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Obtaining the distribution of home and work locations is essential for city planning, as it defines the structure andmobility pattern
of a city. With the development of telecommunication networks, mobile network data, having the advantages of large coverage
and strong followability, have produced large amounts of information about human activities. +us, it has become a popular
research subject for human position detection. In this study, we proposed a new method to detect home and work locations based
on the extraction of focal points in traces, identifying an individual’s working and resting hours, and analyzing the characteristics
of city grids using mobile phone cellular signaling data (CSD). At the individual level, we validated the algorithm on ground-truth
volunteer data and achieved a small deviation of under 500 and 565m for home and work location detection 85% of the time. At
the aggregate level, we tested it on a city-wide anonymized CSD set and found a high Pearson correlation between our result and
the census data of 0.93. Compared to existing studies, this study improved the granularity and location accuracy of home and work
location detection, as well as validated the method using both individually labeled ground-truth data and aggregate data for the
first time. Applying the algorithm in a city, we captured the population distribution, commuting patterns, and job-housing
balance of the city and demonstrated the potential in using mobile network data for urban planning and policy formulation.

1. Introduction

Detecting home and work locations is of great importance to
modern city and transportation planning, as it aids the
understanding of the relationship of jobs-housing [1], the
design of public transportation [2], and the optimization of
urban land use [3]. Traditionally, this was accomplished by
collecting survey and smart card data [4, 5]. However, survey
data have a low update frequency, a small sample size, and a
high implementation cost, while smart card data are con-
fined to people using public transportation, which can
possibly result in the sample being unrepresentative. To
overcome these shortcomings, Global Positioning System
(GPS) sensors were introduced to collect human mobility
data. Compared to survey data, GPS data provided more
accurate data with spatial and temporal details [6]. However,
it required users to wear GPS loggers or actively allow GPS

tracking from dedicated applications on their mobile
phones, which increased the cost and limited the collection
scale.

With the development of telecommunications technol-
ogy and the increase in the penetration rates of smartphones
[7], smartphones have become ideal digital sensors to track
human locations. Produced from the interactions between
smartphones and telecommunication infrastructures, mo-
bile network data are recorded by telecom operators auto-
matically in the background. +erefore, they can record the
carrier’s spatiotemporal information at a massive scale with
little effort from the carrier. Mobile network data can be
classified as event-driven or network-driven data. +e for-
mer, such as call detail records (CDRs), is produced with the
usage of mobile services including calls and texts. +e latter,
which is generally called cellular signaling data (CSD), is
produced from signaling events such as handovers, network
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updates, periodic updates, and location area updates [8].
With the advantages, mobile network data have become a
research interest in urban structure and human mobility
studies [9–11]. Existing studies on home and work locations
detection using mobile network data can be classified into
two categories.

Studies in the first category defined two timeframes,
working hours and resting hours, and selected the locations
with the highest frequencies of phone usage or the longest
staying times in the two timeframes. If the locations met
additional requirements proposed in these studies, they
would be identified as home and work locations. +e lo-
cation of a user was determined based on the base station
that the user was connected to. +e two timeframes were
often set as the same for all users, although they could be
adjusted based on researchers’ knowledge. Kung et al. [12]
set daytime and night-time timeframes with the thresholds
of 8:00 and 20:00, respectively. In the two timeframes, the
user’s home and workplace were selected as the locations in
which the user spent the maximum time as long as the
staying time in such locations accounted for more than 50%
of the timeframes. Yan et al. [13] identified the home and
work locations as the most frequently visited base stations
during the timeframes of 20:00–6:00 and 10:00–16:00, and
then calculated the identification confidence and appear-
ance days to determine potential commuters. Ahas et al.
[14] developed an anchor point determination model to
detect home, work, and multifunctional anchor points.
Setting the boundary between the resting time and working
time as 17:00, the average start time and the standard
deviation of the start time of daily events were considered
to distinguish the user’s home and work points. +e model
was validated on a CDR data set in Estonia by comparing
the home location identification results with the Estonian
Population Register.

