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Network virtualization (NV) can provide the resource according to the request and can improve the flexibility of the network. It
has become the key technology of 5G communication. Resource scheduling in virtual network mapping is an important problem
faced by NV technology. To enhance the performance of the network, optimal resource scheduling schemes should be determined.
In general, maximum index of frequency slots used, energy consumption, and the ratio of used frequency slots are three very
important indicators for the network. Based on the previous research studies, we first take these three indicators into the objective
of the mathematical model and define a novel multiobjective optimization model. ,en, the three objectives are integrated into
one objective to be minimized by using the sum weighted strategy. Finally, an efficient algorithm, which integrates the advantages
of artificial raindrop algorithm (ARA), particle swarm optimization, and differential evolution, is proposed and denoted as IARA.
Moreover, simulation experiments have been conducted in several experimental scenes with other compared algorithms. ,e
experimental results show that the proposed algorithm IARA can obtain better scheduling schemes than the
compared algorithms.

1. Introduction

Network virtualization is actually to realize that multiple
heterogeneous virtual networks can run in a basic network.
By creating a realistic and stable virtual environment, re-
sources reuse of routers, links, and other physical devices can
be realized, which greatly improves resource utilization, thus
providing support for Internet of ,ings, cloud computing,
and other technologies [1, 2]. Cloud platform is based on the
underlying infrastructure of network virtualization tech-
nology to achieve the resource sharing, and distributed
architecture and the characteristic of being extensible also
make cloud platform able to improve the simulation of
network scale, but the establishment of the virtual network
and dismantling make the demand of the network business
change, in order to make the underlying network support
heterogeneous virtual network request as much as possible
and achieve the efficient scheduling and management of
resources [3]. What is more, network virtualization can

accelerate innovation of network architecture. Now there are
many different kinds of resources in the network environ-
ment, different function, virtual resource distribution is not
the same, network heterogeneity and dynamics. ,e virtual
nodes deployed in location and resources to meet the basic
requirements of physical nodes and to ensure meeting the
resource constraint conditions such as virtual nodes in the
path of the physical nodes are linked together, the core
problem is the virtual network mapping, there is also an
urgent need to solve the key challenge, and the field has
become a very popular area of research [4, 5]; it enables
network operators to share a physical network in case of
different operating virtual optical network and the optical
layer to simplify resource management, providing flexible
spectrum allocation schemes and secure application services
[6]. [7]. Network virtualization as solving the problem of
network “rigidity” provides an effective means; it can realize
multiple heterogeneous virtual networks sharing the un-
derlying network resources; it not only improves the
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utilization rate of network resources but also brings more
flexible services; virtual network mapping, as one of the key
technologies of network virtualization, has been widely
concerned [8–10].

Virtual network mapping has been proved to be an NP-
hard problem, and the related solutions have become a
research hotspot [11, 12]. Virtual network mapping can be
divided into one stage and two stages according to the steps
to map, a phase mapping algorithm because of high com-
plexity, low adaptability, now two phase mapping algorithm
is the mainstream of the study is the first network all nodes
mapping, mapping, and then to link so the node mapping
strategy for virtual network mapping plays a key role in
success [13]. Node mapping methods mainly include heu-
ristic algorithm [14], linear programming solution [15], and
intelligent optimization algorithm [16]. Node sorting has
also developed from simple node resource sorting [17] to
topological resource joint sorting [18], gradually forming the
problem of node multi-index sorting [19]. ,e authors of
[20] put forward a kind of node importance evaluation
method based on TOPSIS, and, on the basis of considering
the node resources property, the introduction of social
network analysis method of the centricity, and approaching
degrees centricity, Euclidean distance of TOPSIS method
cannot distinguish with positive and negative ideal solution
distance equal points, index weight, and node set artificially;
subjectivity is stronger. ,e study in [21] proposed a node
ranking method with weighted relative entropy, which can
realize the joint perception of virtual topology and physical
topology, but its index weight needs to be adjusted manually
according to environmental changes, so it relies heavily on
experience. ,e study in [22] introduced the extraction
process of the underlying network features and the node
sorting method and used the particle swarm optimization
method to train the index weight vector. It can automatically
determine the parameters in the algorithm for different
optimization objectives, but the algorithm complexity is
high. ,e study in [23] proposed a virtual network mapping
algorithm based on greedy algorithm. In the node mapping
stage, only the CPU resources of the nodes and the band-
width of the adjacent links were considered, without con-
sidering the topological attributes. In order to further
improve the mapping efficiency, scholars improve the
performance of node mapping algorithm. ,e study in [24]
proposed the optimization model of energy consumption
and applied it to the problem of virtual network mapping.
,e study in [25] designs an optimal backup topology for
single link failure in virtual SDN, which improves resource
utilization and shortens algorithm execution time.,e study
in [26] focuses on the problem of network forwarding re-
sources and load balancing and designs an integer linear
programming model to solve the problem of online resource
allocation of multiple virtual links in SDN environment. ,e
study in [27] proposes a time-sensitive virtualization con-
troller deployment algorithm for SDN controller network
delay, which reduces the communication delay between the
switch and the controller. However, there are few researches
on combinatorial optimization problems, which aim to
control delay and balance network load.

