Utilization of error control in the XGBoost

algorithm

(6) Eliminate oversampling
(7) Reduced learning period, which eliminates under-

utilization, and the model executes more handover
decisions

-e paper is further organized in such a manner that
Section 1 introduces the problem and literature review,
Section 2 details the proposed solution, Section 3 discusses
results, and Section 4 provides conclusion of the proposed
work.

1.2. Literature Review. Estimating channel for handover
applications is broadly classified into two major algorithms
[1, 7, 8]. (1) Real-time monitoring and (2) mathematical
modelling or ML-based estimations. Real-time monitoring
constitutes of MGs where a UE scans the radio parameter,
while the latter uses mathematical modelling or AI to es-
timate radio parameters. -e former process is far better
because it enables a UE to be smart enough in deciding
whether to trigger a measurement gap or override it in
contrast to physically scanning radio bearings. However,
these prediction algorithms are required to be training ef-
ficient (requires lesser training data to be ultrafast) and
accurate so that required inputs are processed quickly in
time. -e proposed work now argues some classical and,
later, ML-based channel estimation techniques.

Typically, Angle of Arrival (AoA) and Angle of De-
parture (AoD) are used to estimate mmWave signal strength
[9–14]. However, the frequency ranges in GHz make this
technique susceptible to greater channel attenuation and
estimation error. -us, the technique makes design of such
circuitry complex and expensive to develop. In contrast, the
authors in [15–18] exploited scattering behaviour of
mmWaves through correlation-based adaptive compressed
sensing (CBACS) for precise estimation of AoA and AoD.
-is technique determines CSI through correlation between
received CSI and quantized sensing vectors but it inherits
resolution loss due to channel angle quantization [19].

Hybrid precoding with multiple numbers of antennas
can also provide CSI; however, channel subspace sampling
constraints affect its performance in digital baseband sys-
tems and also limit complete channel information [20].
Orthogonal matching pursuit (OMP) [21–25] exploits sparse
properties of mmWaves which is a promising technique but
it does not perform well due to its complicated nature if the
number of UEs is high or in case of higher number of
handovers.

Quantized AoA and AoD with an oracle estimator [22]
and OMP generate a parametric model to determine CSI.
However, it is not feasible for mmWave applications since
the signal-to-noise ratio (SNR) is low before beam forming.
A rogue technique [25–30] having dual connectivity of both
4G and 5G is also a possibility but it is not feasible because it
causes immense battery drainage and might cause ping pong
effects, while handing over to target cell.

-e literature above highlights some of the classical
techniques used to determine radio bearings of a target cell.
However, all these algorithms are MG dependent, and there
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is no novelty where an unwanted MG can be avoided
through prior prediction of mmWaves’ signal strength by
exploiting out-of-band information that is already available.
With the advancement of computing power, ML-driven
algorithms are mostly proposed to overcome limitations in
classical techniques [31–39] in such scenarios. However, the
ML-based technique is only effective if it is efficiently
exploited. For this purpose, some commonly used ML
schemes are discussed ahead.

RL (reinforcement learning) is a fluky methodology, and
the algorithm is robust [40–43]; however, this architecture
does not guarantee improved latencies and delays. -ere-
fore, this technique is not recommended for applications
where robust and quick decisions are required. A holistic
model proposed in [44] and based on cost values for ap-
plications in handover might also be an option but such a
model does not use readily available information from sub
6GHz band. Moreover, the holistic model provides three
states of information i.e., nonpredictive case, incorrect, and
correct case making it rather complex for proposed appli-
cations because the proposed model works in two states only
i.e., correct and incorrect prediction [1].

-e kernel-based algorithm [35, 45, 46] in this research
area is also debatable; however, it is only applicable where
users are moving in a straight line. In mobile communi-
cations, this approach causes limitations for designing a
decision model because user population density and UE
movement are random in a cell. Moreover, the kernel-based
algorithm does not consider geographical coordinates
whereas the proposed model does consider geographical
coordinates and also does not restrict UEs to move in a
straight line. Dynamic Fuzzy Q-Learning is also a technique
proposed in [47–49] for handover estimations where it
establishes new learning thresholds and builds new fuzzy
rules. However, this algorithm is not useful in case of the
proposed algorithm because it is more suitable for adjusting
time-to-trigger (TTT) mechanism. On contrary, the pro-
posed algorithm predicts mmWave signal strength prior to
measurement window; thus, it guarantees the success or
failure of a handover. -e novelty and promising factor of
the proposed work are the model requires less time to train,
it activates faster with improved accuracy (avoids over fit-
ting), and the model is trained within Tc which significantly
enhances effectiveness of the proposed model.

