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+e evolution of cellular technology development has led to explosive growth in cellular network traffic. Accurate time-series
models to predict cellular mobile traffic have become very important for increasing the quality of service (QoS) with a network.
+e modelling and forecasting of cellular network loading play an important role in achieving the greatest favourable resource
allocation by convenient bandwidth provisioning and simultaneously preserve the highest network utilization. +e novelty of the
proposed research is to develop a model that can help intelligently predict load traffic in a cellular network. In this paper, a model
that combines single-exponential smoothing with long short-term memory (SES-LSTM) is proposed to predict cellular traffic. A
min-max normalization model was used to scale the network loading. +e single-exponential smoothing method was applied to
adjust the volumes of network traffic, due to network traffic being very complex and having different forms. +e output from a
single-exponential model was processed by using an LSTM model to predict the network load. +e intelligent system was
evaluated by using real cellular network traffic that had been collected in a kaggle dataset. +e results of the experiment revealed
that the proposed method had superior accuracy, achieving R-square metric values of 88.21%, 92.20%, and 89.81% for three one-
month time intervals, respectively. It was observed that the prediction values were very close to the observations. A comparison of
the prediction results between the existing LSTM model and our proposed system is presented. +e proposed system achieved
superior performance for predicting cellular network traffic.

1. Introduction

With the high-paced development of smartphone technol-
ogy, it is estimated that there will also be rapid cellular traffic
growth. Also, the existence of services with completely
different needs can result in perpetually dynamic traffic
patterns and network capability requirements. Smartphone
Internet not only augments people’s lives with entertain-
ment but also provides an increasing amount of necessary
information and access to needed services for daily living.
Ericsson has estimated a 54% increase in global mobile traffic
over 2020, which is the biggest challenge to telecommuni-
cation companies in managing the large network flow while
increasing the QoS [1]. An accurate base traffic load in a
cellular network wherein the number of humans varies can

greatly help predict the incidence of network congestion,
which permits us to efficiently allocate network resources
successfully. +is is crucial for competitive network support,
ordinary maintenance, and the scheduling of sources. +ere
are several applicable reviews on the traffic forecasting of
base stations, in particular in public locations where the
number of users is always changing [2].

+e speed of telecommunication technology and the
number of users accessing the mobile internet have both
been increasing, which present many challenges to a cellular
network. +e presence of many, varied users at densely
populated locations (high-speed rail stations, tourist at-
tractions, business centres, playgrounds, sports competi-
tions, concert venues, and many others) can create rapidly
increasing cellular traffic that puts massive stress on its

Hindawi
Mobile Information Systems
Volume 2021, Article ID 6050627, 15 pages
https://doi.org/10.1155/2021/6050627

mailto:madaileh@kfu.edu.sa
https://orcid.org/0000-0003-3723-4532
https://orcid.org/0000-0002-3519-1121
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6050627


network structure [3‒6]. Modelling and predicting mobile
network traffic can help companies find ways to enhance the
QoS of the network.

Traffic-exchange prediction is primarily based on an
hourly granularity, which is used to help control the on-
demand allocation of network resources in order to decrease
network operation costs. For fairs or other large-scale events,
the number of users and size of the mobile traffic at public
locations ought to be predicted rapidly and appropriately
based on the change in users and the tidal effect of the traffic.
+e modelling and prediction can help operators grasp up-
coming congestion and make network enlargements, ad-
justments, and optimizations earlier; also, confined Wi-Fi
services can be used to fulfil network peaks. Network planning
has to evolve in order to allow entry to clients without
degrading service in the case of unexpected increases in traffic.
Due to the impact of congestion and blocking on a large-scale
network, traffic and routing must be scheduled in a timely
manner to ensure that the network maintains a proper entry
rate, network connections are free in crucial regions, and user
access is being maintained. +erefore, the prediction of cel-
lular network traffic for a base station for a variety of multiple
users to maintain connectivity in densely populated public
locations is of great importance to network safety [7].