In general, maximum index of used frequency slots,
energy consumption, and the ratio of used frequency slots
are three very import indicators for the network. Based on
the previous researches, we first take these three indicators
into the objective of the mathematical model and define a
novel multiobjective optimization model. ,en, the three
objectives are integrated into one objective to be minimized
by using the sum weighted strategy. Finally, an efficient
algorithm, which integrates the advantages of artificial
raindrop algorithm (ARA), particle swarm optimization,
and differential evolution, is proposed and denoted as IARA.
We summarize the major contributions of this paper as
follows:

(i) We first take the three indicators into the objective of
the mathematical model and define a novel multi-
objective optimization model

(ii) An efficient algorithm, which integrates the ad-
vantages of artificial raindrop algorithm (ARA),
particle swarm optimization, and differential evo-
lution, is proposed

,e rest of the paper is organized as follows: Section 2
describes the problem and establishes a novel three-objective
optimization model. To solve the established mathematical
model with high performance, we give the overview of the
artificial raindrop algorithm (ARA) and propose an im-
proved artificial raindrop algorithm (IARA) in Section 3.
Section 4 presents experimental results and analysis. Con-
clusions with a summary are drawn in Section 5.

2. Problem Formulation

2.1.ProblemDescription. Directed graph G � (V, E) denotes
a physical network topology. V � vi|i � 1, 2, . . . , N  is the
network nodes set, where N and vi (i � 1, 2, . . . , N) are the
numbers of nodes and the optical nodes, respectively. For
the node vi in physical network, there are c(vi) virtual
machines (VMs) in it. E � lij|i, j ∈ V  represents optical
fiber links set, and |E| is the link number of a network.
lij (1≤ i≠ j≤N) is the link between physical nodes vi and vj

in the network topology. Let F � fu|u � 1, 2, . . . , |F|  de-
note the set of available frequency slots in each link, and let
|F| be the number of frequency slots.

VON � VON1,VON2, . . . ,VONM  denotes the set of
virtual optical networks (VONs) in network G, where M

represents the number of VONs. Vm � vm
1 , vm

2 , . . . , vm
Nm

 

denotes the set of virtual nodes (VNs) in VONm, where Nm

is the number of VN i VONm. In general, we have Nm ≤N.
Ωm

n denotes the candidate set vm
n (n � 1, 2, . . . , Nm;