-e proposed algorithm is designed to classify if the
predicted estimates are valid or otherwise; therefore, it is
essentially a classification challenge. For classification
problems [50–53], XGBoost is a preferred method; it turns
weak learners into stronger models, and its strength lies in
multicore processing which tailors individual trees. -ese
features can be effectively exploited to mimic distributed
base stations of cellular networks. -e algorithm also pro-
vides effective solution to find the predictor variable with less
preprocessing [54] and offers lower search time. Various
optimization algorithms are keys to its scalability [6, 55], and

application of 2nd order derivatives to the loss function
makes accurate approximations. -e algorithm generates
advanced L1 and L2 regularization, and XGBoost offers
quick training and parallel computing for robust processing.
It also reduces its objective function to a convex differen-
tiable loss function and regularization terms. Similarly, the
potential and features of XGBoost are also recommended by
the authors in [56–58].

1.3. ProposedMLAlgorithm. As per industry standards [59],
weak RSRP in comparison to set thresholds triggers event A2
leading to an MG for inter-RATmeasurements; however, in
the meanwhile, if UE detects better RSRP; then, it triggers
event A1 to cease inter-RAT measurements, but in due
course, if better mmWaves are detected, then event B2
triggers to initiate handover as given by Figure 1.

-e proposed algorithm in contrast to the existing model
adopts the ML-based approach where mmWaves’ signal
strength is computed through fractional out-of-band in-
formation [1]. -e proposed work refers this ML-based
scheme as fractional out-of-band information because for
training the model, it will use target cell radio information,
and once it gets trained, the ML algorithm starts working
independently. Here, the measurement gap triggers only if
the probability of success is above a set threshold. -e al-
gorithm computes mmWaves’ signal strength, while
remaining in sub 6GHz band instead of physically scanning
radio bearings. -e proposed algorithm generates true
versus false positive rates for receiver operating character-
istics area under curve (ROC-AUC), thus enabling UE or
base station to accept or reject its estimations. For this
purpose, iterative training and cross validation are used.
Table 1 shows the pseudocode, while Figure 2 demonstrates
the proposed model.

2. Model Design

2.1. UE Distribution. -e proposed model considers two
collocated cells with circular boundaries having radius r

operated at different frequencies and technologies. -e UEs
are smart enough to predict target cell mmWave signal
strength, while remaining in sub 6GHz band and without an
MG. -e mobile users are distributed in the network
according to homogeneous Poisson Point Process (PPP)
having intensity of ֆ showing expected users per unit area.
-e mobile coverage area is denoted by A, and the total
number of users are N, and the UEs get sampled from
Poisson distribution where mean equals to
ЊA � Њ × 3.14 × r2, and r represents radius of cell.
-erefore, the UEs are plotted such that S(u) is stochastic
with the process rate of λ having probability of Q in time u

where B is output of an arbitrary function defined by
limj⟶0(B(j)/j) � 0. -en, mathematically,

Mobile Information Systems 3



q0 � (u + j) � Q [S(u + j) � 0], (1a)

Q[S(u)– S(0) � 0, S(u + j) – S(u) � 0], (1b)

[Independent Increments] � Q [S(u) – S(0) � 0] · Q [S(u + j) –Q(u) � 0], (1c)

Stationary � Q[S(u) � 0] · P[S(j) � 0]

� q0(u)(1 − λj + b(h)).
(1d)

And so,

q0(u + j) − q0(u)

j
� −q0(u)λ +

b(j)

j
, (1e)

For j⟶ 0+ dqo(u)

du
� −q0(u)λ, (1f)

dq0(u)

q0(u)
� −λdu, (1g)

For S≥ 1, (1h)

qn(u + j) � Q[S(u + j) � n], (1i)

Q[S(u) � s, S(u + j) − S(u) � 0] + Q[S(u) � S − 1, S(u + j)

− S(u) � 1] + Q[S(u + j) � S, S(u + j) − S(u)≥ 2],
(1j)

� Q[S(u) � s]. QS(j) � 0 + QS(u) � S − 1. QS(j) � 1 + b(j). (1k)

-e equation simplifies to

� (1 − λj)qs(u) + λjqs−1(u) + b(j). (1l)

For the derivation,

Q[S(u + j) � s, S(u + j) – S(u) ≥ 2] � b(j), (1m)

because

lim
j⟶0+

QS(u + j) � n, S(u + j) − S(u)≥ 2
j

≤
limj⟶ 0+ QS(u + j) − S(u)≥ 2

j
� 0. (1n)

Since

qs(u + j) − qs(u)

j
� −λqs(u) + λqs−1(u) +

b(j)

j
, (1o)

For j⟶ 0+
,

dqs(u)

d(u)
� −λqs(u) + λqs−1(u),

(1p)

d e
−λu

qs(u) 

d(u)
� λe

λu
qs−1(u). (1q)

-is refers to the fact that any event in any interval
during simulation time is Poisson distributed.

To demonstrate that any UE position is an independent
and identically distributed sample from continuous uniform
distribution, let X1 denote exponential distribution having
parameter λ; then for X2, having independent increment, for
number of events m,

Q X2 > u|X1 � m  � QS(U + m) − S(e) � 0 |S(m) − N m
−

( ) � 1,

(2a)

� Q[S(u + m)– S(m) � 0], (2b)
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� Q[S(u) � 0]

� e
− λu

,
(2c)

where as, Q X2 > u  � D Q X2 > u |X1(   � e
−λu

. (2d)

-erefore,
X2 distribution is exponential with parameter λ, such that

Q X2 > u  � Q X2 > u |X1 � m , thusX2 andX1 are independent.