Studies in the second category discovered the user’s
mobility pattern and identified the meaningful places in the
user’s traces as home and workplace. Previous studies have
proved that human trajectories could be mined by trajectory
analysis and stay point detection from different kinds of
data, including passive recording data like mobile network
data [15]. Jiang et al. [16] extracted the stay locations of the
user and identified the user’s activity types (home, work,
shop, etc.) by analyzing features in the trajectories including
spatial and temporal regularities. Alexander et al. [17]
converted records into clustered locations to identify origin-
destination trips and inferred these locations to be home,
work, or other considering observation frequency and time.
Widhalm et al. [18] presented a filtering and clustering
method to detect stay locations and enriched the location
sequences with an activity type (work, home, shopping,
leisure) inferring from land-use data and time of day.
Isaacman et al. [19] clustered recorded locations using the
Hartigan algorithm and trained a logistic regression model
on CDR data from 18 volunteers to identify their important
locations. +e model considered the cluster features, in-
cluding days, durations, and the number of events during
working and resting hours. It was validated on data from 19
volunteers and achieved median errors of 0.9 and 0.83 miles

for home and work location detection, respectively. Inspired
by this study [19], Zagatti et al. [20] also clustered the user’s
traces using the Hartigan algorithm. +e clusters were then
scored depending on the occurrence hours and days of
events. +e clusters were labelled as daytime clusters,
evening time clusters, and undecided clusters depending on
their scores, thus identifying the user’s home and work
clusters.

However, there were limitations in the previous studies.
First, in most of the studies, the temporal information was
selected as an important feature to detect home and
workplace. +ey set the same working hours and resting
hours for every user before identification despite the large
differences in the working schedules of people in different
occupations (for example, night workers), thereby intro-
ducing biases. As the basis of further analysis, defining
timeframes with biases may introduce large errors in the
identification process. In addition, in the majority of studies,
base stations or clusters were selected as the home and work
locations. However, the coverage area of base stations dif-
fered in urban and rural areas with different base station
densities [21]. +e spatial resolution of the identification
results may range from less than 1 km to more than 10 km,
depending on the density of the base stations and the
clustering results, which creates concerns about the spatial
accuracy of the detection algorithm. Lastly, most of the
previous studies lacked validation both at the individual level
and the aggregate level. Instead, some simply assessed the
algorithms by comparing the identified results with aggre-
gate data, like city-wide censuses or travel surveys, while
some did not perform validation. +erefore, the perfor-
mance of the methods on individual records was seldom
reported, which limited their application at a high
resolution.

In view of these limitations, this paper proposes a new
algorithm to detect home and work locations with a finer
resolution using CSD, as well as validates the algorithm at
the individual level using ground-truth data and the ag-
gregate level using census data. We first processed the raw
CSD and extracted the focal points in active users’ traces.
+en, we adopted information entropy to measure the ac-
tivity intensity and used ordered data binning to identify the
unique working and resting hours of each user based on the
variation of activity intensity of each user. By dividing the
study area into grids, we used a regular-grid spatial tessel-
lation to describe the coverages of the base stations, as well as
analyzed their geographic, temporal and spatial features.
Based on the features selected, multiple attribute decision-
making was introduced to construct a selection model to
detect work and home grids. We validated the algorithm at
the individual level using volunteers’ ground-truth data
collected by a smartphone app that we developed, as well as
at the aggregate level using a city-wide anonymized CSD set.
Finally, the algorithm was employed to capture the pop-
ulation distribution, commuting patterns, and job-housing
balance in a city, which demonstrated its potential in real
practice for policy-makers and urban planners. In contrast
to existing works, the main contributions of this work can be
summarized as follows:
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(1) Investigating the unique schedule of each user by
analyzing the variation of activity intensity of the
user, thus distinguishing users with unusual working
schedules and avoiding the biases from setting
uniform timeframes

(2) Improving the spatial accuracy of the home and
work location detection by comprehensively ana-
lyzing the attributes of city grids

(3) Evaluating the home and work location detection
algorithm using both individually labelled ground-
truth data and aggregate data for the first time

+e rest of the paper is structured as follows. Section 2
presents an overview of the study area and data. Section 3
details the principle of the algorithm developed. Section 4
describes the verification work of the algorithm. Section 5
shows an example application of the model. Section 6
concludes the paper with a brief discussion.

2. Study Area and Data

2.1. Study Area. In this study, we chose Foshan as the study
area. Foshan is a southern city in China and covers
3797.72 km2. Bordering Guangzhou, which is one of the
most-developed cities in China, Foshan is a well-known city
of commerce and industry. According to the State De-
partment, Foshan is composed of 5 districts, Chancheng,
Nanhai, Shunde, Sanshui, and Gaoming, and it can be
further divided into 32 subdistricts.

2.2. Data

2.2.1. Anonymized Cellular Signalling Data (CSD) Data Set.
+e data were an anonymized CSD set of Foshan and was
provided by a large telecom operator in China. It covered the
records of 4.9 million users on the operator’s network of 15
weekdays (the weekdays during July 9, 2018, and July 28,
2018). As shown in Table 1, each CSD record contained a
user identification (ID) number, information about the user,
timestamps of the events, and the connected base station ID
number, according to which the longitude and latitude of the
base station could be queried. +e data set of the studied
period contains a total of 8.6 billion interaction records. +e
number of base stations in the research area of Foshan is
7800. +e overall base station density was 1.9 towers per
square kilometer, but the spacing between them was not
uniform across the city, as shown in Figure 1.

