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+ere is a vast need for the use of digital display instruments in the manufacturing industry due to the simple operation and high
precision. In addition to the numerical data acquisition, it is usually necessary to input additional text for the condition assessment
as well. However, since most of these measure instruments do not provide any interfaces for users to access the values and it often
lacks proper devices to input the text during the working process, these two tasks are highly human intensive under current
conditions. In order to facilitate the smooth running of the work for operators, we propose a lightweight application which can be
installed on smartphones or wearable devices using multidigit recognition and speech recognition techniques without changing
too much of their workflow. +e experimental results demonstrate that our approach can achieve high accuracy. +us, the
proposed solution can effectively resolve data input issues in the manufacturing sites, thereby reducing human labor, increasing
productivity, and automating part of the process. Taking operators’ existing workflow into consideration for design can provide an
application with an easy learning curve. Moreover, with the rapid and economical approach, companies can financially benefit
from the development of this low-cost application, especially for small- and medium-sized enterprises.

1. Introduction

+e Industry 4.0 concept [1], which is introduced to a wide
audience initially during the Hannover Trade Fair in 2011,
has promoted a vision of a new Industrial Revolution and
encouraged the development of numerous disruptive
technologies, such as cloud computing, Internet of +ings
(IoT), Big Data, and Artificial Intelligence (AI).

In most manufacturing sites, the use of digital mea-
surement instruments is highly demanding since they are
simple to operate and offer relatively high accuracy. How-
ever, these tools, in general, are not equipped with computer
interfaces to acquire values for further processing. In ad-
dition, it is usually necessary to input additional text after
inspecting the surface condition of the workpiece. During
the working process, a proper device for operators to input
the text is not easy to have. Although the growth of IoT has
enabled the communication and exchange of information

among devices, such profound changes to the enterprise
system and environment often require large investments and
can easily lead to shortfalls. According to the report [2],
small- and medium-sized enterprises (SMEs) play an im-
portant role to represent over 99% of all enterprises in the
European Union whereas the amount of large companies is
less than one percent. Nevertheless, SMEs usually have lower
digitalization level and gain limited access to the resource in
comparison with the larger organizations. All these could
pose the challenge to establish an interconnected industrial
value creation to ensure future competitiveness and sus-
tainability for SMEs. +us, many manufacturing companies
still rely on human labor for numerical data acquisition and
text input. +erefore, providing a lightweight solution to
address these two tasks for operators and taking their
existing working conditions into consideration are crucial.

With the revolutionary advancement and the progressive
development of neural network methods, AI has been
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applied with great success in various fields and has its unique
impact continuously. Due to its capability of solving com-
plex problems, many companies in the industry have taken
AI techniques to overcome the hurdles of their current
methods and put them into the perspective of Industry 4.0
paradigm [3]. Visual and verbal communications are two of
the most efficient and intuitive ways for human beings to
work and learn. We will adopt two AI solutions, multidigit
recognition and speech recognition, to resolve the issues of
reading digital measurement and inputting condition as-
sessment tasks. Since human technology is made by humans,
for humans, it is important to take into account the human
factor for digitalization challenges. In our application design,
we take a step forward to include human-in-the-loop [4]
design aspects in order to align the existing process and
improve human’s performance.

+e contribution of this paper is threefold:

(1) Addressing the digitalization challenge in the
manufacturing site: we propose a solution based on
vision and speech recognition to extract the shop
floor data for tackling the digitalization challenge in
the manufacturing site. +e experimental results of
the proposed approach can exhibit a strong potential
to be employed for automated data gathering.

(2) Developing a lightweight and low-cost application:
the main goal of this study is to provide a feasible
approach which could be used for the manufacturing
industry, especially for SMEs. We implement our
solution as a lightweight and low-cost app which is
affordable for SMEs and could be easily extended to
other smart devices such as wearable displays.

