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+e information age has brought earth-shaking changes. For interconnection of all things, the data transmission has widely
employed the Internet of +ings (IoT). +e IoT transmission faces complex environments. +e secure data transmission is very
important for mobile IoTnetworks. +e secure data transmission quality prediction is investigated for mobile IoTnetworks. +e
probability of strictly positive secrecy capacity (SPSC) is used to evaluate the secure data transmission quality, and the expressions
are first derived. +en, employing Elman network, a secure data transmission quality intelligent prediction approach is proposed.
+e extensive simulations are run to evaluate the proposed approach.+e simulation results show that the Elman-based approach
can achieve a higher quality precision than other methods. +e Elman-based approach also can achieve a lower time complexity.

1. Introduction

With the explosive growth of mobile applications, Internet
of things (IoT) networks are widely used to transmit data [1].
+e fifth generation (5G) mobile communication also has
been widely used in mobile IoTnetworks [2, 3]. Different 5G
applications widely use sea-land-air mobile communication
networks [4, 5]. +e global and diversified application will
provide quick and convenient services for IoT users.
However, due to IoT mobility and the diversity of IoT
networks, the physical layer security (PLS) of 5G mobile IoT
networks is facing many challenges [6].

PLS of 5G IoT networks is a research hot spot [7]. Low-
complexity schemes for IoT PLS were presented in [8]. In
[9], power control mechanism and antenna transmission
scheme were used to realize the secure data transmission in
cognitive wiretap networks. Considering the mobile
healthcare networks, Xu et al. [10] investigated the PLS
performance using the deep learning method. In [11], the
authors used compressed sensing and cooperative schemes
to achieve the secure transmission. Considering the user and

relay selection, Fan et al. [12] analyzed two criteria and
investigated the achievable PLS performance. +e authors of
[13] analyzed the upper and lower bounds on PLS perfor-
mance over dependent fading channels.

+e IoT data transmission faces a wide variety of
scenarios and complex environments. +e PLS issue is
more and more serious. However, predicting and evalu-
ating the secure data transmission quality are very difficult.
Recently, machine learning techniques are applied in 5G
wireless communications [14, 15]. In medical IoT, support
vector machine (SVM) model was used to train data
privacy [16]. High-performance visual tracking was
achieved by an extreme learning machine (ELM) model in
[17]. In [18], general regression (GR) model was used to
evaluate the video transmission quality. +e radial basis
function (RBF) network was optimized to reconstruct the
image in [19].

+e studies of secure data transmission quality predic-
tion are rare. So, our paper investigates the secure data
transmission quality prediction of mobile IoTnetworks. +e
main contributions are given as follows.
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(1) With amplify-and-forward (AF) relaying scheme, we
use SPSC to evaluate secure data transmission
quality and derive the exact expressions.

(2) To realize real-time analysis of secure data
transmission quality, we propose a secure data
transmission quality prediction approach based
on the Elman neural network. +e proposed ap-
proach is compared with ELM, GR, and RBF
methods.

(3) +rough the extensive simulations, we verify
the derived results. Compared with different
methods, the quality assessment effect of Elman-
based approach is better, and time complexity is
lower.

2. The IoT System Model

+e system has a mobile source (S), mobile destination (D),
mobile eavesdropper (E), and mobile relay (R). Figure 1
shows the system model.

First, MR receives the signal rSR as

rSR �
�������
MSRKE


hSRx + wSR, (1)

where wSR is Gaussian noise.
In the second time slot, D and E receive the signals rRk,

k ∈ {D, E}, as

rRk �
�����
MRkE


hSRhRkx + wRk. (2)

+e received SNR WSRk is given as

WSRk �
WSRWRk

1 + WSR + WRk

, (3)

where

WSR � MSRK hSR



2
c,

WRk � (1 − K)MRk hRk



2
c,

WSR � MSRKc.

(4)

WSRk is very complex. We approximate WSRk as [22]

WSRAk �
WSRWRk

1 + WSR + WRk

,

WRk � (1 − K)MRkc.

(5)

Bloch et al. [23] give the instantaneous secrecy capacity
as

c � max ln 1 + WSRAD(  − ln 1 + WSRAE( , 0 . (6)

3. Secure Data Transmission Quality Analysis

+e probability of SPSC FSPSC is used to evaluate the
secure data transmission quality. We will give the
analysis.

According to the (6), FSPSC is given as

FSPSC � Pr(c> 0) � 1 − Pr(c< 0)

� 1 − 
∞

0
FSRAD WSRAE( fSRAE WSRAE( dWSRAE.

(7)

With the help of [24], we obtain the PDF and CDF of
WSRAk as follows:

fWSRAk
(r) �

1
16r
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|
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χk �
WSRWRk

1 + WSR + WRk

. (10)

Substituting (8) and (9) into (7), FSPSC is expressed as

FSPSC � 1 −
1
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∞
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(11)

4. Secure Data Transmission Quality
Prediction Approach

4.1.DataSets. Ti � (Xi, yi).+e inputXi includes 5 indicators.
Xi is given as

Xi � xi1, xi2, . . . , xi5( . (12)

+e output yi is the SPSC. By using (11), the corre-
sponding yi can be obtained.