(2e)

2.2. Radio Propagation and Channel Modelling. Radio
propagation models play a significant role in performance of
the proposed model since it is an estimation and prediction-
based algorithm. -e close-in free space path loss model is
given by the following equation [60, 61]:

PL[dB] � FSPL [dB] + 10 k log10(d) + c[dB] + Δσ . (3)

Here, PL � path loss function from free space (FSPL), k

� exponent of path loss, d � distance, c � constant for

atmospheric attenuation, and Δ �Gaussian random variable
(GV) having zero mean and standard deviation (SD) of σ.

-is research work discusses following radio propaga-
tion models [60–65]:

(1) Alpha Beta Gamma (ABG)
(2) Close-in (CI) free-space reference distance model
(3) CI model with a frequency-weighted (CIF) path loss

exponent
(4) Cost 231 Model

-e ABG model is given by the following equation:

PLABG (f, d)[dB] � 10 β log10
d

1m
 

+ α + 10η log10
f

1GHz
  + c

ABG
σ ,

(4)

where PLABG (f, d)[dB] � path loss in dB, α and η
� coefficients of dependence for path loss, β � optimized
offset value, d � 3-dimensional receiver and transmitter
distance, f � carrier frequency, cABGσ � zero mean GV, and σ
� SD in large-scale signal fluctuation. In single frequency
applications, the ABGmodel becomes floating intercept (AB
or FI) which is already in the 3GPP standard.

-e CI model is given by the following equation:

PLCI(f, d)[in dB] � FSPL f, d1( [in dB]

+ 10 a log10
d

d1
  + c

CI
σ , for d≥d1,

(5)

where f � frequency (GHz), d1 � close-in free space ref-
erence distance, a � path loss exponent, cCI

σ � zero mean
GV with SD of σ in dB, d is the three-dimensional trans-
mitter and receiver distance, and FSPL(f, d1) is the free
space path loss (FSPL) in dB with frequency f and distance
between transmitter and receiver d1.

-e FSPL(f, d1) is given by the following equation:

FSPL f, d1( [in dB] � 20 log10
4 × 3.14 × f × d1 × 109

3 × 108
 .

(6)

-e CI model in 3GPP/ITU format is given below:

PLCI(f, d)[in dB] � FSPL f, d1( [in dB] + 10a log10 dt(  + c
CI
σ , dt �

d

d1
, (7a)

PLCI(f, d)[in dB] � 10 a log10
d

d1
  + 20 log10

4 × 3.13 × d1 × 109

3 × 108
  + 20 log10(f) + c

CI
σ . (7b)
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Figure 1: Baseline model.
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For multifrequency modelling, the CIF model can be
given in the simplified form by the following equation:

PLCIF(f, d)[in dB] � FSPL(f, 1m)[in dB] + 10 a 1 +
j f − f1( 

f1
 log10(d) + c

CIF
σ , for d≥ d1. (8)

Table 1: Pseudocode for the proposed algorithm.

Step Algorithm
1 Input all parameters
2 Derive total UEs in respective location and calculate RSRP for 4G and mmwave with given radio parameters
3 While measurement gap open and mmwave RSRP> threshold⟶ estimate HSR, controlling feature [y]i � UEi

4 Optimise hyperparameters using grid search on K-fold cross-validation
5 Split data for training sequence, testing, and validation; model training� channel coherence time
6 Proposed model training (XGBoost)
7 Search proposed model handover decision (0 or 1)
8 Plot ROC-AUC
9 If

ROC-AUC> decision threshold
-en

Override conventional algorithm
Else

Do not override conventional algorithm
10 End

RRC Measurement Report (Event
A2)

Predicting mmWave Power
(Greater Than Minimum

Threshold)

RRC Mobility (E-UTRAN
Command)

Random Access

Reduction in steps
and signaling

overhead

Proposed Algorithm

U
se

r E
qu

ip
m

en
t (

U
E)
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 B
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e S
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n

Figure 2: Proposed model.
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-e proposed algorithm is based upon estimates and
predictions. -erefore, the proposed model remains stable,
while choosing a model with low shadow factors and path
loss.-us, the preferred model for the proposed algorithm is
the ABG model and is given by the following equation:

PL[in dB] � α + β × 10 log10(d) + xσ . (9)

-e 4G path loss model is given by the Cost 231 model:

PL[in dB] � 46.3 + 33.9 × log10 fc(  + 13.82 × log10hte − α hre(  + 44.9 − 6.55 × log10 hte( (  × log10(d) + C( ,

(10a)

where fc � carrier frequency, α(hre) � frequency correction
factor, hte � antenna height, d � distance, and C � 3 dB.