(3) Producing a human-in-the-loop design concept:
given that human is the most important asset in the
manufacturing industry, our design concept takes
operators’ existing workflow into consideration to
provide an interface with an easy learning curve. +e
adjusted work procedure with the aid of smart
technology could minimize the learning effort and
increase productivity.

+e remainder of this paper is organized as follows.
Section 2 reviews state-of-the-art techniques related to the
work of this paper. +e proposed application is described in
Section 3 which includes design concept and detailed pro-
gram implementation. We explain the experimental setting
and report results in Section 4. In Section 5, we present
conclusions and discuss future research directions.

2. Related Work

In this section, we provide an overview of technologies
related to this research including speech recognition, optical
character recognition, and user experience.

Automatic Speech Recognition (ASR), which translates
user’s voice into text, aims at natural communication between
humans and machines through languages. It is commonly
supported in many applications of our daily life. +ere are a
number of commercial and open-source packages which have

been developed such as Microsoft API Speech, Google Speech
API, and Sphinx-4 [5]. +ese three systems are evaluated on
data selected from the TIMIT corpus [6] and ITU (Interna-
tional Telecommunication Union) using the word error rate
(WER) metric [7]. +e experiments report that Google API
achieved 9% WER, Microsoft API achieved 18% WER, and
Sphinx-4 achieved 37% WER.

In the early stage, hand-crafted features are widely
designed for the application of optical character recognition
(OCR), such as the exploitation of maximally stable extremal
regions (MSERs) [8] for text detection and the combination
of HOG with the Bag of Strokelets [9] for text recognition.
Most recent approaches have shifted toward deep learning
methods with a special interest in models which can be
trained in an end-to-end manner [10–12]. Due to the in-
creasing popularity of smartphones, several OCR applica-
tions have been developed for mobile devices with different
purposes. Camera Reading for Blind People project [13]
integrates OCR and text-to-speech synthesis (TTS) modules
to build an iOS app in order to help blind users “read” text
documents. Being unable to automatically align images
restricts the usage of the app. Spot +OCR [14] is an Android
app which communicates with users by a short vibration
when the camera captures the text in the environment. +e
vibration reminds users to stabilize the phone, and subse-
quently, the Spot +OCR is able to run OCR program.

According to ISO 9241-210 [15], user experience (UX) is
defined as “person’s perceptions and responses resulting
from the use and/or anticipated use of a product, system, or
service.” It is, especially, important in the manufacturing to
consider the human-in-the-loop challenge to provide a good
user experience for the purpose of achieving the task’s goal
successfully and efficiently. A rule of thumb for designing
interactions is to ensure user participation, provide a natural
and understandable collaboration, and avoid disturbing
users [16]. +e basis of the graphical user interface (GUI) is
the fact that recognition is easier than recall [17]. Smart-
phone apps should offer services to first time users without
requiring lengthy instructions and a steep learning curve
[18].

3. The Proposed Lightweight Application

As the purpose of this research is to help operators reduce
the workload and ease the task without changing their
working procedures too much, we discuss the user expe-
rience-based design concept, followed by the implementa-
tion of mobile device applications and kernel recognition
techniques. +e case study is about the inspection of railway
wheel and axle including dimension measurement of parts
and visual examination of surface condition.

3.1. Design Concept. Since human technology is made by
humans, for humans [4], it would be important to make sure
that the proposed solution takes into account the operators’
behavior and comfort level instead of only asking them to
learn a new working procedure. We first observe the op-
erators’ workflow, conduct face-to-face interviews, and
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correlate their verbal explanation with their actions per-
formed in the working environment. +e steps of their
examination procedure are dissected as follows:

(1) Before inspecting a workpiece and performing the
required activities, the operators have to print out the
work orders and take with them. +is is a very
important step to know the identification and cor-
responding information of the workpiece
beforehand.

(2) During the inspection procedure, the operators use
either digital instruments to measure objects or
human eyes to inspect the surface condition. Af-
terward, they need to write down what they read and
observe by pen.