Cellular network traffic prediction plays an important
role in the design, management, and optimization modelling
of a telecommunication network. +e prediction of cellular
traffic can permit the planning capacity of a network and the
improvement of a network’s QoS. At the present time, the
study of predicting 4G Long-Term Evolution (LTE) and 5G
traffic is of significant interest in order to enhance QoS in
telecommunications. +e prediction of cellular network
traffic can be distinguished by two categories: long-range
and short-range prediction. Long-range prediction provides
a projection for a long period and is used for validating a
detailed predicting network and providing network traffic
patterns that can help to more easily design networks. Short-
range prediction provides projections for a short period and
can help improve networks. Artificial intelligence models
have been widely used in many industrial applications, such
as developing a prediction model to handle cellular network
traffic for the current year. For example, [7] used linear
regression and [8] applied support vector machine regres-
sion (SVMR) to predict cellular network traffic. A number of
studies have presented advanced predictionmodels based on
deep learning (such as LSTM) [9] to cellular network traffic.
Shu et al. [10] proposed a convolutional neural network
(STDenseNet) to predict cellular traffic.

In the literature, early work covers traffic predictions for
circuit-switching networks by developing statistical time-
series models based on observation data like autoregressive
integrated moving averages (ARIMA) [11, 12]. Additionally,
a number of modern models are used to handle packet data
traffic prediction with advanced time-series models based on
artificial intelligence in the use of a mobile network [13, 14].
A number of time-series models have been introduced for
predicting short-term traffic (in minutes and seconds) by
employing deep learning [15, 16]. Some designed a model to
predict radio frequency planning [17]. Time-series models

were applied to predict loading traffic in telecommunication
networks; in previous research works, circuit-switched
traffic forecasting was addressed by developing different
statistical time-series models based on experimental data.
Traditional time-series models like ARIMA, estimated short-
term network traffic demand, and seasonal ARIMA (SAR-
IMA) were used to predict seasonal traffic [18], and some
used exponential smoothing models (such as the Holt–
Winters method) [19, 20] for finding trends and seasonality
in demand traffic. Researchers have extended the linear
time-series model ARMA to the generalized autoregressive
conditionally heteroskedastic (GARCH) technique [12] to
predict long-range dependencies. Dietterich [21] proposed a
hybrid wavelet-based deep learning framework to predict
the number of users connected to a mobile network. Linear
regression has also been used (ARIMA) [22, 23].

Currently, advanced time-series models have been used to
predict cellular network traffic, along with applied Bayesian
linear regression (BLR) [24], advanced learning machines
[25], support vector regression (SVR) [26], and artificial
neural networks (ANNs) [27‒30]. Qiang et al. [31] employed
support vector machine regression to forecast daily tourist
traffic. In addition, SVRwas implemented to predict a toxicity
assessment [32], battery life forecasting [33, 34], chemical
prediction [35, 36], and financial support [37, 38] and to
increase agricultural production through the use of a pre-
diction model [39, 40]. However, research has found it much
more challenging to predict loading packets [41]. Machine-
learning models have been used to classify abnormalities in
circuit-switched traffic. In [42], the short-term traffic volume
in a cellular 3G network was predicted by using traditional
time-series models like Kalman filtering. In [43], an ARIMA
model was applied to predict the use rate in the volume of
mobile traffic. Artificial intelligence has been used for deep
learning based on LSTM units [44–46]. In [47], a convolu-
tional neural network was used for prediction and modelling
traffic spatial dependencies, the same as the approach in [48].
As indicated in [49], deep learning schemes, such as LSTM
[50], convolutional neural networks [51] and recurrent neural
networks [46], have also been applied to coarser time reso-
lutions (e.g., an hour) to extend the forecasting horizon to
several days. Artificial neural network (ANN) models have
been introduced to predict network traffic in the short term
(minutes and seconds) [52, 53]. +e models were used to
manage dynamic radio resource management [54].

In this study, a proposed hybridmodel was used to predict
cellular network traffic, specifically three occurrences of
monthly rush-hour data traffic per cell. +e mobile network
traffic data had been collected from a real live 4G LTE net-
work. +e main contributions of this research are as follows:

(1) Network traffic data is very complex, with many
sources of noise and data formats; this makes it a big
challenge for researchers to find an accurate model.
We have developed a system that can help predict
cellular network traffic more intelligently.

(2) We have developed an intelligent system to predict
LTE network traffic with superior prediction
performance.
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2. Materials and Methods

Figure 1 shows the framework of the proposed system to
predict 4G mobile network traffic.

