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Channel estimation is the key technology to ensure reliable transmission in orthogonal frequency division multiplexing (OFDM)
system. In order to improve the accuracy of the channel estimation algorithm in a low signal-to-noise ratio (SNR) channel
environment, in this paper, we proposed an improved channel estimation algorithm based on the transform domain. -e
improved algorithm with wavelet denoising (WD) and distance decision analysis (DDA) to perform secondary denoising on the
channel estimation algorithm based on the transform domain is proposed. First, after the least-squares (LS) algorithm,WD is used
to denoise for the first time, then the DDA is used to further suppress the residual noise in the transform domain, and the
important channel taps are screened out. Simulation results show that the proposed algorithm can improve the detection
performance of existing channel estimation algorithms based on transform domain in low SNR.

1. Introduction

In recent years, orthogonal frequency division multiplexing
(OFDM) has been widely used in the wireless channel to
improve spectrum utilization, transmission rate, and fre-
quency-selective fading [1–3]. Due to the uncontrollable and
random nature of the wireless channel, the communication
quality can be greatly affected, and subsequent critical steps
such as data demodulation require accurate channel pa-
rameters [4]. -erefore, the accuracy of channel estimation
plays a crucial role in the performance of the whole system
[5]. Channel estimation techniques for OFDM-based sys-
tems can be grouped into two main categories: blind and
nonblind. -e blind channel estimation methods exploit the
statistical behavior of the received signals and require a large
amount of data [5]. -e nonblind channel estimation
methods exploit the known information such as pilot. In this
article, only the pilot-assisted channel estimation method
will be investigated.

Some classical channel estimation algorithms have been
proposed by many scholars. Least squares (LS) [6] is the
simplest channel estimation algorithm that utilizes the least-

squares criterion with a simple structure and low compu-
tational complexity, but the LS algorithm ignores the effect
of the noise term on the results and is easily affected by the
noise. Another classical algorithm is the linear minimum
mean square error (LMMSE) algorithm [7], which requires a
priori statistical information of the channel. Although the
LMMSE algorithm has a low bit error rate (BER) and mean
square error (MSE) under low signal-to-noise ratio (SNR)
conditions, it requires a large number of matrix inversion
operations, which has high computational complexity and is
not easy to implement. In order to make a tradeoff between
the LS algorithm and the LMMSE algorithm, an improved
LS algorithm based on the transform domain has gradually
come into focus. -e performance, as well as the compu-
tational complexity of the channel estimation algorithm base
on discrete Fourier transform (DFT) [8], is between the LS
algorithm and the LMMSE algorithm. -e DFT-based
channel estimation algorithm is easy to implement and is a
widely used channel estimation algorithm with a complexity
and performance tradeoff [9]. -e DFT-based algorithm
mainly exploits the fact that the channel power is concen-
trated on a relatively small number of channel impulse
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response (CIR) samples, while the noise power is equally
distributed over the entire sample, and the algorithm per-
formance is improved by reducing the impact of noise in the
time domain [10]. However, the traditional DFT-based
channel estimation algorithm does not consider the noise in
the cyclic prefix (CP) length of the CIR, and eliminating the
noise in the CP length of the CIR can further improve the
performance of the DFT-based channel estimation algo-
rithm. In [11], a threshold-based DFT channel estimation
algorithm is proposed, which improves the performance of
the traditional DFT-based channel estimation algorithm, but
the choice of the threshold value has a significant impact on
the performance of the algorithm. Cruz-Roldán et al. [12]
proposed a channel estimation algorithm based on discrete
cosine transform (DCT). Compared with the DFT-based
channel estimation algorithm, the DCT-based channel es-
timation algorithm can reduce the high-frequency compo-
nents in the transform domain, reduce the aliasing error, and
obtain better performance than the DFT-based channel
estimation algorithm. It is suitable for a channel environ-
ment in which the channel delay is a noninteger multiple of
the sampling period. -e improved algorithms of DFT-
based and DCT-based channel estimation algorithms are
basically to eliminate the noise within CP length in CIR by
setting the threshold in the transform domain. Wang et al.
[13] propose a way to improve the performance of the LS
algorithm using wavelet transform to eliminate noise. After
the LS algorithm, the channel information obtained for the
first time is decomposed, denoised, and reconstructed by
wavelet, and the channel estimation after noise removal is
obtained. He [14] proposes a method that uses K-means
clustering analysis to distinguish noise from signal and
selects significant taps to remove the noise. -e computa-
tional complexity of the algorithm is very high, and it is
difficult to implement in applications. But it provides a way
to eliminate noise and improve the performance of the
algorithm by classifying the noise and the important taps.