(3) After finishing the job, the operators have to go back
to the office and input all obtained values and de-
scriptions into the system. Although this step is
crucial for digitization and data integration, they
often tend to input altogether until all workpieces are
examined in order to save more time. +is would
cause the data availability issue and duplicated work
as those values and information have already been
manually written down before.

By analyzing the above workflow, we propose a light-
weight solution to assist operators in two perspectives, in-
creasing data acquisition speed and reducing labor costs. We
use smart technologies for operators to input data by speech
recognition and digit recognition and adopt AI technologies
to ease their tasks and improve their performance. Figure 1
shows the system architecture. By looking at the inspection
item shown on the phone screen, the operators could use the
default input approach for the given inspection item or select
the preferred approach (voice or camera input). Once the
result is obtained, the operators have to confirm the cor-
rectness and the data will be directly inserted into the
backend system. +e procedure will be repeated for the next
inspection item. +ere are three advantages in this design.
First, as we consider their current workflow, the operators
can still maintain their familiar working routine without
sacrificing too much of their existing strengths. Second,
unlike the old scheme that the operators have to input all
values while coming back to the desk, they can stay at the
manufacturing site and be more productive. Finally, they
only have to carry a mobile device with them rather than
using paper and pen with a high risk of loss and damage.

3.2. Mobile Device App Implementation. +e mobile device
app serves as the means to link the user’s input to the
backend system. Tapping an icon on a touchscreen usually
requires more attention to reach sufficient precision, and
especially, operators have to wear gloves to avoid stains while
performing measurements and examinations. It would
therefore be a hurdle for them to touch screens during their
working activities. Developing an intuitive and convenient
experience in the manufacturing environment is necessary
and urgent. To resolve the above restriction, we propose
voice and camera inputs as two primary input approaches

but still keep the touchscreen option open. Moreover, to
align with their existing routine, the page-to-page flow of our
app follows their current working schedule so as to prevent
their extra burden to learn new procedures. Due to the
working conditions, we keep the interface design of the app
simple to reduce distraction and enhance usability. +e key
functionalities of our proposed app along with the twomajor
input methods, voice and camera approaches, are discussed
as follows.

+e main menu of the app is used to select from the
available workpieces and is shown in Figure 2(a). Since the app
is connected to the backend system, the data are always up to
date. Operators can either use voice input or touch operation to
make the choice. Once the operator has selected, the succeeding
page in Figure 2(b) displays the information related to the prior
selected workpiece which is a list restored from the previous
checkpoint or a new checklist if the workpiece is not inspected
before. Subsequently, the inspection page begins.+ere are two
different kinds of inspection methods. One is to use digital
display instruments to measure the dimensions of the railway
wheel and axle in various positions, while the other is to
evaluate the condition or damage on the wheel and axle surface
by eye. We offer two AI-based approaches, speech and digit
recognition, to automatically identify their measuring and
observational results.

For the surface inspection which produces observational
results, we provide voice input to interact with operators.
+ere are two different modes in the app page: one is to say
from predefined options (Figure 3(a)) while the other allows
operators to utter free-text about additional information

Start

Examine an item i

Speech recognition

The
recognition

result is
correct?

Is i the last
item?

End

Yes

No

Yes

Send the result to
the backend

system

Multidigit
recognition

No

No (let i be the next item)

Figure 1: +e system architecture of our approach.
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(a) (b)

Figure 2: (a) Workpieces page; (b) information page.