-e correction factor α(hre) is given by the following
equation:

α hre(  � 3.2 × log10 11.75 × hre( 
2

− 4.97, (10b)

where hre is the receiver height.
-e radio parameters used in simulation are given in

Table 2.

2.3. Proposed Model Training Period. Coherence bandwidth
and delay spread parameters define time dispersive nature of
the channel but these parameters do not describe any
channel changes due to relative motion of the user or a base
station or due to movement of different entities in the
channel. For this purpose, Doppler spread and coherence
time [66, 67] are used to specify time-varying nature of the
channel. Modern communication systems rely on AI for
enhanced use in contrast to traditional communication
systems which rely on fixed conjectures and hence limiting
its use. -e notion that the channel remains invariant is only
correct if relative motion is lower compared to λ/2, where λ
refers to the ratio between speed of light and carrier fre-
quency [68]. However, modern communication systems do
not have mobility limitations; thus, Doppler spread and
coherence time become important parameters for estima-
tion while switching of to better frequency spectrums.
Technically, Tc is time dual of Doppler spread or simply
these are inverse of each other [67] and used for quantifying
frequency dispersiveness relative to time-varying nature of
the channel in the time domain. Tc is an important pa-
rameter for determining handoffs [69] but the proposed
work also considers Tc in terms of model’s training time
control and computes it through mathematical equations.
Moreover, up to 100ms, the channel varies slowly [70], and
the proposed model test results also support this fact by
finding out that upto a range of approximately 100ms, the
channel coherence time does not significantly affect simu-
lated results; however, beyond 100ms, it introduces major
impact and is discussed in Section 3.

-e following equations provide Tc [67, 69, 71]:

Tc �
1

fm

, (11a)

fm(maximumDoppler shift) �
v

λ
. (11b)

Tc gives time duration where two received signals have
strong potential for amplitude correlation. As a general rule,
the threshold level is defined as 1/(

�
2

√
) ; thus, the coherence

time becomes as given by the following equation:

Tc �
9

16πfm

. (12)

In practice, the time duration by equation (11a) suggests
a period where signal amplitude may fluctuate more but
equation (12) suggests a too restrictive period. -erefore,
practically, geometric mean of these two equations is used
which is given by the following equation:

Tc �

������
9

16πf
2
m



. (13)

Although, there are multiple ways to determine a more
realistic value of Tc but those techniques require live
monitoring of their respective parameters and special en-
hancements of radio circuitry, while in contrast, the pro-
posed work requires prediction-based value which provides
enough time window for the proposed model to get trained
where signal amplitude fluctuations are wilder to effectively
simulate mmWaves’ behaviour. Secondly, the proposed
model requires simple estimation of Tc because it only
requires an estimated time limitation (without involving
massive computing resources of UE or BS) upto which the
model should be trained effectively without introducing
significant delays and loss in efficiency of the model, while
keeping the radio circuitry simple. -erefore, the proposed
model Tc is given by equation (11a) due to reasons men-
tioned above.

According to [2–5], the ML algorithm should get trained
for the period of TTrain � 0.7 × Tsim; however, the proposed
work suggests that TTrain should never breach Tc.-is makes
the estimator even more efficient, faster, and accurate in
making predictions and eliminates overfitting. -erefore,
TTrain mathematically is given by the following equations:

Mobile Information Systems 7



TTrain � T1 � TCoherence, For 0.7 × Tsim >TCoherence,

(14)

TTrain � T2 � 0.7x TSim, For 0.7 × Tsim ≤TCoherence.

(15)

2.4. XGBoost Algorithm. Let T(x) denote the gathered pa-
rameters, as given in Table 2, such that the parameter set is
given by equation (16); T(x)n denotes individual
parameters:

T(x) � T(x)1, T(x)2, . . . , T(x)n . (16)

For output y, let F0 denote the first predictive model.
If the predictive models are m in number, then

ym � f Fm( . (17)

F0⟶ (y − F0) associates with residuals.
A fresh model h1 is produced to fit the former step.-us,

h1 together with F0 generates F1 as a boosted F0, given by
equations (18a)–(18c), and Fm value can be determined for
any value of m in this fashion.

-erefore,

F1 � F0 + h1, (18a)

F2 � F1 + h2, (18b)

Fm � Fm−1 + hm. (18c)

-e preceding functions are not affected by additive
learners. However, the newest model bears lower error in
comparison to predecessor. -us, mth step error is

M1 <M0, (19a)

M2 <M1, (19b)

Mm <Mm−1. (19c)

For the given algorithm, the decisive aspect for Fm is hm.
-us, the value of hm determines Fm.

-erefore,

Fm � Fm−1 + εhm, (20)

where ε corresponds to the scaling factor for hm.