m � 1, 2, . . . , M) can map to, and the nodes in Ωm
n are all

adjacent to each other. Rm � rm
1 , rm

2 , . . . , rm
|Rm|  is the set of

virtual connection requests (VCR) in VONm. rm
k (k � 1, 2,

. . . , |Rm|; m � 1, 2, . . . , M) denotes the kth VCR in VONm.
For rm

k in VONm, it can be described as rm
k � (sm

k , dm
k , Tm

k ).
Source node, destination node, and required capacity are
sm

k , dm
k , and Tm

k , respectively.
For a specific virtual connection request rm

k � (sm
k ,

dm
k , Tm

k ), if VN sm
k and dm

k are mapping to nodes sk′ and
dk′ (sk′ , dk′ ∈ V), respectively, rm

k would translate into a
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physical connection request rk′ � (sk′ , dk′ , Tk′), where
Tk′ � Tm

k . When all the VNs were mapped to nodes, all the
VONs are mapping to the network. ,at is to say, all the
VCR are translated to the physical connection requests. R′ �
r1, r2, . . . , r|R′|  denotes the physical connection requests
set. ,us, |R′| � 

M
m�1 |Rm| denotes the number of VCRs.

2.2. Multiobjective Mathematical Modeling

2.2.1. Objective Functions

(1) ,e first objective is minimizing the maximum index
of frequency slots used. ,e maximum index of
frequency slots used is calculated by

Fmax � maxlij∈E Flij



 , (1)

where |Flij
| is the maximum index of frequency slots

used on lij. Since Fmax ≤ |F|, the maximum index of
frequency slots used can be normalized as

f1 �
maxlij∈E Flij



 

|F|
.

(2)

,us, we have 0≤f1 ≤ 1, and the first objective
function can be represented as

minf1 � min
maxlij∈E Flij



 

|F|

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (3)

(2) ,e energy consumption is minimized in second
objective. Energy consumption for all the connection
requests can be calculated by

Etotal � 

R′| |

k′�1

λq

k′g Q
q

k′  , (4)

where g(Q
q

k′) denotes the energy consumption of rk′
when it occupies the path Q

q

k′ . λq

k′ is a Boolean
variable; if rk′ occupies the qth path in Qk′ , λ

q

k′ � 1;
otherwise, λq

k′ � 0.
Since 

|R′|
k′�1(λ

q

k′g(Q
q

k′))≤ 
|R′|
k′�1(g(Q

q

k′)), the total
energy consumption can be normalized as

f2 �


R′| |
k′�1 λq

k′g Q
q

k′  


R′| |

k′�1 λq

k′g Q
q

k′  
. (5)

Similar to the first objective, we have 0≤f2 ≤ 1.,us,
objective function can be expressed by

minf2 � min


R′| |
k′�1 λq

k′g Q
q

k′  


R′| |

k′�1 λq

k′g Q
q

k′  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (6)

(3) ,e third objective is maximizing the ratio of fre-
quency slots utilization, and it is defined as

RFSU �
FStotal

NLused ×|F|
, (7)

where FStotal and NLused are the total FSs used and number of
links used, respectively. Since FStotal ≤NLused × |F|,
0≤RFSU≤ 1. So, this objective can be expressed by

maxRFSU � max
FStotal

NLused ×|F|
 . (8)

Since the first and second objectives are minimized, we
can rewrite the third objective as

minf3 � 1 − max
FStotal

NLused ×|F|
 . (9)

Obviously, 0≤f3 ≤ 1.
,e three objectives can be integrated into one to be

minimized by sum weighted strategy; that is,

minf � min α1f1 + α2f2 + α3f3 , (10)

where α1, α2, and α3 are three weights to adjust the im-
portance of the three objectives, and we have 0≤ α1,
α2, α3 ≤ 1 and α1 + α2 + α3 � 1. Since 0≤f1, f2, f3 ≤ 1,
0≤f≤ 1. In addition, some constraint conditions should be
satisfied. ,ese constraint conditions are given in our pre-
vious paper [28]. To solve the multiobjective model, an
efficient algorithm, which integrates the advantages of ar-
tificial raindrop algorithm (ARA), particle swarm optimi-
zation, and differential evolution, is proposed.