(a) (b)

Figure 3: Voice input for predefined text (a) and free-text (b).
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(Figure 3(b)). With the aid of voice input, operators are able
to report their examination instantly and conveniently. On
the other hand, regarding the dimension measurement
(Figure 4(a)) which generates measuring results, both
camera and voice inputs are provided for operators to use. In
the voice mode (Figure 4(b)), it is similar to the surface
inspection where operators say the number displayed on the
digital measurement instrument. In the camera mode, op-
erators only have to move the lens closer to the object and
our app will automatically capture instantaneous images
sequentially to carry out the digit recognition (Figure 4(c)).
If a number is found, our app will return the recognition
result. Otherwise, the image will be discarded and the image
capturing process will be continuously running. Camera and
voice control application enable users to input results
without pressing buttons, making them ideal for use in the
manufacturing site. We will discuss the speech and digit
recognition techniques that we adopt in Section 3.3.

Once the recognition process is accomplished and the
output is confirmed by the operator, the value or text will
automatically be stored in the backend system. +is is a very
important functionality for the whole process because our
app not only inserts data into the system but also retrieves
the data from the system to display in the app page. +ere
should be an intermediate interface to connect the app and
the system. To achieve this, we implement a RESTful API as
an intermediate bridge for the app to issue an HTTP GETor
PUT request to access the existing backend system.

3.3. Recognition Methodology. +ere are two recognition
systems used in our proposed app. +e first one, speech
recognition, is to transcribe spoken utterances to a sequence

of words. In this paper, the context of utterance includes
decimal number shown on the digital measurement in-
strument, predefined text described the object condition,
and free-text uttered by operators for special notice. +e
second one, multidigit recognition, is to extract the number
displayed on the digital display panel.

In the speech recognition implementation, we directly
adopt two out-of-the-box applications (Google Cloud
Speech API [19] and iFlytek [20]) with some modifications
and compare the performance for our use. Google Cloud
Speech API enables to convert speakers’ voice to text
through modern deep learning techniques and provides an
easy integration for applications to recognize over 80 lan-
guages [21]. It has been reported to achieve high speech
recognition accuracy for different tasks [22]. iFlytek,
founded in 1999, is a Chinese technology enterprise spe-
cializing in speech intelligence. It provides Automatic
Speech Recognition (ASR) API for various systems as well as
supports for different programming languages. Meanwhile,
many commercial apps, such as WeChat and Weibo, have
used iFlytek as the voice input method [23]. In Mandarin
Chinese, there are about 1300 syllables and more than 13000
characters. Since each character is pronounced as a syllable,
approximately the average number of characters per syllable
is around 10. It will suffer from homophone ambiguities and
cause speech recognition errors. +erefore, instead of di-
rectly taking the recognition result from the service, we
conduct postprocessing to reduce the error rate. +e syl-
lables of ten Chinese digits (from “0” to “9”) are (“ling2,”
“yi1,” “er4,” “san1,” “si4,” “wu3,” “liu4,” “qi1,” “ba1,” and
“jiu3”). If any speech character recognition result shares a
syllable with one of the digits, we will convert the recognition
result to the corresponding Chinese digit.

(a) (b) (c)

Figure 4: Dimension measurement: (a) selection page, (b) voice mode, and (c) camera mode.
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In the multidigit recognition for optical measuring in-
struments, we propose a two-step method which consists of
text detection and recognition. An overview of the pipeline
of our approach is illustrated in Figure 5. Given an image
which contains an optical measuring instrument, we first
detect the text region which contains the number. Text
detection is very critical to the pipeline as it is the premise for
later text recognition. +en, the detected block is extracted
and supplied to the text recognitionmodule to determine the
number.

East [24] is used as a text detector in our text detection
module to extract the candidate number region. East de-
tector consists of two important components, fully con-
volutional network (FCN) and nonmaximum suppression
(NMS), and is depicted by the dashed rectangle in Figure 6.
+e FCN takes as input an image and generates word or text-
line level predictions which could be either rotated box
(RBOX) or quadrangle (QUAD). +e above predicted text
predictions are then sent to nonmaximum suppression
(NMS) to produce the final output. To enhance the model
generalization capability and overcome data scarcity in our
application, some schemes, such as random cropping of
nonnumber region and varying brightness and contrast, are
used for data augmentation during the training phase. In the
inference stage, we only select the output box with the
maximum area as the result since we assume that the
number should be the max text region in the image.