Let the proposed model build a total of N trees; then,

For ProposedModel � 
M

m�0
fm. (21)

-e prediction at data point j in lth step for feature vector
xj is given by

yj(l) � 
l

m�1
fm xj . (22)

-e following equation provides the objective function
for the proposed algorithm:

Obj (θ) � 6 + Ұ, (23)

where 6 represents linear and logistic regression, and
Ұ � αB1 + 0.5 λB2

2 + cJ, while vector B � leaf weights and
J � number of leaves [6]:

Table 2: Radio parameters for simulation.

No. Parameter Value
1 Radio propagation models 4G cost 231 model and 5G floating intercept model
2 Floating intercept model values (α, β, σ) 116.77, 0.41, 5.96
3 RRC events’ time to trigger (TTT) 0 s
4 Event A1 (RRC) trigger 125 dBm (negative)
5 Event A2 (RRC) trigger 130 dBm (negative)
6 Event B2 (RRC) trigger 95 dBm (negative)
7 LTE center frequency 2100MHz
8 LTE bandwidth 20MHz
9 Cyclic prefix (LTE) Normal
10 5G mmWave center frequency 38GHz
11 5G mmWave bandwidth 100MHz
12 UE physical status Nonstatic
13 Simulation time (ms) 900 to 100 with step size of 100ms
14 Cell coverage radius (r) 350m
15 Base station power (5G) 46 dBm
16 Base station power (LTE) 46 dBm
17 Radio propagation (antenna) Omnidirectional
18 Height (antenna) 36m
19 Sub 6GHz (antenna gain) 17 dBi
20 mm-wave (antenna gain) 24 dBi
21 Cellular coverage pattern Circular
22 User height 1.5m
23 Poisson point parameter (µ) 2× 10−3
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Logistic � −
1

M


M

h�1
kh log gh(  + 1 − kh( log 1 − gh( (  ,

kh � h
th

y value for given input,

gh � h
th probabilistic value,

(24)

Linear regression �
1

M


M

h�1
kh − k

h
∧ 

2
, kh

� h
th

y value for given input, k
h
∧ � h

th predicted value.

(25)

Hyperparameter values are given in Table 3. For tuning
hyperparameters, the grid search method is used on k-fold
cross-validation, as grid search offers the optimized essential
values.

3. Results and Discussion

-is section shows that it is not necessary to collect 70% of
required training samples and achieve similar HSR with
reduced number of samples by using the XGBoost algo-
rithm, hence improving the model response time.

-e following equations are used for calculations:

No. of failures � total attempts − successful attempts, (26)

HSR (%) �
number of succesful attempts
total number of attempts

× 100% , (27)

Introduced delay � [incorrect training period − correct training period], (28)

Number of attemptsmissed � Њ � attempts with TCorrect − attempts with TIncorrect, (29)

%Њ �
Њ

attempts withTCorrect
× 100 . (30)

To effectively demonstrate effects of the ML training
period on efficiency and response time of the model, two
scenarios are arbitrarily instantiated where TTrain should be
equal to Tc but TTrain is chosen to be equal to 0.7 × Tsim
which makes it collect 70% of training samples. -e effects
on the ML algorithm are demonstrated in Table 4. -e delay
here refers to wait time for the ML algorithm to become
active.

Table 4 indicates that, for Tsim � 900ms and
TTrain � 0.7 × Tsim, an unwanted additional delay of
596ms is introduced compared to 34ms delay which
could have been avoided had it been TTrain � Tc. -is
additional delay causes underutilization of the model
because the model activates with additional delay; thus, a
smaller number of attempts are governed by the ML
algorithm, where it was supposed to govern 285307 at-
tempts compared to 89286; thus, the model remains
inactive for 196021 attempts which is 68.70% of total
handover attempts.

-erefore, to improve response time of the proposed
model and make it efficient without the loss to HSR, TTrain

should follow model training equations (13) and (14)
according to the applicable scenario.

Similarly, for Tsim � 800ms, under similar conditions,
an additional delay of 522ms is introduced in comparison to
what could have been 38ms delay due to the incorrect
training sequence. Hence, the proposed model only executes
for 79467 attempts instead of 251186 due to the incorrect
training sequence. -us, it misses 68.36% of attempts for
which it is supposed to execute.

Since the proposed model achieves significant im-
provement in terms of response time, therefore it is im-
portant to examine if there is any trade-off between HSR
values, and Table 5 gives this information.

From Table 5, it is observed that there is no significant
impact on HSR values despite the fact that two different
training sequences are used; in fact, the HSR values have
slightly improved because although the model collects
lesser number of training samples but are accurate and
are collected within Tc so now the model can accurately
predict CSI. For both the simulation periods of 900 ms
and 800ms, the difference between HSR values remains

Table 3: Hyperparameters.

No. Parameters Value
1 Maximum depth 6, 8
2 Child weights 0, 10
3 Training data 0.7
4 Weights of samples 0.5, 0.7
5 Objective Logistic and linear
6 Cross validation 5
7 Complexity control 0, 0.002
8 Weights of samples 0.5, 0.7
9 Lambdas 0, 1, 2
10 Estimator number 500
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0.33% and 0.14%, respectively, despite of major im-
provement in system response time.