2.1. Dataset. +e LTE 4G network traffic dataset was
identified and downloaded from Kaggle; the data had been
collected from 4G cell traffic (i.e., the radio transmitter
serving as the device was a 4G cell). All the LTE network
traffic was generated from individuals using the mobile cells
(although they are not uniquely identified in the data). In the
current research, we have utilised three months of the data to
examine the proposed system. Table 1 shows the data
samples. Figure 2 shows the cellular traffic for the three
months being examined. +e public dataset is available at
https://www.kaggle.com/naebolo/predict-traffic-of-lte-
network.

2.2.Normalization. LTE network traffic data is very complex
and is composed of underlying signals with very different
characteristics. However, finding the transformation be-
haviour in cellular networks hopefully will be an aid to
improving network traffic prediction models. In order to
avoid loading packets with greater numeric values in the
network from dominating those with smaller numeric
values, the data will be scaled; this will also increase the
processing speed of the model while maintaining good
accuracy. Amin-maxmethod was used to transform the data
to values between zero and one; scaling the data can help in
improving the system for predicting network traffic.+e two
main advantages of scaling are to avoid instances of greater
numeric ranges dominating those with smaller numeric
ranges and to prevent numerical difficulties during the
prediction. +e transformation is accomplished as follows:

zn �
x − xmin

xmax−xmin

Newmaxx
− Newminx

􏼐 􏼑 + Newminx
, (1)

where xmin is the minimum of the data and xmax is the
maximum of the data. Newminx

is the minimum number
zero, and Newmaxx

is the maximum number one.

2.3. Single-Exponential Smoothing (SES) Model. +e single-
exponential smoothing (SES) model is one of the common
statistical algorithms used to predict data without a trend or
seasonality. +e model uses one significant parameter (al-
pha) to adjust the weight of the observation data for the
obtained prediction data. Selecting a value of this parameter
depends on the evaluation metrics. +e model is defined as
follows:

ℓ0 � X �
􏽐

n
t�1 Xyt

n
, (2)

PT+1 � αyt +(1 − α)Pt, (3)

where ℓ0 is the level of the trend, X is the input sample, n is
the number of samples in the dataset, and yt is the output.

+e alpha values are 0≤ α≤10≤ α≤1 for smoothing the
training data.

2.4. Long Short-Term Memory (LSTM). +e LSTM layer
contains a series of many LSTM units that together are called
the LSTM model [54, 55]. LSTM models contain three
multiplicative units. First, the input gate is used to memorise
the information of the present. Second, the output gate is
used to display the results. +ird, the forget gate is used to
select some forgotten information from the past. Multipli-
cative units consist of a sigmoid function and dot product
operation. +e sigmoid function has a range between zero
and one, while the dot product operation determines the
amount of information to transfer. If the value of a dot
product operation is zero, information is not transferred,
while information is transmitted when the value of a dot
product operation is one. +e model is described as follows:

ft � σ wf ht−1, xt􏼂 􏼃 + bf􏼐 􏼑, (4)

it � σ wi ht−1, xt􏼂 􏼃 + bi( 􏼁, (5)

􏽥Ct � tanh wC ht−1, xt􏼂 􏼃 + bC( 􏼁, (6)

Ct � ft ∗Ct−1 + it ∗ 􏽥Ct, (7)

ot � σ wo ht−1, xt􏼂 􏼃 + bo( 􏼁, (8)

ht � ot ∗ tanh Ct( 􏼁, (9)

where it, ft, and ot are the input, forget, and output gates,
respectively, and ht is the number of hidden layers in the
cells. +e weighted neural network is presented by wf, wo,
and wc, and Ct is the internal memory cell for the hidden
layer. +e bias of the neural network is indicated by bf and
bo; xt is the network traffic data.

Equation (3) represents the forget gate, which takes the
input at time t as the input to the activation function in order
to provide its output. Equation (4) represents the input gate,
and the parameters are the same as in equation (2). Equation
(3) works to calculate the candidate value in memory, where
“tanh” is the activation function. Equation (6) works on
combining memories of the past and the present. Equation
(5) represents the output gate, and the parameters are the
same as in equation (3). Equation (8) represents the cell
output, and “tanh” is the activation function. W represents
thematrix of weight vectors, and b represents the bias vector.
+e parameters of the LSTM model and their values are
shown in Table 2.