2.2.2. Ground-Truth Volunteer Data. +e anonymized CSD
set could not be matched to real users for algorithm vali-
dation. +erefore, we developed an app for Android phones
to collect CSD from the volunteers that were recruited. After
installing the app, the volunteer could mark his/her mobility
traces and stay locations in the app, while their CSD was
collected and uploaded to the database in the background
automatically. After collation, the CSD was in the form
shown in Table 1.

In this study, a group of 41 volunteers was recruited,
consisting of 22 males and 19 females, all of whom were
adults aged 25–55 years. +ey lived and worked in Foshan,
the study area, and had no unusual activities, such as moving
or changing jobs, during the study period. +ey gave us
permission to collect their CSD for five weekdays and to
study the data for research purposes. In addition, they were
also asked to provide us with the longitudes and latitudes of
their true home and work locations with the help of a web
map.

2.2.3. Point of Interest (POI) Data. +ePOI data consisted of
information about the geographical points that represented a
particular feature on the map. A POI could be anything
closely related to human activities, such as an office building,
bus station, or traffic sign. +erefore, the number and types
of POIs in an area could reflect the main human activity in
the area. +e POI information used in this study was
downloaded from the API (application programming in-
terface) of a web map service provider. Each POI record
contained key information, including the POI ID, type,
longitude, and latitude, as shown in Table 2.

Since not all types of POIs are related to the home and
workplace, we selected POIs of types closely related to the
home and workplace for further analysis, as presented in
Table 3. +ere were approximately 48,544 home-related
POIs and 1,578,366 work-related POIs, and their distribu-
tions are presented in Figure 2.

3. Method

3.1. Focal Point Extraction. +e focal points in a user’s traces
were extracted to find the main activity space in his/her life

Table 1: Cellular signaling data (CSD) records.

User ID Gender Age Datetime Base station ID
4117∗∗∗ M 30 20180715071145 23740
5701∗∗∗ M 63 20180723053558 25815
5717∗∗∗ M 20 20180620142020 19086

Figure 1: Distribution of the base stations.
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for mobility pattern analysis. A typical characteristic of the
CSD was that it contained a large amount of noise, and
preprocessing was needed. +erefore, in extracting focal
points, we aimed to (1) eliminate noise data, including
abnormal data and redundant data, (2) filter sparse data to
find active users, and (3) cluster spatially close base stations
in a user’s records.

3.1.1. Eliminating Noise Data. Removing the noise and
redundancy in raw data is an essential issue in data pre-
processing and help to show clearer information in further
analysis. +e noise data in the CSD contained abnormal data
and redundant data. +ese are defined as follows:

(i) Abnormal Data. +is included records with missing
values and records showing unusual behaviors.
Records missing users’ individual information were
filled-in with the corresponding values in neigh-
boring records to maintain data integrity while
records missing key information including User ID,
Datetime, and Base station ID were deleted. Unusual
behaviors included alternate switching between
several base stations in a short time and moving at a
speed of 120 km/h or higher. In the former case, only
records that connected to the most frequent base
station in the series were kept. In the latter case, the
records were deleted, as we considered it to be signal
drifting.

(ii) Redundant Data. As CSD was produced with a high
frequency, a large number of records could be
generated in a short time at the same place. Such
records weremerged by only keeping one record that
contained the location of the base station, the first

connected time, and the staying time at the base
station. In addition, some duplicate records were
discarded.

3.1.2. Filtering Sparse Data. Temporal sparsity and inho-
mogeneous distributions of CSD records in a day could
cause identification errors. Figure 3 presents the number of
CSD records in each hour of one day from a user.+is shows
that the records were concentrated within 3 h and were lost
for the rest of the day, which led to the incorrect conclusion
that the user stayed at one place for a long time, such as
between 3:00 and 13:00, thereby introducing errors.
+erefore, we filtered out sparse data to obtain data that
could reveal the user’s mobility patterns. Referencing pre-
vious research [22], we divided a day into 48 30min
timeslots. If there were CSD records in at least 16 timeslots
(8 h) in a day, the user’s records for that day would be kept;
otherwise, those records would be deleted. In this study, we
selected active users with at least five days of data for further
analysis.