-e existing algorithms are mainly improved on the
basis of LS, and the performance of the algorithm is im-
proved by removing noise interference. -erefore, in order
to improve the channel estimation accuracy of OFDM
systems and achieve ultrareliable transmission, it is signif-
icant to study efficient and robust channel estimation al-
gorithms. To solve this problem, this study mainly improves
the channel estimation based on the transform domain.
After the estimation value of the channel estimation is
obtained by the LS algorithm, wavelet denoising (WD) is
performed first to suppress the noise, and then distance
decision analysis (DDA) is used in the transform domain to
select the significant channel taps to further suppress the
interference of noise and filter out the significant channel
tap. -e simulation results show that the algorithm effec-
tively suppresses the noise in samples, with better perfor-
mance and lower BER.

2. OFDM System Model

We consider an OFDM system that consists of N sub-
carriers, and each subcarrier consists of data symbol X(k).

X(k) is the frequency-domain symbol which is modulated
on the kth subcarrier. -en the transmitted OFDM signal
can be expressed as

x(n) �
1
N



N−1

k�0
X(k)exp j2π

nk

N
 , 0≤ n≤N − 1, (1)

where n is the time-domain sample index of an OFDM
signal.

In OFDM systems, the last L samples of each OFDM
symbol are copied and placed before the symbol as a CP,
which is used to maintain intersymbol orthogonality and
avoid intercarrier interference (ICI). It is assumed that the
guard interval is longer than the channel maximum delay
and that the synchronization is perfect. As the signal may be
subject to multipath fading and additive white Gaussian
noise (AWGN) pollution during transmission, at the re-
ceiver side, the time-domain OFDM symbol obtained by
removing CP from the received signal can be expressed as

y(n) � x(n)⊗ h(n) + ω(n), 0≤ n≤N − 1, (2)

where ⊗ denotes cyclic convolution, h(n) � 
LD−1
l�0 αlδ(n −

τl) denotes the time CIR, LD is the length of the CIR, αl

represents complex gain that is complex Gaussian, and τl

denotes the delay of the lth path.
In the frequency domain, the received signal can be

expressed as

Y(k) � X(k)H(k) + W(k), 0≤ k≤N − 1, (3)

where X(k) is the transmitted signal, Y(k) is the received
signal, H(k) is the channel frequency response (CFR) of the
multipath channel, and W(k) is the additive white Gaussian
noise.

3. Channel Estimation

3.1. LS Channel Estimation. LS channel estimation is the
simplest channel estimation algorithm, which does not need
any prior information about the channel. It can be known
from equation (3) that, in order to obtain the CFR of the
pilot signal X(k) in the signal transmission process, the LS
algorithm can obtain HLS(k) by

HLS(k) �
Y(k)

X(k)
� H(k) +

W(k)

X(k)
. (4)

From equation (4), it can be seen that the LS algorithm
does not take into account the interference of noise on the
results, which leads to the large MSE of the LS algorithm.
-erefore, the LS algorithm is only suitable for the channel
environment with large SNR.