4.2. Network Design. Figure 2 shows the Elman neural
network [25].

4.3. Predictive Evaluation. For PP testing data, MSE and AE
are used to evaluate the prediction effect:

MSE �


PP
z�1 d

z
− y

z
( 

2

PP
,

AE � d
z

− y
z


.

(13)

5. Numerical Results

In this section, E� 1 and μ�WRD/WRE (in decibels).
With parameters in Table 1, we evaluate the SPSC

performance with c � 10 dB in Figure 3. Simulation results
show the following: (1) increasing u improves the SPSC
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performance; (2) for Nakagami channels, the secure data
transmission quality is the best. +is is because a higher u
improves the S⟶ R⟶ D channel while degrading the
S⟶R⟶E channel.

In Figures 4–11, ELM, GR, and RBF methods are
compared with the Elman approach. Table 2 gives the
simulation parameters. +eMSE and AE of Elman approach
are 0.00014 and 0.011, which are the lowest MSE and AE in
the five methods. +is is because Elman is a typical dynamic
recurrent neural network and can adapt to the time-varying
characteristics by adding a context layer.

+e MSE is compared in Figure 12. Compared with GR,
Elman has a better MSE performance, but the running time
is longer than GR. Furthermore, compared with other
methods, Elman has a higher quality precision and a lower
time complexity.

Output Layer

x1

x5

y

Hidden Layer

Input Layer

Context Layer

Figure 2: +e Elman structure.

Table 1: Simulation parameters.
mSR 1, 3
mRE 1, 3
mRD 1, 3
WSR 5 dB
WRE 5 dB
K 0.6

S R

D

E
The 1st time slot

The 2nd time slot

Figure 1: Systemmodel. E is the transmission power. For R and S, E is allocated with K.+e channel coefficient h is 2-Nakagami distribution
[20, 21]. MSR, MRD, and MRE are the relative geometrical gains of S⟶ R, R⟶ D, and R⟶ E links, respectively.
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Figure 3: +e SPSC performance versus u for different channels.
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Figure 4: Prediction of elman.
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Figure 6: Prediction of RBF.
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Figure 7: Ae of RBF.
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Figure 8: Prediction of ELM.
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Figure 10: Prediction of GR.
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6. Conclusion

+is paper investigated the SPSC prediction of mobile IoT
Networks. +e exact expressions for SPSC were derived.
Furthermore, based on the Elman network, we proposed an
intelligent secure data transmission quality prediction al-
gorithm. +e theoretical analysis showed the following: (1)
the SPSC performance over Nakagami channels was the best;
(2) compared with different methods, the Elman algorithm
can achieve a higher quality precision.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon reasonable
request and with permission of funders.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is research was supported by the National Natural Science
Foundation of China (no. 11664043).

References

[1] M. B. Mollah, J. Zhao, D. Niyato et al., “Blockchain for the
internet of vehicles towards intelligent transportation systems:
a survey,” IEEE Internet of 2ings Journal, vol. 8, no. 6,
pp. 4157–4185, 2021.

[2] L. Chettri and R. Bera, “A comprehensive survey on internet
of things (IoT) toward 5G wireless systems,” IEEE Internet of
2ings Journal, vol. 7, no. 1, pp. 16–32, 2020.

[3] H. Wang, L. Xu, Z. Yan, and T. A. Gulliver, “Low-complexity
MIMO-FBMC sparse channel parameter estimation for in-
dustrial big data communications,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 5, pp. 3422–3430, 2021.

[4] L. Xu, H. Wang, and T. A. Gulliver, “Outage probability
performance analysis and prediction for mobile IoV networks
based on ICS-BP neural network,” IEEE Internet of 2ings
Journal, vol. 8, no. 5, pp. 3524–3533, 2021.

[5] G. Liu, Y. Liu, K. Zheng et al., “MCS-GPM: multi-constrained
simulation based graph pattern matching in contextual social
graphs,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 30, no. 6, pp. 1050–1064, 2018.

[6] H.-M.Wang, Q. Yang, Z. Ding, andH. V. Poor, “Secure short-
packet communications for mission-critical IoTapplications,”
IEEE Transactions onWireless Communications, vol. 18, no. 5,
pp. 2565–2578, 2019.

[7] L. Sun and Q. Du, “Physical layer security with its applications
in 5G networks: a review,” China Communications, vol. 14,
no. 12, pp. 1–14, 2017.