3. Overview of Artificial Raindrop Algorithm
and Improved Artificial Raindrop Algorithm

3.1. Overview of Artificial Raindrop Algorithm. Artificial
raindrop algorithm (ARA) is a kind of nonbiological heu-
ristic algorithm based on population. ,e algorithm is in-
spired by the phenomenon of natural rainfall and
transplants the effective information processing mechanism
contained in the process of natural rainfall into the opti-
mization algorithm design. According to the observation of
the natural rainfall process, the whole optimization design
cycle is divided into six stages: raindrop formation, raindrop
descent, raindrop collision, raindrop flow, raindrop pool
renewal, and water vapor renewal. During the optimization
process, the location of water vapor or raindrops generated
was evaluated using altitude, and the lower elevation po-
sitions were recorded in the raindrop pool.

Similar to the most metaheuristic algorithms, ARA
searches the optimal solution with an initial population by
randomly generating Np vapors in a limited search space,
and each vapor has a corresponding position defined as
vi � (v1i , vd

i , . . . , vd
i , . . . , vD

i ) i � 1, 2, . . . , Np, where Np is
the population size, D is the dimension of problem, and vd

i is
the position of the i-th vapor in the d-th dimension.

3.1.1. Raindrop Generation. Generally speaking, raindrops
are produced by constantly absorbing surrounding water
vapor. For simplicity, assume the position of raindrops water
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vapor around the geometric center. ,erefore, its location
can be defined as RP � (x1, x, . . . , xd, . . . , xD), where
xd � (1/Np) 

Np

i�1 xd
i .

3.1.2. Raindrop Descent. When ignoring the impact of ex-
ternal factors, free-falling raindrops from the clouds reach
the ground. ,is means that a component has changed the
location of raindrops, and the raindrops will move to a new
location representing new raindrops. For raindrops RP, xdj

raindrops at dj-position on the first dimension, wherein
dj (j � 1, 2, 3, 4) from 1, 2, cdots, D{ } set arbitrarily selected.
,us, new raindrop (NRP � (y1, y2, cdots, yd, cdots, yd)),
d-th dimension of yd x can be from xd2 , xd3 , and xd4 linear
combinations obtained, defined as follows:

y
d

�
x

d2 + c x
d3 − x

d4 , d � d1,

x
d
, otherwise,

⎧⎪⎨

⎪⎩
(11)

where c is a random number in (−1, 1) and d � 1, 2, . . . , D.

3.1.3. Raindrop Collision. When a new raindrop hits the
ground, it will split into a large number of small raindrops.
,ese small raindrops (SRPi, (i � 1, 2, cdots, Ns)) fly in all
directions. Accordingly, SRPi can be defined as

SRPi � NRP + sign(α − 0.5) · lg(β) · NRP − vi( , (12)

where k, which is randomly selected from the set
1, 2, . . . , Np, is an index. α and β are two random numbers
and are distributed in the range (0, 1) uniformly. sign (·)

represents the sign function.

3.1.4. Raindrop Flowing. Under gravity, SRPi (i � 1, 2,

cdots, Np) will flow to the low altitude and will most
eventually stop at a lower altitude from a height position
(i.e., a better solution). In the process of evolutionary al-
gorithms, these better solutions can provide more infor-
mation about the direction of promising progress.,erefore,
the design comprising NRPO raindrops pool (textbf RPO) to
track these lower positions is found during the search, and
textbf RPO update: (1) textbf RPO any feasible solution is to
initialize the search space; (2) after each iteration, the op-
timal solution is added in the current population textbf RPO;
and (3) if the size exceeds a threshold RPO value set in
advance, in order to maintain the textbf RPO of size stability,
reduce the amount of calculation, some solutions of \textbf
{RPO} are deleted randomly