In text recognition, we combine the rectification network
(RN) and sequence recognition network (SRN) to train a text
recognizer [25]. +e RN is used to rectify the distorted
images and the SRN is to output the predicted text. +e RN
trains a weak learner to predict the offset of each part of the
image and then applies sampling to rectify the image to be
free of geometric constraints. Once the rectified image is
generated, the SRN which is a CNN-BLSTMmodel followed
by an attention-based decoder is to accurately learn the
alignment between target label and characters in images
[25, 26]. Regarding the training data volume, we also

perform data augmentation to reduce human efforts and
costs. For each experimental instrument, we manually crop
five templates for each digit from zero to nine. As we have six
instruments to experiment, there are 30 templates for each
digit set and the “digit set of 0” is shown in Figure 7. To
generate a number for training, we then are able to sample
each digit of the number from the corresponding digit set
and concatenate those sampled images as the generated
image of the number. Figure 8 is an example of a generated
number 823945. Note that since the decimal point of each
digital instrument is fixed, we will omit the decimal point
during the training and inference phases and simply put the
decimal point back by the app program.

4. Experiment and Results

+e performance evaluation of our proposed approach is
conducted on two tasks: speech recognition and multidigit
recognition.

4.1. SpeechRecognition. +ere are two different datasets used
for speech recognition, namely, the text and the number. In
the text set, there are thirty utterances which contain pre-
defined text of inspection checklist and free-text related to
the surface conditions. In the number set, there are fifty
decimal numbers. We invite five persons to participate in
this experiment and compare the speech recognition ac-
curacy on Google Cloud Speech API and iFlytek.

+e detailed results are shown in Table 1. +e overall
accuracy rate of iFlytek is 91.6% which is higher than that of
Google (83.3%). In general, these two systems all have better
results in number than in text recognition. From the com-
parison in the text recognition, iFlytek achieves 86.6% accuracy
which is slightly higher than Google (80.0%). About the
comparison in the number recognition, iFlytek obtains 94.6%
accuracy which is about 0.093 higher than Google. Note that
iFlytek also supports to recognize 24 Chinese dialects.

Input image

Text
detection

Text
recognition

Detected text Recognized text

Figure 5: +e flow of multidigit recognition.

Data
augmentation

Training
stage

Inference
stage Input image

FCN NMS
Word/text-line
RBOX/QUAD

Outputs

The trained
model

Extract max
box area 

Figure 6: +e training and inference flows of text detection.
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4.2. Multidigit Recognition. For the multidigit recognition,
we evaluate for both text detection and text recognition. In
the following, we will discuss the tools, dataset, and metrics
to be used for the assessment, followed by the experimental
results and analysis.

+ere are six digital instruments used for our experiment
as shown in Figure 9(a). Tool-1 is for the measurement of the
distance between the backs of the wheel flanges. Tool-2 is for
the measurement of the wheel set position. Tool-3 is for the
measurement of the diameter of the wheels. Tool-4 is for the
measurement of the journal diameter. Tool-5 is for the
measurement of the diameter of the dust-proof set. Tool-6 is
for the measurement of the wheel wear.

During the training phase, 50 images are taken from each
instrument and augmentation techniques mentioned in
Section 3.3 are used to generate additional 3600 images,
resulting in a total of 3900 images to train the text detector.
To produce training images for text recognizer, we apply the
augmentation techniques discussed in Section 3.3 to create
20000 images. +e evaluation metrics for text detection are
recall, precision, and F-score. Recall measures how well the
proposed approach is for retrieving correct regions, while
precision indicates how accurate the technique is for pre-
dicting correct regions. In our experiment, the detected
region will be considered correct if its intersection-over-
union (IoU) with the ground truth is higher than 0.65. +e
F-score is defined to be the harmonic mean of recall and
precision. Regarding the evaluation metric for text

recognition, we use accuracy to measure the ability of the
recognizer.