2.5. Model Evaluation Criteria. +e mean square error
(MSE), root mean square error (RMSE), mean absolute error
(MAE), correlation coefficient (R), and squared correlation
(R2) metrics are employed as evaluation criteria. +e eval-
uation equations are used to find the differential between the
observed and predicted data and are described in the
following:
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(10)

where xt are the observed responses, xt are the estimated
responses, and N is the total number of observations.

3. Experiment Results

In this section, the results of the LSTM model to predict
network traffic are presented.

3.1. Environment Setup. +e proposed framework was
evaluated using different hardware and software environ-
ments. Table 3 shows the equipment used to develop the
proposed system.

3.2. Analysis of Results. +e cellular network traffic was
gathered from a real 4G LTE network over a time interval of
three (01/01/2018 to 30/03/2018) and was used for testing the

proposed system. +e LSTM model was applied to predict
the loading of the cellular traffic derived from the network.
Min-max normalization was proposed to scale the data into
an appropriate format. Due to the network characteristics of
many bursts and high complexity, a single-exponential
smoothing method was used to adjust the weighting of the
observation values to obtain the new output. Single-expo-
nential smoothing was proposed to handle overlapping
values in order to improve the LSTM results. +e SES model
depends on the smoothing constant, which has a significant
parameter alpha. +e values of alpha range from 0.1 to 0.5.
According to the MSE metric, we found that 0.5 was an
appropriate value to obtain a good prediction. +e data sets
were divided into 80% training and 20% testing. +e hybrid
model obtained superior results; the prediction values were
very close to the prediction values according to the evalu-
ation metrics. Table 4 shows the numbers in the samples in
the training and testing stages.

3.2.1. Training of the Hybrid Model. Eighty percent of the
cellular network traffic dataset was used for the training
process. +e empirical results of the hybrid system in the
training phases were superior in predicting the loading
traffic in the cellular network.

Table 5 demonstrates the prediction results of the SES-
LSTM model during the training process. +e prediction
results were closer to the observation data, according to the
evaluation criteria. +e MSE values were 0.00017, 0.00104,
and 8.1547×10−05 for the months of January, February, and
March 2018, respectively.

Figure 3 shows the time-series plot of the hybrid model
for predicting loading traffic. While the target (x-axis) values
represent the errors of the model, the output (y-axis) values
represent the numbers in the sample. +e prediction errors
varied less according to the evaluation metrics, namely, the
MSE, RMSE and NRMSE. +e prediction errors of the
January, February and March 2018 input data were
MSE� (8.93×10−05), MSE� (0.000104) and MSE�

(3.1547×10−05), respectively.

Data
preprocessing

Methodology

Data exploration

Normalization

Single-exponential
smoothing (SES)

Output from SES

Bidirectional LSTM

Training Testing

Splitting
data

SES-LSTM
model

Evaluation

Prediction metrics
MSE, RMSE,

correlation, R2

Figure 1: Proposed system.

Table 1: Input samples.

Time period Size of sample
January 2018 41,992
February 2018 37,958
March 2018 42,402
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Figure 4 illustrates the histogram error obtained from
the SES-LSTMmodel at the training phase for predicting the
loading traffic. Histogram errors are metrics used to find the
differences between the observation and prediction data. In
the training phase, the mean error in the histogram is
0.00192 for the training data of January 2018, as shown in
Figure 4(a); in February 2018, the mean error is 0.0025, as
shown in Figure 4(b), and the mean error of March 2018 is
5.44×10−05, as shown in Figure 4(c).

3.2.2. Testing of the ANFIS Model. +e testing phase was
used to validate the use and to test and evaluate the SES-
LSTM model in predicting the loading of cellular network
traffic. +e testing state uses unseen data to forecast future
traffic. Table 6 presents the testing results of the proposed
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Figure 2: Cellular traffic for the three months being examined: (a) January 2018, (b) February 2018, and (c) March 2018.

Table 2: Significant values of the LSTM parameters.
No. of hidden layers 4
Max. epochs 20
Min. batch size 32
Max. iterations 100
Shallow hidden layer size [29, 49]
Delays [1, 2, 4, 8]
Optimizer Adam

Table 3: System requirements.