What is more, the flowing direction of raindrop dSRPi

for SRPi (i � 1, 2, . . . , Np) can be constructed based on the
linear combination of two vectors dSRP1i and dSRP2i as
follows:

dSRPi � τ1 · θ1i · dSRP1i + τ2 · θ2i · dSRP2i, (13)

where τ1 and τ2 are two step parameters of SPRi flowing, and
θ1i and θ

2
i are generated randomly in the range (0, 1). dSRP1i

and dSRP2i are two vectors and they are defined as follows:

dSRP1i � sign F RPOk1
  − F SRPi(   · RPOk1

− SRPi ,

dSRP2i � sign F RPOk2
  − F SRPi(   · RPOk2

− SRPi ,

(14)

where RPOk1
and RPOk2

(1≤ k1 ≠ k2 ≤Nrpo) are any two of
candidate solutions in RPO. F(·) denotes the fitness
function. ,us, the i-th new small raindrop (NSRPi) can be
defined as

NSRPi � SRPi + dSRPi. (15)

In general, it is necessary to introduce a parameter NMF
to control the maximum flow rate. ,us, these new small
raindrops will stay in the locations with a lower elevation or
evaporate after several flowing because of the parameter
NMF.

3.1.5. Vapor Updating. In order to converge ARA, in the
water vapor update process, select a new ranking method
using the small raindrop and a small steam of Np as the next
best solution vapor population.

3.2. Improved Artificial Raindrop Algorithm (IARA)

3.2.1. Encoding. Four steps are used to solve the problems of
mapping VON: (1) physically mapping a virtual node to
node, (2) connection request sorting, (3) routing, and (4)
spectrum allocation. We randomly sort connection which
does not require coding. Accordingly, it only needs to be
coded in steps 1, 3, and 4. ,erefore, using the virtual node
mapping populations, populations and spectrum allocation
routing population of these three individuals into the
population of these three steps are necessary and reasonable.
,is paper presents the virtual node mapping and routing of
coding schemes and population initialization program [28].

Each gene represents the starting frequency index for
each connection request slot on the chromosome. Routing
similar population of chromosomes, the chromosome length
is carded quantity of connection requests. For example, z �

(zk′)1multipliedN
R′
is a spectral distribution in the population

of chromosomes. If zk′ � u, then u-th is allocated to the
(u + Bk′ + GF − 1)-th frequency slot of the connection re-
quest rk′ . ,e population of spectrum allocation has been
initialized in Algorithm 1.

3.2.2. Improved Raindrop Flowing. In the improved algo-
rithm, flowing direction of raindrop dSRPi of
SRPi (i � 1, 2, . . . , Np) can be constructed based on the
linear combination of three vectors dSRP1i, dSRP2i, and
dSRP3i as follows:

dSRPi � τ1 · θ1i · dSRP1i + τ2 · θ2i · dSRP2i + τ3 · θ3i · dSRP3i,

(16)

where τ3 is a step parameter of SPRi like τ1 and τ2 and θ
3
i also

is generated randomly in the range (0, 1).
dSRP3i � (dSRP31i , dSRP32i , . . . , dSRP3d

i , . . . , dSRP3D
i ) is a

vector and it is defined as follows:
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dSRP3d
i �

SRPd
i,β + SRPd

i,β + SRPd
i,β

3

+ r3 · SRPd
i,best − SRPd

i  + r4 · SRPd
j − SRPd

i ,

(17)

where r3, r4, and r5 are three random vectors in [0, 1] and
SRPi,best denotes the best position of i-th raindrop in the past.
SRPd

i,β, SRP
d
i,c, and SRPd

i,δ are defined as

SRPd
i,β � SRPd

β − a1 · a2 · SRPd
β − SRPd

i



,

SRPd
i,c � SRPd

c − a1 · a2 · SRPd
c − SRPd

i



,

SRPd
i,δ � SRPd

δ − a1 · a2 · SRPd
δ − SRPd

i



,

(18)

where a1 and a2 are two random numbers in the range (0, 1);
SRPβ, SRPc, and SRPδ denote the optimal raindrop, sub-
optimum raindrop, and third-optimum raindrop.

4. Experiments and Analysis

In order to prove the effectiveness and efficiency of the
proposed algorithm, this section performs several experi-
ments and results are given. In Section 4.1, the parameters
used in the algorithm are given. ,e results are given in
Section 4.2. Finally, Section 4.3 presents the analysis of
experimental results.