-e individual MSE of kth subcarrier [5, 10] is

MSELS(k) �
β

SNR
, (5)

where SNR � E(|X(k)|2)/σ2ωt is the average SNR,
β � E(|X(k)|2)E(|X(k)|− 2) is a constant depending on
signal constellation (e.g., β � 1 for QPSK and β � 17/9 for
16-QAM), and E(·) denotes expectation operation.
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3.2. Transform Domain-Based Channel Estimation.
Transform domain-based channel estimation mainly in-
cludes DFT-based channel estimation and DCT-based
channel estimation. Transform domain-based channel es-
timation exploits the property that the CIR energy is mainly
concentrated in the first few sample points and the length
generally takes CP length L [10]. -erefore, the interference
of noise on channel estimation can be reduced by directly
nulling the noise component beyond the CP length in the
transform domain, which is the reason that the estimation
accuracy of the transform domain-based channel estimation
algorithm is higher than that of the LS algorithm [15].
However, the traditional transform domain-based channel
estimation does not consider the noise interference within
the CP length.

For that channel estimation algorithm based on DFT,
due to the implicit periodicity of DFT, i.e., when the original
data are discontinuous, performing DFT operation can
generate additional high-order component, which can easily
cause aliasing in the subsequent interpolation process. In
order to reduce these high-order components, the original
data can be symmetrically processed before DFTto construct
an even symmetric signal. Using the even symmetry
property of DFT, the DFT operation is carried out for the
dual symmetric signal. Except for the boundary junction, no
new high-order components are added in the even sym-
metric processing, which can well inhibit the energy spec-
trum leakage generated by the DFT processing [16]. DCT-
based channel estimation is proposed based on the above
principle, which can concentrate the signal energy in the
low-frequency part, reduce the influence of the high-

frequency term, and effectively suppress energy leakage [17].
-is method is mainly designed to obtain better channel
estimation results when the channel delay is a noninteger
multiple of the sampling period.

In the transform domain, the basic block diagram of the
algorithm is shown in Figure 1.

Convert HLS(k) to the time domain by IDFTand IDCT,
respectively,

hLS(n) � IDFT HLS(k)  or IDCT HLS(k) 

� h(n) + w(n), 0≤ n≤N − 1,
(6)

where IDFT ·{ } denotes N − point IDFTand IDCT ·{ } denotes
N − point IDCT.

hLS(n) obtained by formula (6) can be divided into two
parts: significant channel taps and noise mixing within the
CP length and noise-only portions outside the CP length

hLS(n) �
h(n) + w(n), 0≤ n≤ L,

w(n), else.
 (7)

From equation (7), for the noise component outside the
CP length in CIR, we eliminate the noise by directly setting it
to zero

hTran′ (n) �
hLS(n), 0≤ n≤L,

0, else.

⎧⎨

⎩ (8)

-e transform domain-based channel estimation is
denoted as

HTran(k) � DFTN
hTran(n)  orDCTN

hTran(n) , 0≤ k≤N − 1. (9)

-e individual MSE of the transform domain-based
channel estimation is given as [4]

MSETran(k) �
L

N

β
SNR

. (10)

It can be seen that the traditional channel estimation
algorithm based on the transform domain does not consider
eliminating the noise term within CP length. An improved
threshold-based DFT channel estimation algorithm is pro-
posed in [10]. -e noise estimated outside the CP length in
CIR is used to reduce the noise interference inside the CP
length in CIR. -e selection of the threshold greatly affects
the algorithm. In the following section, we propose a method
of screening important taps which is different from the
threshold method.

4. Proposed Channel Estimation

-rough the previous detailed description of the existing
algorithms, it can be found that, for the channel estimation
algorithm based on the transform domain, the key to im-
prove the performance of the algorithm is to better remove

the noise component in the transform domain. In this part,
we propose an improved algorithm based on WD and DDA
to remove the noise in CP length in CIR, which is based on
the transform domain channel estimation algorithm. In
order to better reduce the interference of noise on the
channel estimation algorithm, after completing the LS al-
gorithm, we first performWD on HLS(k). -en, the channel
estimation in the transform domain is performed, and DDA
is used to further remove the residual noise in the transform
domain.

4.1.Wavelet Denoising (WD). Compared with DFT, discrete
wavelet transform (DWT) has the ability to represent local
characteristics of channels in both frequency domain and
time domain [18]. -e main process of the wavelet threshold
denoising method is shown in Figure 2. Using the multi-
resolution analysis characteristics of wavelet, appropriate
wavelet bases are selected, and the signals are subjected to
wavelet decomposition at different scales to obtain the
corresponding scale coefficients and wavelet coefficients.-e
appropriate threshold and threshold functions are selected
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to process the wavelet coefficients and filter the noise. Fi-
nally, wavelet reconstruction is performed to obtain the
denoised signal.