3.1.3. Clustering Close Points. Although there were many
points in a user’s traces, only several points were needed to
represent his/her main activity space. To obtain such focal
points, we aimed to group together points that were spatially
close and filtered out outliers in low-density areas, as they
were not regular in the user’s life. DBSCAN (density-based
spatial clustering of applications with noise) [23], a density-
based clustering algorithm, was applied to cluster the base
stations connected to the user. It required two parameters:
the distance threshold ε and the minimum number of points
minpts to constitute a cluster. By experimenting with a range
of combinations, we found that ε � 500m and minpts � 2
were the most suitable. Figure 4 shows the clustering result
of a user’s traces. Clusters are represented by blue circles,
and their sizes are proportional to the user’s staying time at a
location. +e red lines link the base stations and the clusters
they belong to. It shows that the spatially close base stations
in the user’s traces are clustered and represented by the
centroids of the clusters, thus extracting the focal points in
the user’s traces.

3.2. Schedule Identification. Identifying the schedule of the
user helps to distinguish the resting and working hours, and
thus detect the home and work location more accurately.
Generally, the user’s schedule is revealed by his/her unique
mobility pattern, which is different in different times of a day
and indicates the user’s status.

Taking advantage of the characteristics of CSD, we
analyzed the activity intensity of the user. In general, people
tended to stay in more limited areas and moved less during
resting hours, which could be distinguished from other time
periods. We proposed adopting the information entropy
from information theory to measure the user’s activity in-
tensity. Information entropy was first introduced by
Shannon [24] to analyze the disorder degree of a system by
measuring the uncertainty of information. Calculating the

Table 2: POI information.

POI ID Longitude Latitude Type

B02F5077VF 113.210716 22.875081 Culture and education
services

B0FFL1FT5P 112.880293 23.180195 Enterprise
B0FFKUJWAO 113.002889 23.240415 Enterprise

Table 3: Home- and work-related POI types.

Home/work-related POI POI type

Home-related POI Commercial house
Residential area

Work-related POI

Car services
Restaurants

Shopping services
Life services

Sports and recreation services
Accommodation services

Healthcare services
Governmental organization

Culture and education services
Financial institutions

Enterprises
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information entropy of a random variable is measuring the
difference in the probability of events. +e smaller the
difference is, the more uncertain the information is, and the
higher the information entropy is.

In this paper, the user’s information entropy Hperiod
during a given period is given by the following:

Hperiod � − 􏽘
R

r�1
Pr lnPr,

Pr �
str

stperiod
,

(1)

where Pr is the proportion of the user’s staying time str at
location r to the total time stperiod of the period and R is the
number of the locations the user visited during this period.

Hperiod was measured by the difference in the probability
that the user stayed at different locations during the period.
+e probability was represented by the proportion of the
user’s staying time at each location. A larger entropy means
that the difference of the probability is small, thus the user
spends his/her time more evenly in several places. On the
contrary, a smaller entropy means that the difference of the
probability is large, which resulted from the user contacting
fewer base stations for longer time and moving less. When
the user remains in one location, the information entropy
will be 0.

Dividing a day into 24 h, we calculated the user’s in-
formation entropy in each time slot. Figure 5 shows an
example of the information entropy in each hour in one day
of a single user. +e information entropy varied greatly from
hour to hour according to the user’s mobility pattern.
Notably, the information entropy between 0:00 and 7:00
distinguishes from that during the daytime. +is may in-
dicate the user’s resting time at home.

By measuring the information entropy in different times
of a day, we could group time slots with similar activity
intensity and divide a day into several timeframes. +e time
division based on the information entropy of each time slot
was a data classification process. +e user’s day T was
composed of 24 h t1, t2, . . . , t24􏼈 􏼉 and for each hour tj, its
features were its information entropy in mdays, which was
denoted as Hj � h1j, h2j, . . . , hmj􏽮 􏽯. Based on this, we
classified hours with similar features into p classes
T1, T2, . . . , Tp􏽮 􏽯. In particular, hours in a day could not be
disordered in this case, which meant that the time slots in a
class must be adjacent. +erefore, we introduced the Fish-
er–Jenks algorithm [25, 26], an ordered data binning al-
gorithm, to split time slots into contiguous classes without
scrambling the order.+e key to Fisher–Jenks algorithm was
to find the natural breaks in data that minimized the distance
between the data points within various classes while max-
imizing the distance between the classes. It is supposed that
the samples of a user could be described as follows:

(a) (b)

Figure 2: (a) Home-related POI distribution; (b) work-related POI distribution.
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H �

h11 h12 · · · h1n

h21 h22 · · · h2n

· · · · · · · · · · · ·

hm1 hm2 · · · hmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� H1, H2, . . . , Hn􏼂 􏼃, (2)

where hij is the information entropy in day i at hour j and
Hn was the information entropy at hour n.

We chose the sum of squares of deviation to measure the
data deviation in classes. +e algorithm first calculates the
distance for all sample pairs after normalizing the matrix H.
+en, it computes the minimum deviations of classifying the
samples into c classes by dynamically calculating the loss
functions and finding the optimal result.