4.1. Parameters Setting. In our simulation experiments,
there are three network topologies. NSFNET topology in-
cludes 14 nodes and 21 links. CHNNETtopology includes 15
nodes and 27 links. ARPANET topology includes 20 nodes
and 32 links. Subcarrier modulation level uses 4 kinds:
BPSK, QPSK, 8QAM, and 16QAM. ,us, for BPSK, QPSK,
8QAM, and 16QAM different modulation levels, ML 2, 3,
and 4 may be selected. ,e transmission distance of mod-
ulation levels are 9600, 4800, 2400, and 1200 km [29]. We
assume that each frequency slot is 2.5 GHz. Furthermore, the
network topology has 5–10 VMs on each physical node. Each
has 4 or 6 VON virtual nodes, a virtual connection request is
present between a pair of virtual nodes, and the probability is
0.5. Each virtual node in VONs has between 2–4 candidate
nodes in EONs.

4.2. ExperimentalResults. In order to verify the performance
of the proposed algorithm, we compared the proposed al-
gorithm IARA with the ARA proposed in the literature. In
addition, we compared the IARA scheme with the DC & TP-
EA scheme and considered the energy saving of DCs in node
mapping and the energy saving of TPs in link mapping
(proposed in [30]) to verify the performance of the IARA
scheme. In addition, we also compared the proposed al-
gorithm with the three best-performing algorithms for
solving the VONs mapping problem. ,e first algorithm is
expressed as CAN-A and is proposed in [31]. In order to
make it more suitable for real networks, CAN-A considers
four types of node and link constraints and constructs a
subset of candidate substrate nodes and a subset of candidate
substrate paths before embedding. LSCD algorithm is map
the largest bandwidth requirement virtual links on the
shortest distance physical links. ,e last comparison algo-
rithm is GRC-SVNE proposed in the literature. In the node
mapping phase, GRC-SVNE selects some nodes as candidate
nodes according to the mapping capacity of all nodes. ,en
Dijkstra’s algorithm is used for link mapping in the second
stage.

In order to verify the performance of the algorithm, there
are two different experiments to select scenes. In the first
experiment scenario, each virtual optical network’s virtual
section was fixed to 5 points. ,ere is a request to a virtual
connection between each pair of virtual nodes, and the
probability is 0.5. ,e number of virtual optical networks
from 10 to 20 is selected. In Figures 1–4, the results are given
objective function with three network VONs quantity
change algorithms. When α1 � 1, α2 � 0, α3 � 0, the exper-
imental results obtained by the algorithm are shown in
Figure 1. α1 � 0, α2 � 1, α3 � 0. ,e results obtained by the
algorithm are shown in Figure 2. Figure 3 shows α1 � 0,

α2 � 0, α3 � 1. Figure 4 shows α1 � 1/3, α2 � 1/3, α3 � 1/3.
In a second experiment scenario, the number of fixed

VONs M � 30. In each virtual optical network, the number
of virtual nodes is from 3 to 7 (Figures 5–8). ,e results are
given objective function with virtual three network nodes
change algorithm. α1 � 1, α2 � 0, α3 � 0. ,e results ob-
tained by the algorithm are shown in Figure 5. When
α1 � 0, α2 � 1, α3 � 0, the experimental results obtained by
the algorithm are shown in Figure 6. Figure 7 shows ex-
perimental results obtained by the algorithm when

Input: |Qk′ | for all physical connection requests R′,
Population size PopSize
Output: Spectrum assignment population RP