[8] A. Mukherjee, “Physical-layer security in the internet of
things: sensing and communication confidentiality under
resource constraints,” Proceedings of the IEEE, vol. 103, no. 10,
pp. 1747–1761, 2015.

[9] Y. Chen, T. Zhang, X. Qiao, H. Wu, and J. Zhang, “Secure
cognitive MIMO wiretap networks with different antenna
transmission schemes,” IEEE Access, vol. 9, pp. 5779–5790,
2021.

[10] L. Xu, X. Zhou, Y. Tao, L. Liu, X. Yu, and N. Kumar, “In-
telligent security performance prediction for IoT-enabled
healthcare networks using improved CNN,” IEEE Transac-
tions on Industrial Informatics, p. 1, 2021.

[11] L. Qing, H. Xiaomei, and X. M. Fu, “Physical layer security in
multi-hop AF relay network based on compressed sensing,”
IEEE Communications Letters, vol. 22, no. 9, pp. 1882–1885,
2018.

[12] L. Fan, N. Yang, T. Q. Duong, M. Elkashlan, and
G. K. Karagiannidis, “Exploiting direct links for physical layer

1.87E-04
1.07E-04 1.07E-04

9.96E-03

1.41E-05

1.00E-05

1.00E-04

1.00E-03

1.00E-02

ELM SVM RBF GR Elman

MSE

Figure 12: +e MSE comparison.

Table 2: +e parameters for different methods.

Algorithm Elman ELM RBF GR
Training data: 3000 Testing data: 50

q:10 q:15000 τ:20 τ:0.01
η1:0.01
η2:0.01

Mobile Information Systems 7



security in multiuser multirelay networks,” IEEE Transactions
on Wireless Communications, vol. 15, no. 6, pp. 3856–3867,
2016.

[13] K.-L. Besser and E. A. Jorswieck, “Bounds on the secrecy
outage probability for dependent fading channels,” IEEE
Transactions on Communications, vol. 69, no. 1, pp. 443–456,
2021.

[14] L. Xu, X. Yu, and T. A. Gulliver, “Intelligent outage proba-
bility prediction for mobile IoTnetworks based on an IGWO-
Elman neural network,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 2, pp. 1365–1375, 2021.

[15] H. Huang, Y. Peng, J. Yang, W. Xia, and G. Gui, “Fast
beamforming design via deep learning,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 1, pp. 1065–1069, 2020.

[16] J. Wang, L. Wu, H. Wang, K.-K. R. Choo, and D. He, “An
efficient and privacy-preserving outsourced support vector
machine training for internet of medical things,” IEEE In-
ternet of 2ings Journal, vol. 8, no. 1, pp. 458–473, 2021.

[17] C. Deng, Y. Han, and B. Zhao, “High-performance visual
tracking with extreme learning machine framework,” IEEE
Transactions on Cybernetics, vol. 50, no. 6, pp. 2781–2792,
2020.

[18] L. Xu, H. Wang, H. Li, W. Lin, and T. A. Gulliver, “QoS
intelligent prediction for mobile video networks: a GR ap-
proach,” Neural Computing & Applications, vol. 33, no. 9,
pp. 3891–3900, 2021.

[19] H. Wang, K. Liu, Y. Wu et al., “Image reconstruction for
electrical impedance tomography using radial basis function
neural network based on hybrid particle swarm optimization
algorithm,” IEEE Sensors Journal, vol. 21, no. 2,
pp. 1926–1934, 2021.

[20] G. K. Karagiannidis, N. C. Sagias, and P. T. Mathiopoulos,
“N∗Nakagami: $N{\ast}$Nakagami: a novel stochastic model
for cascaded fading channels,” IEEE Transactions on Com-
munications, vol. 55, no. 8, pp. 1453–1458, Aug 2007.

[21] Z. X. Li, L. Z. Jia, F. Li, and H. Y. Hu, “Outage performance
analysis in relay-assisted inter-vehicular communications
over double-Rayleigh fading channels,” in Proceedings of the
CMC, pp. 266–270, Shenzhen, China, September 2010.

[22] F. K. Gong, Y. Wang, N. Zhang, and P. Ye, “Cooperative
mobile-to-mobile communications over double Nakagami-m
fading channels,” IET Communications, vol. 6, no. 18,
pp. 3165–3175, 2012.

[23] M. Bloch, J. Barros, M. R. D. Rodrigues, and
S. W. McLaughlin, “Wireless information-theoretic security,”
IEEE Transactions on Information 2eory, vol. 54, no. 6,
pp. 2515–2534, 2008.

[24] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and
Products, Academic, San Diego, CA, USA, 7th edition, 2007.

[25] H. Y. Jin and X. M. Zhao, “Complementary sliding mode
control via Elman neural network for permanent magnet
linear servo system,” IEEE Access, vol. 7, pp. 2169–3536, 2019.

8 Mobile Information Systems