In the testing stage, 100 images for each tool are used to
evaluate the text detector, resulting in 600 images denoted as
Testing_Set. We compare two models where one is pre-
trained on ICDAR [27, 28] (denoted as TD_Pretrained
model) and the other is afterward fine-tuned using our
augmentation data (denoted as TD_Fine-tuned model). For
notational simplicity, we express those images extracted by
TD_Fine-tuned model as Sys_Ext. As shown in Table 2 with
IoU� 0.65, the overall F-score of the TD_Fine-tuned model
is 100%whereas the TD_Pretrained is about 57%. In general,
the TD_Fine-tuned model almost performs perfectly in the
detection task. In addition to the IoU set to 0.65, we also use
two thresholds, 0.75 and 0.85, to compare the results shown
in Table 3. +e performance is almost perfect under
IoU� 0.75 while the average F-score drops to 0.73 under
IoU� 0.85. A few of the detection results by TD_Fine-tuned
model are illustrated in Figure 9(b).

+e text recognition model is pretrained on two syn-
thetic image datasets [29, 30] (denoted as TR_Pretrained
model) and then fine-tuned using our augmentation data
(denoted as TR_Fine-tuned model). +ere are two testing
datasets, Sys_Ext and Hu_Ext, used to evaluate text rec-
ognition performance where Sys_Ext is the dataset men-
tioned in the last paragraph and Hu_Ext is the dataset that
we manually extract the number section in the images from
Testing_Set. +e main purpose of the evaluation is to
compare the performance between TR_Pretrained model
and TR_Fine-tuned model and also investigate whether
there is any significant performance difference between
using Sys_Ext and Hu_Ext. +e experimental results are
presented in Table 4. It can be observed that the
TR_Fine-tuned model significantly improves the average
accuracy over the TR_Pretrained model on the Hu_Ext
dataset which has been increased from 0.28 to 0.95. When
comparing the results on the Sys_Ext dataset, TR_Fine-
tuned model (0.95) also greatly outperforms TR_Pretrained
model (0.24). For TR_Fine-tuned model, all accuracy values
are above 0.9 and several values achieve 0.99. Overall,
TR_Fine-tuned model can effectively utilize our augmented
images to solve the text recognition problem and result in

Figure 8: An example of a generated number.

Table 1: +e accuracy comparison of speech recognition between
Google and iFlytek.

Model Google iFlytek
Type Text Number Text Number
Accuracy 0.800 0.853 0.866 0.946
Average 0.833 0.916

Figure 7: +irty templates of the digit set of 0.
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Input image Text extraction Text recognition

1366.71

233.75

854.366

234.33

169.734

2.88

(a) (b) (c)

Figure 9: (a) +e input images from Tool-1 to Tool-6. (b) +e outputs of text detection. (c) +e outputs of text recognition.

Table 2: +e performance comparison of pretrained and fine-tuned models for six digital measurement tools in text detection.

TD_Pretrained model TD_Fine-tuned model
R P F R P F

Tool-1 0.64 0.64 0.64 1 1 1
Tool-2 0.09 0.09 0.09 1 1 1
Tool-3 0.84 0.84 0.84 1 1 1
Tool-4 0.73 0.73 0.73 1 1 1
Tool-5 0.61 0.66 0.64 1 1 1
Tool-6 0.51 0.52 0.51 1 1 1
Average 0.57 0.58 0.57 1 1 1

Table 3: +e detection comparison of F-score for different IoUs using the fine-tuned model in text detection.

IoU� 0.65 IoU� 0.75 IoU� 0.85
Tool-1 1 1 0.75
Tool-2 1 0.99 0.84
Tool-3 1 1 0.75
Tool-4 1 1 0.47
Tool-5 1 1 0.74
Tool-6 1 1 0.83
Average 1 0.99 0.73

Table 4: +e recognition accuracy comparison of pretrained and fine-tuned models for six digital measurement tools as well as the
comparison with Aster and Clova.