Hardware/software Environment
Operating system Windows 10
CPU Intel Core i5
Memory 4
MATLAB R2020a Academic

Table 4: Splitting loading traffic data.

Input data Training Testing
January 2018 33,577 8,394
February 2018 30,050 7,587
March 2018 33,905 8,476

Table 5: Performance of the SES-LSTM model in the training
phase.

Time period MSE RMSE NRMSE
January 2018 8.93×10−05 0.00944 0.1437
February 2018 0.000104 0.01020 0.123
March 2018 8.1547×10−05 0.00561 0.1259
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system for the three-month time period of the data.
According to the evaluation metrics, the proposed system
achieved the best prediction results, MSE values of 0.000175,
8.6238×10−05, and 2.9927×10−05 in terms of the three
months (January, February, andMarch 2018, respectively) in
the testing stage.

+e time-series plots of the SES-LSTM model in predict
loading traffic are presented in Figure 5. +e prediction
values were very close to the observation values according to
the evaluation metrics.

In addition, Figure 6 displays the histogram errors ob-
tained from the hybrid SES-LSTM model. +e histogram
metric for the testing process is to find the difference be-
tween the observation and unseen data obtained as future
loading traffic. +e means and standard divisions of the
histogram errors are shown at the tops of the graphic
representations. It was noted that the histogram error of the
SES-LSTM model was very low for forecasting future load.
+e maximum mean error (0.00380) of the histogram is
shown in Figure 6(a). +e histogram error testing phase

demonstrated the effectiveness and efficiency of the pro-
posed system.

4. Results and Discussion

+e self-sufficient prediction of cellular network traffic de-
mand will be a key function in future telecommunication
companies. Considering the fact that e-business, banking,
and industrial business enterprises are notably associated
with special and valued information that is communicated
inside a network, it is far from meaningless to mention the
significance of network traffic analysis in achieving suitable
information security. Cellular network traffic analysis and
prediction is a proactive strategy in the desire to maintain a
healthy system; the network is also monitored to make sure
that security breaches no longer arise inside it. Cellular
network traffic prediction is an important phase for de-
veloping a growing successful system, protecting it and
preventing congestion through control schemes and dis-
covering abnormal packets in the network traffic. +e
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Figure 3: Time-series plots for predicting cellular network traffic at the training phase: (a) January 2018, (b) February 2018, and (c)March 2018.
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significance of this integral subject matter and our urge to
make contributions in fixing the lookup problem in intel-
ligent cellular traffic prediction is the essential purpose of
this study.

Modelling and predicting network traffic can help in
updating the polling on a cellular network. In previous
studies, researchers used statistical approaches to predict the
loading network traffic. In this study, we have developed a
hybrid SES-LSTM model to predict loading traffic for a 4G
LTE network. Single-exponential smoothing was applied to
adjust the observation values in the computations. Predic-
tion values obtained from the SESmethod were processed by
using a deep leaning model.

Table 7 shows the empirical results of SES-LSTM model
and existing LSTM model systems; it is noted that the
proposed SES-LSTMmodel was superior compared with the
existing deep learning LSTM model. According to the in-
dividual correlation metrics, the prediction accuracy of the
January 2018 data was R2 � 88.21%; the prediction accuracy
of the February 2018 data was R2 � 95.09%; and the pre-
diction accuracy of the March 2018 data was R2 � 89.81% in
the training phase. Figure 7 shows the correlation plots in the
training phase for the prediction cellular loading traffic by
using our proposed SES-LSTM model. In addition, Figure 8
shows the regression plots for the predicted cellular loading
traffic by using the existing LSTMmodel at a training phase.
+is plot is used to find the relationship between the pre-
dicted and the actual values by using Pearson’s correlation
coefficient. It was observed that the SES-LSTM model
outperformed the existing system.

+e hybrid model was appropriate for predicting
unseen load traffic in a cellular network.+e experimental
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Figure 4: Histogram errors plot for the proposed system in predicting cellular loading traffic at the training phase: (a) January 2018,
(b) February 2018, and (c) March 2018.

Table 6: Performance of the SES-LSTMmodel in the testing phase.