We experimented with a range of classification numbers
and found that dividing the time into four classes worked
well. +e average entropy of a class TG was calculated as

HTG
� 􏽘

m

i�1
􏽘

b

j�a

hij. (3)

We chose the class with the smallest average entropy as
the resting hours of the user. Since most people went to work
after the resting hours, we defined the start of the working
hours as the end of the resting hours. Considering that the
longest working time in a day in China is eight hours
according to the labor law, the working time lasted for eight
hours for users in our study. Figure 6 shows the information
entropy of each hour for five days of one user, and a lighter
color represents higher information entropy. According to
the variation of information entropy in different times of the
days, time was divided into four timeframes, as shown by the
red dotted lines. Based on the results, the user was more
inactive and remained stable in the first and last timeframe,
while the user moved more in the other two timeframes.
Using the method described above, the user’s resting and
working times were defined as 0:00–7:00 and 7:00–15:00.

3.3. Home and Work Grids Detection. Identifying the base
stations or clusters as home and work locations resulted in

spatial uncertainty of their positioning, as their coverage
areas varied. We aimed to improve and stabilize the iden-
tification accuracy by extracting home and work grids based
on their spatial, temporal, and geographic features.

3.3.1. Inferring Potential Grids. First, we divided the study
area into grids and represented the coverage areas of the base
stations by grids. As shown in Figure 7, a Voronoi tessel-
lation technique [27] that divided the area into polygons
according to the nearest neighbor rule was often used to
simulate the coverage areas of base stations. Voronoi dia-
grams simulate the base station coverages based on the
assumption that a mobile phone would connect to its closest
base station and that the coverages do not overlap, which
contradicts the actual behavior of mobile phones, which
connect to the station with the highest signal strength [28].
+is approach might underestimate the coverage of base
stations. Also, the irregular diagrams might cause difficulties
for further analysis in terms of calculation complexity and
area segmentation. To solve these problems, we proposed
using a regular-grid spatial tessellation to describe the
coverages of the base stations. First, the study area was
discretized into a mesh of grids with dimensions of
100m× 100m considering the spatial distribution of the
base stations, which achieved a balance between the grid
refinement and the calculation efficiency. +en, we drew the
circumcircle of each Voronoi polygon and defined the
coverage of each base station as the grids that intersected its
circumcircle. Figures 8(a) and 8(b) show an example of
comparing the coverage areas of six base stations repre-
sented by Voronoi polygons and grids, respectively. +e red
points represent the base station locations and the blue areas
represent their coverages. +e grids cover more potential
areas, and their regular shapes made them suitable for
analysis.
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In Section 3.1, we classified the user’s traces into different
clusters. However, not all clusters were important in the lives
of the users. To disregard transitional clusters in the user’s
traces, we selected the records in the user’s resting and
working hours, and calculated the staying time in each
cluster during the relevant hours. For the two timeframes,
we chose the cluster with the longest staying time as the
important cluster in it.+e grids covered by the base stations
in the important clusters were inferred to be potential home
or work grids.

3.3.2. Multiple Attribute Decision-Making. For each user,
there were many potential grids, but normally, only one of
them contained the home or workplace of the user. In this
section, we describe how to determine which grid was the
home or work grid. Studying the characteristics of the grids,
we found that the following three observable factors were
key to determining their importance.

(i) Number of Home-Related or Work-Related POIs. In
general, a user’s home and work locations, such as
residential areas, apartment buildings, business

buildings, and schools, were recorded as POIs. Since
POIs in an area indicated what people tend to do in
the area, a grid with home- or work-related POIs
with a higher density could more likely cover the
user’s home or workplace. Instead, if there were no
relevant POIs in the grid, it may be located in an
irrelevant area, such as a park or a road, and thus, it
was less likely to cover the user’s home or
workplace.

(ii) Staying Time at the Nearest Base Station. Without
knowing other conditions, such as the building
occlusion effect and signal strength, we assumed
that the distance between the user’s position and
base stations was the dominant factor that deter-
mined which base station the user connected to.
+erefore, the longer the user connected to a base
station, the more likely the user was to stay in the
nearby grids, and the more likely it was that the
grids cover his/her home or workplace.

(iii) Average Distance to Base Stations in an Important
Cluster. During resting and working hours, the user
might have connected to several base stations. +is

(a) (b)

Figure 8: Base station coverages represented by (a) Voronoi diagram and (b) grids.

Figure 7: Voronoi diagram of the study area.
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may have been due to the user moving or the signal
drifting inside his/her living and working areas.
+erefore, the home and work locations are more
likely to be at the center than at the edges of the
cluster. +is factor reveals the grid’s position in the
cluster by considering the distribution of the base
stations. A grid with a shorter average distance was
more likely to cover the home or workplace.