TR_Pretrained TR_Fine-tuned Aster_Pretrained Aster_Fine-tuned Clova_Pretrained Clova_Fine-tuned
Sys_Ext Hu_Ext Sys_Ext Hu_Ext Sys_Ext Hu_Ext Sys_Ext Hu_Ext Sys_Ext Hu_Ext Sys_Ext Hu_Ext

Tool-1 0.50 0.62 0.91 0.92 0.4 0.4 0.94 0.96 0.29 0.28 0.85 0.91
Tool-2 0.31 0.21 0.94 0.91 0.33 0.17 0.86 0.75 0.17 0.15 0.91 0.91
Tool-3 0.22 0.33 0.95 0.99 0.55 0.72 0.96 0.95 0.25 0.29 0.9 0.94
Tool-4 0.12 0.16 0.99 0.99 0.09 0.07 0.94 0.92 0.07 0.06 0.94 0.96
Tool-5 0.05 0.06 0.93 0.91 0.01 0.01 0.89 0.87 0.00 0.00 0.85 0.89
Tool-6 0.26 0.34 0.99 0.98 0.35 0.42 0.94 0.92 0.21 0.24 0.99 0.99
Average 0.24 0.28 0.95 0.95 0.28 0.30 0.92 0.90 0.17 0.17 0.91 0.93
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high accuracy for multidigit recognition. Regarding the per-
formance comparison between two datasets Sys_Ext and
Hu_Ext, TR_Fine-tuned model reaches similar results (0.95 :
0.95). +ere is also no comparable difference while using
TR_Pretrained model (0.24 : 0.28). We can conjecture that
these two datasets are similar (i.e., the images extracted by our
TD_Fine-tuned model are similar to those images in Hu_Ext
extracted by humans). +e comparison with two other tech-
niques, Aster [26] and Clova [31], are also displayed in Table 4.
It is observed that all approaches including TR_Pretrained
model are not able to properly deal with the text recognition
task but will obtain much better results after fine-tuning with
our augmented data. Note that all tools (from Tool-1 to Tool-6)
in our experiment use seven-segment displays. Several ex-
amples of recognition results are shown in Figure 9(c).

+e experiments are conducted on the Windows system
with an Intel(R) Core(TM) i7-8750H CPU, 8GB RAM, and
NVIDIA GeForce GTX 1050 Ti GPU. We obtain an average
text detection time of around 0.05 seconds and the average
text recognition time is about 0.09 seconds.

5. Conclusions

We develop an APP based on vision and speech recognition to
extract the shop floor data for addressing the digitalization
challenge of SMEs. Our proposed approach is executed on
mobile devices which are affordable for SMEs and could be easily
extended to other portable smart devices. We produce a design
concept by taking operators’ existingworkflow into consideration
and providing an intuitive interface with an easy learning curve.

Although the proposed application is applicable in the
current situation, there are several challenges to be further
addressed for future research to maximize the benefits of the
proposed approach:

(1) Investigation of interaction tools: the current version
of the interaction requires users to hold the smart-
phone to control. Although it is feasible for the
current scenario, we would like to investigate more
convenient tools to replace handheld interaction and
expand the industrial value. Instead of handheld
selection, we plan to work with operators to per-
sonalize smart wearable products, such as wristband,
in order to achieve maximum user comfort and in
accordance with their user experience [32].

(2) Use of in-house development: for our current speech
recognition module, we use cloud-based service (i.e.,
iFlytek) which is applicable to several industries.
However, based on our experiences of university-
industry cooperation, many corporations require a
high level of information sensitivity and avoid using
cloud services. In further research work, our goal is
to develop this component locally instead of
uploading it to the cloud for recognition.

Data Availability

+e data used to support this study have not been made
available yet, as the supplier prevents this.
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