Time period MSE RMSE NRMSE
January 2018 0.000175 0.0132 0.1783
February 2018 8.6238×10−05 0.0092 0.137
March 2018 2.9927×10−05 0.00547 0.1264
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Figure 5: Time-series plots of predicting cellular network traffic at the testing phase: (a) January 2018, (b) February 2018, and (c) March
2018.
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Figure 6: Continued.
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Figure 6: Histogram error plots of the proposed system of predicting cellular loading traffic at the testing phase: (a) January 2018,
(b) February 2018, and (c) March 2018.

Table 7: Performance of the SES-LSTM and existing LSTM model systems in the training phase.

Time period Models R2 (%)

January 2018 Proposed SES-LSTM 88.20
Existing LSTM 6.01

February 2018 Proposed SES-LSTM 92.09
Existing LSTM 5.22

March 2018 Proposed SES-LSTM 89.81
Existing LSTM 16.07

0 0.05 0.1 0.15 0.2 0.25
Prediction

Data
Fit
Y = T

0.25

0.2

0.15

0.1

0.05

0

Ta
rg

et

Train data, R2 = 0.8821

(a)

0 0.05 0.1 0.15 0.2 0.30.25
Prediction

Data
Fit
Y = T

0.3

0.25

0.2

0.15

0.1

0.05

0

Ta
rg

et

Train data, R2 = 0.92095

(b)

Figure 7: Continued.

Mobile Information Systems 9



0 0.04 0.06 0.080.02 0.1 0.140.12 0.16 0.18
Prediction

Data
Fit
Y = T

0.18

0.12

0.14

0.16

0.1

0.08

0.04

0.06

0

0.02
Ta

rg
et

Train data, R2 = 0.89816

(c)

Figure 7: Regression plots of the SES-LSTM model at the training phase: (a) January 2018, (b) February 2018, and (c) March 2018.
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Figure 8: Regression plot of the existing LSTM model at the training phase: (a) January 2018, (b) February 2018, and (c) March 2018.
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Figure 9: Regression plots of the SES-LSTM model at the testing phase: (a) January 2018, (b) February 2018, and (c) March 2018.
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Figure 10: Regression plot of the existing LSTM model at the testing phase: (a) January 2018, (b) February 2018, and (c) March 2018.
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results of the proposed model in the testing phase were
optimal. +e prediction accuracy of the January 2018 data
was R2 � 88.20%, the prediction accuracy of the February
2018 data was R2 � 86.16%, and the prediction accuracy of
the March 2018 data was R2 � 87.24% in the testing phase.
Figure 9 shows the regression plots of the SES-LSTM
model for the prediction of cellular loading traffic. +e
graphical representations of the prediction results of the
existing LSTM system are displayed in Figure 10. Overall,
the SES-LSTM model achieved the best results in
the unseen data compared with the existing LSTMmodel.
We believe the efficiency and effectiveness of our pro-
posed system will help improve network traffic by
preventing congestion and providing good planning for
any network.

5. Conclusion

Network traffic modelling and forecasting play an im-
portant role in determining network performance. Also,
these models can help to obtain accurate data for inter-
preting the important characteristics of traffic, which re-
quires very efficient analytical study. +us, modelling
network traffic has become an essential part of assisting the
design of networks and controlling bandwidth waste. A
good network traffic prediction model should be able to
capture prominent traffic characteristics, such as long-
range dependence (LRD), short-range dependence (SRD),
and self-similarity. In this study, a hybrid SES-LSTMmodel
was proposed to predict network traffic from real cellular
4G LTE network data. In conclusion, we can draw the
following points:

(i) Measuring 4G LTE network behaviours can be
attained only if an accurate model is designed. Our
system can intelligently enhance the quality of
service (QoS) of a cellular network for best future
performance.

(ii) Real 4G LTE network data were used to evaluate and
examine the proposed system.

(iii) +e proposed system was novel in that it combined
a statistical SES model with an advanced artificial
intelligence LSTMmodel to improve the accuracy of
the prediction values.

(iv) +e hybrid SES-LSTM model has shown optimal
results with fewer prediction errors.

(v) +e results of the proposed system were compared
with an existing LSTM model system; it was noted
that the proposed hybrid achieved superior pre-
diction results.

(vi) We believe that the proposed system can be used in
any real-time application for predicting future
demand.
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