Further, the tests results from Table 4 shows that
efficiency and response time of the system gets limited if
the training period is not chosen correctly and the
proposed model remains underutilized. Since authors in
[1] focused on HSR only, which demonstrates handover
success rate and does not show system efficiency in terms
of response time, therefore this important observation is
not discussed in their work.

Oversampling of training data can become a bottle neck
when 5G networks are involved with Internet of -ings
(IoT) because, in that case, the number of handover attempts
is expected to be significantly large, and this delay in re-
sponse time could cause serious performance degradation.
-erefore, to eliminate this limitation, the proposed work
argues the importance of the training sequence.

Similarly, it is observed from test results given in Table 6
that TTrain is chosen to be equal to Tc instead of
TTrain � 0.7 × Tsim; for Ts ≤ 200ms, it is observed that in-
correct TTrain introduces a delay of 10ms and misses 16.34%
which is 3352 attempts in case of Tsim � 200ms, and for
Tsim � 100ms, the ML algorithm does not even respond
because the sample collection period exceeds Tsim.

Similarly, the impact on HSR is given by Table 7 below; for
Ts ≤ 200ms, it is observed that there is no significant impact on
HSR with which every training sequence is used; however, the
model response time and its efficiency does get affected.

3.1. Achieving Improved Results with Less Samples. As dis-
cussed, theML algorithm preferably requires 70% of training
samples, while the proposed algorithm requires these
samples to be collected within channel coherence time. -is
concept works best till Tsim ≤ 200ms but as soon Tsim gets
greater than 200ms, channel coherence time gets small
enough where collection of 70% of training samples gets
impossible to be collected within Tc. -e contest arises that

since the proposed model strictly follows Tc for sample
collection, therefore it sacrifices all samples which are way
beyond Tc and thus collects way less than 70% of total
required samples but still the model does not show any
degradation in HSR, and premature activation of the model
also provides improved model response time.-erefore, this
section addresses how the proposed model addresses this
limitation with promising results.

T2 � 0.7 × Tsim, basically, refers to the concept where it
uses 70% of samples as training data of an entire simulation
time. However, for cases above 200ms, this training se-
quence exceeds Tc, and thus, it introduces oversampling,
underutilization, and overfitting of the model. However,
XGBoost comes equipped with advanced error control
mechanisms which can sufficiently be exploited to deal with
missing sample information and thus by limiting the model
to gather samples within coherence time at scenarios where
the sample collection period exceeds Tc; the proposed model
can still provide promising results without losing prediction
accuracy.-erefore, in all given scenarios, where Tc is longer
than 0.7 × Tsim, the model should collect 70% of training
samples. However, where Tc is lower compared to
0.7 × Tsim, then the model should be trained with whatever
samples can be gathered within Tc because the error control
mechanism can deal with missing samples effectively as
discussed in Sections 1 and 2. Moreover, there is no need to
collect samples beyond Tc since the channel does not remain
static beyond that time.

3.2. UE Level Analysis. -is section demonstrates how the
ML sequence is limited to within Tc at the UE level sup-
ported by graphical figures with respect to RSRP (reference
signal received power) where the mobile requests for
handover. In this section, the baseline algorithm refers to
classical handover attempts where no AI is used, while the
proposed refers to the handover mechanism proposed
within this work.

Table 4: Effects of the improper training sequence on the proposed model; number of UEs: 810.

Algorithm TSim (ms) TTrain (ms) Delay due to incorrect
training sequence (ms)

Attempts after
training period

Δ attempts after
training period

% attempts
missed

TTrain �Tc 900 34 596 285307 196021 68.70
TTrain � 0.7 × Tsim 900 630 89286
TTrain>Tc 800 38 522 251186 171719 68.36
TTrain � 0.7 × Tsim 800 560 79467
∗Δ refers to difference in all tables.

Table 5: Difference in HSR values for TTrain � TC and 0.7 × Tsim. Number of UEs: 810.

Algorithm TSim
(ms)

TTrain
(ms)

Total
attempts

Attempts after
training period

Δ attempts after
training period

Number of failures
after training

HSR
(%)
ΔHSR
(%)

TTrain �Tc 900 34 296035 285307 196021 6396 97.75 0.33
TTrain � 0.7 × Tsim 900 630 89286 2297 97.42
TTrain > Tc 800 38 263229 251186 171719 5841 97.67 0.14
TTrain � 0.7 × Tsim 800 560 79467 1959 97.53

10 Mobile Information Systems



Table 6: Difference in HSR values for TTrain � TC and 0.7 × Tsim. Number of UEs: 810.

Algorithm Time (ms) TTrain (ms) Introduced time delay due
to TTrain > Tc (ms)

Attempts after
training period Δ attempts % attempts

missed
TTrain �Tc 200 150 10 17160 3352 16.34
TTrain � 0.7 × Tsim 200 140 20512

TTrain > Tc 100 299 229
ML algorithm does not activate because

Tc >Tsim
TTrain � 0.7 × Tsim 100 70 10439

Table 7: Difference in HSR values for TTrain � TC and 0.7 × Tsim. Number of UEs: 810.