(1) for p � 1 to PopSize do
(2) for k′ � 1 to |R′| do
(3) An integer u is generated randomly between 1

and |F|;
(4) SP(p, k′) � u;
(5) end
(6) end

ALGORITHM 1: Spectrum assignment population initialization.
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Figure 1: Experimental results in the first scene when α1 � 1, α2 � 0, α3 � 0. (a) Experimental results in NSFNET. (b) Experimental results
in CHNNET. (c) Experimental results in ARPANET.
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Figure 2: Experimental results in the first scene when α1 � 0, α2 � 1, α3 � 1. (a) Experimental results in NSFNET. (b) Experimental results
in CHNNET. (c) Experimental results in ARPANET.
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Figure 3: Experimental results in the first scene when α1 � 0, α2 � 0, α3 � 1. (a) Experimental results in NSFNET. (b) Experimental results
in CHNNET. (c) Experimental results in ARPANET.
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Figure 4: Experimental results in the first scene when α1 � 1/3, α2 � 1/3, α3 � 1/3. (a) Experimental results in NSFNET. (b) Experimental
results in CHNNET. (c) Experimental results in ARPANET.
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Figure 5: Experimental results in the second scene when α1 � 1, α2 � 0, α3 � 0. (a) Experimental results in NSFNET. (b) Experimental
results in CHNNET. (c) Experimental results in ARPANET.
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Figure 6: Experimental results in the second scene when α1 � 0, α2 � 1, α3 � 1. (a) Experimental results in NSFNET. (b) Experimental
results in CHNNET. (c) Experimental results in ARPANET.

Mobile Information Systems 7



α1 � 0, α2 � 0, α3 � 1. Figure 8 shows the experimental re-
sults obtained when α1 � 1/3, α2 � 1/3, α3 � 1/3.

4.3. Experimental Analysis. When α1 � 1, α2 � 0, α3 � 0, the
six kinds of objective function value obtained by the algorithm
are shown in Figures 1 and 5 in both different scenarios. From
Figure 1, we can see that the value of objective function
obtained by proposed algorithm is smaller than those ob-
tained by the compared algorithms with the number of VONs
varying from 10 to 50. Similarly, it can be seen from the figure
that when the number of VONs is from 3 to 7, the algorithm
obtains an objective function value that is less than the ob-
jective function value obtained by the comparison algorithm.
CAN-A considered four types of constraint nodes and links,
wherein the substrate is configured subset of candidate paths
and a subset of the candidate nodes in the substrate prior to
embedding. GRC-SVNE maps selecting section capacity for
all nodes as candidate nodes according to a node. ,e second
stage uses the Dijkstra algorithm downlink map.,is can lead
to connection requests on a different link imbalance. ,e
algorithm will get a maximum index with greater use of
frequency bins. LCSD maximum link bandwidth require-
ments are mapped to link the shortest distance to reduce
network costs, so that the connection request imbalances
different links. IARA can search the optimal virtual nodes
mapping scheme for all the virtual nodes and optimal routing
scheme for all the connection requests using a search oper-
ators. In the first experiment scenario, when the number of
virtual optical networks is 10, the ratio of the algorithm and
the comparison algorithm to obtain the objective function
value is 3.9 %–7.4 %. When the number of VONs is 50, ratio
of the algorithm and the comparison algorithm to obtain the
objective function value is 5.8 %–13.1 %. In addition, we can
see that, with the increase in the number of VONs, the
proposed algorithm can save more frequency slots. In a
second experiment scenario, as shown in Figure 5, when the
number of virtual nodes is 3, ratio of the algorithm and the
comparison algorithm to obtain the objective function value is

4.5%–8.1%. When the number of virtual nodes is 7, ratio of
the algorithm and five kinds of the comparison algorithm to
obtain the objective function value is 5.2%–10.5%. When
α1 � 1, α2 � 0, α3 � 0, the goal is to minimize the use of the
maximum frequency bin index. ,us, the algorithm in two
different experimental scenarios can save more frequency
bins.