With the factors described above, we constructed a grid
selectionmodel based onmultiple attribute decision-making
to comprehensively analyze the attributes of the grids and
select the home and work grids from the potential grids. A
multiple attribute decision-making process made optimal
decisions from several alternatives depending on their at-
tributes and the relative weights of the attributes. Designing
the weights of the attributes was one of the most important
parts in the process as it would have a deep influence on the
results. To enhance the objectivity of the result, we applied
the entropy weight method (EWM) [29] instead of any
subjective weighting models to determine the attribute
weights. Basically, the EWMmeasures the importance of an
attribute by the amount of useful information it contains.
Equal attribute values for all samples does not provide any
useful information for differentiating the home or work grid
from other grids and such attribute should be given lower
importance. We calculated the information entropy of an
attribute. +e lower the information entropy is, the higher
the degree of differentiation of the attribute is, and the more
useful it is to the evaluation. +us, the attribute with lower
information entropy will be given a higher weight and vice
versa.

In this case, there were three factors and s samples in the
evaluation, and yij was the ith attribute of the jth sample.
First, the attributes were standardized as yij

′ . +e entropy Ei

of the ith attribute was calculated as

Ei � −
1
ln s

􏽘

s

i�1
pij lnpij, (4)

where pij � yij
′ /􏽐

s
j�1 yij
′ .

Larger weights should be given to attributes with higher
entropy. +e weights are calculated as follows:

wi �
1 − Ei

􏽐
3
i�1 1 − Ei( 􏼁

. (5)

+e final score Zj for grid j is

Zj � 􏽘
3

i�1
yij
′ wi. (6)

A user’s home or work location was identified as the
potential grid with the highest score.

Finally, we checked if the user was a regular resident or
worker in the study area. +e clusters that covered the
home (work) grid in the user’s traces were extracted. If
they appeared on more than 3/5 of the days of the study
period, which meant that the user visited the location on
most of the days, the user would be considered to be a
regular resident (worker). Otherwise, he/she would be

labelled as not having a regular home (workplace) in the
study area.

4. Validation

In this section, we validated the proposed method with a
ground-truth volunteer data set and a large-scale anony-
mized CSD set from the study area, as well as reported the
evaluation results.

4.1. Validation on Volunteer Data Set. +e algorithm was
validated on the volunteer data set to evaluate the algorithm
at the individual level. As described in Section 2.2.1, since we
had the ground-truth data of individuals, we were able to
evaluate the accuracy of the algorithm by measuring the
position deviation between the identified locations and the
true locations. To comprehensively analyze the result, we
also compared our algorithm with two other identification
algorithms.

In the first algorithm, called the TimeAccumulation
algorithm [12], the resting and working hours were defined
as 0:00 to 6:00 and 10:00 to 16:00, based on the typical
timeframes of Foshan. A user’s home and work locations
were identified as the base station that the user was con-
nected to for the longest time during resting and working
hours. +e second algorithm, called the HomeWorkCluster
algorithm [20], clustered the base stations that had inter-
acted with the user. +en, the clusters were scored according
to the time of records in the clusters. Records between 8:00
and 17:00 were assigned a score one and those between 19:00
and 7:00 were assigned a score of minus one. +e center of
the cluster with the highest score was identified as the
workplace while the center of the cluster with the lowest
score was identified as home. +e two algorithms could be
classified into the two categories described in Section 1.

Figure 9 shows the cumulative distribution function
(CDF) of the deviation between the true home locations and
the home locations detected by the algorithm proposed in
this paper, the TimeAccumulation algorithm, and the
HomeWorkCluster algorithm. For the new algorithm, 85%
of the home location deviations were under 500m. Fur-
thermore, as shown in Table 4, with a mean error of 246m,
the new algorithm outperformed the other two models,
whose mean errors were 604 and 600m, respectively.

Figure 10 shows the deviation between the true work
locations and the work locations detected by the three al-
gorithms, and a local enlargement of the figure. For the new
algorithm, 85% of the work location deviations were less
than 565m. Although the work deviations were slightly
higher than the home location deviations, the new algorithm
also achieved a smaller mean error of 566m, while the mean
errors of the other two algorithms were 770 and 868m,
respectively, as shown in Table 4.