Algorithm TSim
(ms)

TTrain
(ms)

Total
attempts

Attempts after
training period

Δ attempts after
training period

Number of failures
after training

HSR
(%) ΔHSR (%)

TTrain �Tc 200 150 66213 17160 3352 396 97.69 0.05
TTrain � 0.7 × Tsim 200 140 20512 462 97.74
TTrain > Tc 100 299 ML algorithm does not activate because Tc >Ts

TTrain � 0.7 × Tsim 100 70 33087 10439 N/A 222 97.87 N/A
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Figure 3: ML algorithm pre-empting failures (training period� 42ms).
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Figure 4: RSRP measurements at various time slots.

Table 8: UE level analysis (UE#65).

Model TSim (ms) Attempts (after ML) Failures HSR (%) FPA (%)
Baseline 60 12 4 58.33 33.33
Proposed 60 7 (5 handovers pre-empted) 0 100 0
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Figure 6: (a) TTrain < 147ms (to satisfy coherence time condition). (b) TTrain < 147ms (figure split into two to accommodate).

Table 9: UE level analysis (UE#61).

Model TSim (ms) Attempts (after ML) Failures HSR (%) Failure per attempt (%)
Baseline 210 36 5 86.84 13.15
Proposed 210 31 (5 handovers pre-empted) 0 100 0
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Case 1. TTrain � 0.7 × TSim for 0.7 × TSim ≤TCoherence.
For this purpose, random UE#65 is chosen; Figure 3

demonstrates that the proposed model follows a training

period of 42ms (TTrain � 0.7 × Tsim), where Tsim � 60ms.
Once the model gets trained, it overrides the baseline al-
gorithm where a handover failure is expected. Figure 3

Table 10: BS level analysis. Number of UEs: 810.

Algorithm TSim
(ms)

TTrain
(ms)

Tr

(ms)
Reduction in
delay (ms)

Total
attempts

Attempts
after training

period

Δ attempts
after training

period

% increased
attempts

Number of
failures

HSR
(%) ΔHSR (%)

T1 900 34 34 596 296035 285307 196021 68.70 6396 97.75 0.33
T2 900 630 89286 2297 97.42
T1 800 38 38 522 263229 251186 171719 68.36 5841 97.67 0.14
T2 800 560 79467 1959 97.53
T1 700 43 43 446 230216 216543 146836 67.80 5168 97.61 0.1
T2 700 489 69707 1732 97.51
T1 600 50 50 370 197628 177164 118722 67.01 4460 97.48 0.04
T2 600 420 58442 1492 97.44
T1 500 60 60 290 164680 145329 95327 65.59 3761 97.41 0.03
T2 500 350 50002 1277 97.44
T1 400 75 75 205 131787 107514 67361 62.65 2597 97.58 0.03
T2 400 280 40153 982 97.55
T1 300 100 100 110 98862 66448 36411 54.79 1706 97.43 0.1
T2 300 210 30037 739 97.53
T1 200 150 140 10 66213 17160 3352 16.34 396 97.69 0.05
T2 200 140 20512 462 97.74
T2 Not applicable for Tsim ≤ 100ms as discussed in Section 3.1
T1 100 299 70 — 33087 10336 — — 343 96.68 —
∗For Tsim ≤ 200ms, the 70–30% data spit condition is fine since it does not breach Tc limitations.
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shows the time slots highlighted within yellow colour where
ML overrides the baseline algorithm in order to pre-empt
failing handover attempt (the same concept is used for other
similar figures ahead). Figure 4 illustrates RSRP levels at
various time slots.

-e following equation is used to compute percentage
failure per attempt:

Failure Per Attempt (FPA) (%) �
number of failures
total attempts

× 100.

(31)

Table 8 shows that, with baseline algorithm HSR and
FPA remain 58.33% and 33.33%, respectively, while with
proposed, they are 100% and 0%, respectively. -e

Attempts A�er Training Period (incorrect)

Attempts A�er Training Period (Correct)

Total Attempts

Attempts Missed Due To Incorrect Training Period
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Total Attempts Attempts A�er Training Period (incorrect)
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Figure 11: Model misses to execute handover attempts due to the incorrect training period.
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attempts that are likely to fail are pre-empted with the ML
algorithm.

Figure 5 shows the comparison bar chart for the above case.

Case 2. TTrain � TC for 0.7 × Tsim >TCoherence.
Now, for 0.7 × Tsim >TC, UE#61 is randomly selected;

as per the proposed model, TTrain should remain in limits of
TC. -erefore, for Figure 6(a), TTrain is supposed to be
147ms according to 0.7 × Tsim ; however, the proposed
model limits the training sequence to only 134ms for the
reason already mentioned (coherence time), as shown in
Figure 6(a). Table 9 and Figure 6(b) show that, with the
baseline algorithm HSR and FPA as 86.84% and 13.15%,
respectively, while with proposed technique, HSR and
FPA are 100% and 0%, respectively. Figures 7 and 8
show RSRP and comparison bar chart, respectively, for
this case.