As can be seen from Figures 2 and 6, the objective
function value obtained by the algorithm is less than the
objective function value obtained by the comparison algo-
rithm. ,e algorithm can determine the optimal objective
function value with the smallest virtual node mapping and
routing scheme. Further, the modulation level may be se-
lected to minimize the objective function value. ,us, the
algorithm’s objective function value is minimal compared to
those of the five kinds of the comparison algorithm . When
the number of VONs is 10, the value of objective function by
the proposed algorithm is 3.2%–9.8% less than that by the
compared algorithms as shown in Figure 2. When the
number of the virtual optical networks is 50, the value of the
objective function of the algorithm, 5.8 %, is smaller than the
objective function value of the comparison algorithm, 12.5%.
In Figure 6, when the number of nodes in each VON is 3, the
value of objective function by the proposed algorithm is
5.1%–11.2% When the number of nodes in each VON is 7,
the value of the objective function of the algorithm is 6.8%–
14.3% less than the objective function value of the com-
parison algorithm.When α1 � 0, α2 � 1, α3 � 0, the goal is to
minimize the energy consumption (EC). ,erefore, the al-
gorithm can save more energy at two different experimental
scenarios.

Similarly, when α1 � 0, α2 � 0, α3 � 1, the target is
1 − f3. ,at is, the smaller the value of f is, the higher RFSU
(frequency slots utilization) is. In Figures 3 and 7, the
comparison frequency channel utilization algorithm ob-
tained six kinds of three networks. ,e proposed algorithm
evolution strategy, more balanced in the connection request
K candidate path. ,erefore, the algorithm can get a higher
frequency than the other five algorithms in slot utilization.
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Figure 7: Experimental results in the second scene when α1 � 0, α2 � 0, α3 � 1. (a) Experimental results in NSFNET. (b) Experimental
results in CHNNET. (c) Experimental results in ARPANET.
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In Figure 3, in the three networks, when the number of
VONs is from 10 to 50, the utilization of the algorithm
frequency bins obtained is 42.1 to 49.5%. 35.8% to 48.1%,
and 42.6% to 52.4%. In Figure 7, in the three networks, when
the number of virtual optical network nodes is from 3 to 7,
the utilization of the algorithm frequency bins obtained was
41.8% to 48.2%, 38.7% to 50.4%, and 44.1% to 56.3%. ,e
results showed that, compared with other algorithms, it can
improve the utilization rate of frequency bins.

Figures 4 and 8 give the three types in α1 � 1/3, α2 �

1/3, α3 � 1/3 comparison of the results of six kinds of ex-
perimental algorithm on the network. As can be seen, the
objective function value obtained by the algorithm is less
than the objective function value obtained by the compar-
ison algorithm. ,e algorithm can determine the minimum
objective function optimal virtual node mapping and
routing scheme. As shown in Figure 4, when the number of
virtual optical networks is 10, the objective function value
obtained by the algorithm in this paper is 4.8%–10.2%
smaller than the objective function value obtained by the
comparison algorithm. When the number of the virtual
optical networks is 50, the objective function value obtained
by the algorithm in this paper is 6.7%–14.3% smaller than
the objective function value obtained by the comparison
algorithm. As shown in Figure 8, when the number of nodes
in each virtual optical network is 3, the objective function
value obtained by the algorithm in this paper is 5.2%–13.7%
less than the objective function value obtained by the
comparison algorithm. When the number of nodes in each
virtual optical network is 7, the objective function value
obtained by the algorithm in this paper is 7.1%–15.9%
smaller than the objective function value obtained by the
comparison algorithm.

5. Conclusion

We studied VONs mapping problems since generations. We
established a maximum frequency bin index and studied the
energy consumption of three-minimal-objective model ac-
counting for frequency bin and determined optimum

solution for all connection requests virtual node mapping,
routing, and spectrum allocation. In order to effectively solve
three-objective optimization model, the weighted sum of the
three strategies integrated into a target goal was minimized.
Based on the idea of particle swarm optimization and dif-
ferential evolution, an improved artificial raindrop algo-
rithm (IARA) to effectively solve the biggest model was
proposed. In comparison to other algorithms, for the sim-
ulation experiments under different test scenarios, test re-
sults show the effectiveness of the model and the algorithm
proposed. However, the algorithm’s complexity is high, only
for static (offline) VONs problem.
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