4.2. Validation onAnonymized Large-Scale Cellular Signaling
Data. To evaluate the performance of our algorithm at the
aggregate level, we applied it on the anonymized CSD set of
Foshan city and compared the result with the sixth national
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census [30] in 2010. Both data sets contained population
information of the study area, Foshan. As Foshan could be
divided into 32 subdistricts, we inferred users’ home loca-
tions from the CSD set using the algorithm and aggregated
them in the subdistricts. Figure 11 shows a comparison
between the output of our algorithm and the number of
residents by subdistrict from the census data. +ere was a
linear relationship between them, indicating that the dis-
tribution of residents inferred from the CSD was consistent
with the census population, while a few mismatches may
have resulted from the different data collecting years and the
change of the town borders during the eight-year gap. To
further estimate their consistency, we calculated the Pearson
correlation coefficient between our result and the census

data, which was r � 0.93. +e high linear correlation shows
that the output of our algorithm reflected the distribution of
the population fairly well at the subdistrict level and was
reliable for location identification.

5. Case Study

To demonstrate the application of the algorithm in practice,
we present a case study in Foshan using the anonymized
CSD set. Urban planners pay attention to the commuting
between districts and depend on it to analyze land use and
transportation connections in the city. Using the algorithm
presented in this paper, the home and work locations of the
users in Foshan were determined. To analyze the commuting

Table 4: Mean home/work location deviations of the three algorithms.

New algorithm TimeAccumulation algorithm HomeWorkCluster algorithm
Mean deviation of home location 246.47 604.32 599.98
Mean deviation of work location 566.29 769.64 867.74
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Figure 10: Work location deviation of the proposed (new), TimeAccumulation, and HomeWorkCluster algorithms.
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Figure 9: Home location deviations of the proposed (new), TimeAccumulation, and HomeWorkCluster algorithms.
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patterns between districts inside Foshan, we summed up the
home and work locations by district and drew the com-
muting OD (origin-destination) desire lines between the five
districts according to the home and work location distri-
bution, as shown in Figure 12. +is is a visualization of the
commuting matrix of Foshan. +e desire lines were drawn
between the centroids of the districts and illustrate the flows
of commuting people between them. +e thicknesses of the
lines depend on the number of commuting trips. Figure 12
shows that the majority of interdistrict commuting trips
inside Foshan were generated between the Chancheng,
Nanhai, and Shunde districts, which made up 86% of the
interdistrict commuting trips. +is agreed with their role in
city planning as the most-developed part of Foshan. In
addition, the east side of Foshan borders the heart of
Guangzhou, which creates large numbers of job opportu-
nities and attracts residents. In contrast, the other two
districts are less economically developed, with lower GDPs
(gross domestic products), and the commuting flows into
and out of the districts are smaller accordingly.

To further analyze the job and housing situation inside
the districts, we narrowed the scope into each subdistrict and
calculated the density distribution of homes and workplaces,
as presented in Figures 13(a) and 13(b), respectively. +e
distribution indicates the land-use characteristics in dif-
ferent parts of the city. Figure 13(a) suggests that the home
locations are distributed broadly in the city, and the home
density was higher on the east side, especially in the city
center of the Chancheng district and its surroundings. +e
highest density reached 3,434 users per square kilometer in
the Zumiao subdistrict. Figure 13(b) suggests that the
workplace density is relatively high in the eastern portion of
Foshan as well, especially in the Zumiao subdistrict, with the
highest density of 3,527 users per square kilometer, as
Zumiao is the heart of the Chancheng district and a
transportation hub of Foshan, where many enterprises,
shopping malls, and stations are located.

Furthermore, analyzing the traffic demand is essential
for transportation planning in cities, and commuting travel
is a significant part of the daily traffic demand. From the
home and work locations, we could analyze the character-
istics of the commuting demand. Considering the reduction
of the CSD positioning error as well as the spatial accuracy of
the algorithm, as evaluated in Section 4.1, we discretized the
city into grids with dimensions of 500m× 500m. We then
selected users whose home and workplace were both inside
Foshan and allocated their home and work locations into the
grids.+e commuting distance of each user was calculated as
the distance between the centers of their home/work grids.
To show the complete distribution of the commuting dis-
tance in Foshan, the distribution is presented in double
logarithmic coordinates, as shown in Figure 14(a). It shows
that with the growth of commuting distance, the percentage
of users falls down quickly and the majority of people have
relatively small commuting distance. Focusing on this group
of people, the pie chart, as presented in Figure 14(b), shows
the percentage of users in different commuting distance
intervals. About 62% of users’ commuting distances were
less than 2 km. For this group of people, it was possible to
travel in nonmotorized mode. However, almost 5.36% of the
users were long commuters whose homes were over
10,000m from their workplaces, and these groups of people
were more likely to travel by car. Overall, the mean com-
muting distances of the users who lived and worked inside
Foshan was about 2,936m, and about 80% of the users live
within 4,000m from their workplaces. +e characteristics of
the commuter trips in Foshan showed that people had
relatively small commuting distances and might rely more
on nonmotorized travel mode or public transport than
private cars in their daily commuting. +erefore, for
transportation planners and policy-makers of Foshan, more
importance should be given to nonmotorized travel infra-
structures and public transportation design, including bike-
sharing services, bus line planning, and bus scheduling in
peak hours.