Case 3. TTrain � TC for TTrain >TSim.
If TTrain � Tc is implemented for TTrain >Tsim, then the

proposed algorithm never gets triggered and it remains in
the learning state for time greater than the simulation pe-
riod, as given by Figure 9(a), but does trigger (as shown in
Figure 9(b)) if TTrain is chosen as per given policy in
equations (14) and (15).-erefore, the proposed work argues
the dynamic training period depending upon given
scenarios.

3.3. BSLevelAnalysis. -is section provides detailed analysis
at the BS level; Table 10 shows that, by selecting the proposed
training sequence (Tr), which is also referred to as the
correct training sequence in this work, the model response
time can be significantly improved without trading off HSR
or accuracy by not even taking 70% of required samples. In
fact, it is observed that HSR slightly improved because the
samples are now gathered within Tc, and the proposed
model now estimates the channel with samples that truly
depict CSI because if the model keeps on collecting samples
beyond Tc, the channel does not correlate to its original
state. -e test results also show that, since the model now
activates timely, therefore it remains active for significantly
higher number of attempts; thus, the proposed model does
not get underutilized and can be exploited for its full effi-
ciency.-e effects of underutilization and reduction in delay
are more significant after 200ms of Ts.

-e test results also show such as at Ts ≤ 200ms, 70% of
samples can be taken without breaching Tc so the model
should be allowed to do so. Precisely, the proposed model
should be allowed to collect 70% of training samples if it does
not by-pass Tc; otherwise, the model should be restricted to
collect samples within Tc.

Figure 10 shows the comparison between two training
periodsT1 andT2 and shows that, with the incorrect training
period, a significant amount of delay gets introduced in
model response time which is highly undesired in 5G and
next generation wireless networks. -us, by implementing
proposed technique, this unwanted additional delay can be
eliminated.

Figure 11 shows the total number of attempts for
complete Ts and then specifies the number of attempts
executed through the ML algorithm with the correct and
incorrect training sequence. It is observed that the model
remains active for more attempts with the correct training
sequence in comparison to the incorrect training period,
thus eliminating underutilization of the model.

Figure 12 shows that although model response time is
significantly improved, the model remains active for more
attempts but still there is no loss to HSR or prediction
accuracy of the model despite the fact that the proposed
model is starved of required training samples at scenarios
were collecting 70% of required samples is not possible but
the XGBoost built-in algorithm for compensating missing
samples keeps the proposed algorithm working. In fact, it is
observed from Figure 12 that HSR is slightly improved with
the correct training sequence.

4. Conclusion

It is inevitable that, for 5G and future networks, AI will
dominate major network tasks in order to provide best QoS
possible. Speed, accuracy, and efficiency of these intelligent
algorithms are dominating factors in this field. In the ML
algorithm, determining exact data split, i.e., percentage of
training data and test data, is challenging because the
inequilibrium between both leads to either underfitting or
overfitting of the model which is highly undesirable.
However, generally a data split of 70–30% of training and
test data is preferred but still does not guarantee optimum
results.-e proposed research work exploits this uncertainty
of the data split mechanism and argues to train the model
within coherence time, thus keeping the data split dynamic.
-us, by saving time that is spent in collecting samples,
model response time can be significantly improved; how-
ever, the ML technique should be robust enough to reduce
errors caused due to missing samples.

In order to estimate CSI, it is mandatory that samples
be collected strictly within coherence time because the
samples gathered after this period do not provide accurate
channel state; therefore, the proposed work argues to
avoid sample collection after that period. -erefore, this
work specifies the algorithm for switching the training
sequence if the training period exceeds coherence time
limits. If the training sequence is not limited to within
coherence time, then it is in contradiction to model design
parameters which adds high-level delays and blocks the
ML algorithm to perform at full capacity because the
proposed model does not activate timely in order to
predict mmWaves’ signal strength.

At some instances, it is observed that upto 100% im-
provement can be achieved at certain UEs. However, no 100%
improvement might be possible at the network level because
the proposed model only activates where ROC-AUC is above
0.7. -erefore, at places where the proposed model predic-
tions are not accurate, the baseline algorithm remains active.
-us, due to this limiting factor that the baseline algorithm
cannot be fully overridden makes 100% achievement at the
network level almost impossible at this stage.
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-e proposed model also suggests that the ML algorithm
should be available in both UE and base station in contrast to
previous authors’ work because if the base station is not
working at its full processing load, then the algorithm should
be processed by the base station in order to protect UE
processing and battery resources; otherwise, it should be
processed by UE in order to relieve the base station in case of
processing overload.

For future, one possible research direction can be op-
timizing the XGBoost algorithm for mobile applications
only in order to make it more efficient and mobile-friendly.
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