From the above analysis, we inferred that Chancheng
district was the key area of Foshan.+erefore, we focused on
analyzing the characteristics of Chancheng, which is located
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Figure 11: Comparison between our inferred residential pop-
ulation from the CSD and the population from the census data.
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Figure 12: Commuting origin-destination (OD) desire lines be-
tween districts.
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at the center of Foshan, covering 154 square kilometers. It is
the political, commercial, and cultural center of Foshan and
a mixture of office, residential, and industrial areas. First, we
focused on the spatial organization of homes and workplaces
in Chancheng, as presented in Figures 15(a) and 15(b),
respectively. We could see that both the living and working
centers were in the east side of the district, while the home
and workplace density in the west portion were relatively
lower.

To assess the planning and development of the district,
we introduced three indices that are often used to evaluate
the equitability of job and housing distributions in a region.
+e first index is the employment self-sufficiency (ESS) [31],
which refers to the number of people working and living
locally out of the number of local workers. It describes the

self-containment of a region from the supply-side, and a
higher ESS indicates that fewer people travel to the region for
work.+e second index is the employment self-containment
(ESC) [31], which refers to the number of people working
and living locally out of the number of local residents. It
describes the self-containment of a region from the demand-
side, and a higher ESC shows that fewer local residents travel
to other regions for work. +e third index is the job-housing
ratio (JHR) [32], which represents the number of workers
over the number of residents inside the region. It measures
the matching degree between the number of jobs and the
number of residences in the region. Table 5 presents the
three calculated indices for the Chancheng district.

+e ESS of 0.77 showed that 23% of workers were
attracted from other districts, and the ESC showed that about
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78% of residents worked inside the district. +is indicated that
Chancheng, as the heart of Foshan, has great employment
appeal for people all over the city and is a one-way attraction for
other districts. Furthermore, while the commuting space for
local residents ismainly concentrated inside the district, there is
a large amount of interdistrict commuting demand to
Chancheng that should not be ignored. However, the JHR of
Chancheng was 1.01. According to Cervero [32], a value of the
JHR between 0.8 and 1.2 indicates a relatively high match
between the number of jobs and number of residences, and
thus, the Chancheng district reaches a balance between pro-
viding job opportunities and housing.

6. Conclusion

Urban and transportation planning relies significantly on
obtaining the home and work locations of people.+is paper
presented a method that could process massive CSD to
detect the home and work locations of anonymized phone
users. Considering the irregular temporal sampling and
uncertain spatial accuracy characteristics of the data, the
proposed method analyzed the variation of activity intensity
of each user to investigate their schedules and compre-
hensively considered geographic, temporal, and spatial
features of city grids to identify the home and work location.
Using ground-truth data from volunteers and census, the
study showed that the algorithm had high precision and
could be used to detect the home and work locations of
people on a large scale with small deviation. At the indi-
vidual level, the validation results showed that the algorithm
could detect users’ home and work locations to within 500
and 565m, , respectively, 85% of the time, while at the

aggregate level, the Pearson correlation between our results
and the census data was 0.93.

Compared to previous studies, this study is a significant step
forward to use mobile phone data for home and work location
detection in terms of granularity, location accuracy, and dis-
tinction of people with different working schedules. Also, to the
best of our knowledge, this is the first study to evaluate the home
and work location detection algorithm using both individually
labelled ground-truth data and aggregate data.

As the literature suggests, in view of the development of
cities, the expansion of the population, and the changing of
urban structures and working schedules, the living and
working behaviors of people have become more complex.
Due to its small sample size and high collection cost, tra-
ditional survey data may fail to support the work in city
planning and management, and reliable new data sources
and methods are needed. Because of their characteristics of
wide coverage, large sample size, and strong followability,
mobile network data have made it possible to analyze human
mobility pattern on a large spatiotemporal scale. By pre-
senting a case study, it was demonstrated that applying our
method can help obtain the distribution of home and work
locations, extract commuting demand, and assess the job-
housing balance in a big city using massive mobile network
data. +is shows the ultimate goal of the study to help urban
planners and policy-makers to derive a new understanding
of the city from big data, thus aiding their work in trans-
portation planning for targeted areas, public facility con-
struction to improve service quality, and policy formulations
for future urban development.
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Figure 15: (a) Home location distribution in Chancheng; (b) workplace location distribution in Chancheng.

Table 5: Employment self-sufficiency (ESS), employment self-
containment (ESC), and job-housing ratio (JHR) for the Chan-
cheng district.

Indices Chancheng district
ESS 0.77
ESC 0.78
JHR 1.01
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