-e basic steps of wavelet threshold denoising are as
follows:

Step 1: selecting an appropriate wavelet base to carry
out DWT on the noisy signal
Step 2: wavelet decomposition is performed, and the
appropriate threshold is selected for the detailed co-
efficients decomposed by wavelet to denoise with
wavelet shrinkage
Step 3: based on the denoised detail coefficient and the
scale coefficient, wavelet reconstruction is carried out to
obtain a denoised signal

In the decomposition and reconstruction process, we
choose to use the Mallat algorithm [19], which is shown in
Figure 3.

In Figure 3 ↓2 indicates downsampling 2 times and ↑2
indicates up-sampling 2 times. -e HPF is a high-pass filter,
and the LPF is a low-pass filter. C(n − 1) denotes an ap-
proximation component, and D(n − 1) denotes a detail
component. In wavelet analysis, the approximate compo-
nent is low-frequency information and the detailed com-
ponent is high-frequency information. For a signal
containing noise, the noise component is mainly concen-
trated in the detail component.

In the process of wavelet denoising, there are two pa-
rameters that hinder its performance: (1) the choice of
wavelet basis function and (2) setting of threshold function
[20]. In the selection of wavelet basis function, Haar wavelet
which is suitable for signal continuity is chosen in this study.
Wavelet shrinkage is used to denoise the high-frequency
coefficient components with threshold [21].

λ � σ
�������

2 log N



, (11)

where σ � MAD/0.6745, in which MAD is the middle value
of the absolute value of the first-level wavelet decomposition
coefficient. -e threshold function selects the traditional
hard threshold [22] to distinguish the detailed coefficients

D′(n − 1) �
D(n − 1) − λ, |D(n − 1)|> λ,

0, else.
 (12)

We useWD to denoise HLS(k) which was obtained from
the LS algorithm in equation (4) and get HWD(k) after
denoising.-en, hWD_DFT(n) or hWD_DCT(n) can be obtained
through IDFT or IDCT transform by HWD(k), respectively,
and significant channel taps are screened in the transform
domain.

4.2. Distance Decision Analysis (DDA). In Section 3.2, we
discuss some denoising methods in channel estimation al-
gorithm based on transform domain, which is mainly to set
that threshold to remove the noise, but using CIR power out
of CP length as the threshold is not accurate enough. De-
cision analysis is a typical multivariate statistical analysis
method for classification studies, which usually uses a
certain “distance” for classification [23]. For the selection of
significant channel taps in channel estimation, we consider
that if the Euclidean distance is used for classification, the
single factor is considered, so we propose to use the
Mahalanobis distance for DDA, replacing the threshold set
by the mean value of the CIR power beyond the CP length.
-e Mahalanobis distance was proposed by the Indian
statistician Mahalanobis (P. C. Mahalanobis) and repre-
sented the covariance distance of the data [24]. It is cal-
culated as follows:
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Figure 1: Transform domain-based channel estimation.
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d
2
(x) � (x − μ)

T


− 1

(x − μ), (13)

where  denotes covariance matrix, x is the variable to be
studied, and μ � mean (x).

-e centroids of noise variance and significant channel
taps variance are different, and the distance between the
unclassified point and the centroids of the two is calculated
to distinguish and classify. Before the first DDA, the length
of CP in CIR is considered as the initialization significant
channel taps, and the rest is considered as noise.

-e main steps are as follows:

Step 1: define an average of noise
μWT � 1/(N − L)

N−1
n�L |hWD_Tran(n)| and an average of

important taps μ0ST � 1/L
L−1
N�0|

hWD_Tran(n)|,
respectively.
Step 2: after obtaining the above parameters, they are
substituted into equation (13) and we can obtain

d
2
ST

hWD_Tran(l)  � hWD_Tran(l) − μST 
T


− 1
hWD_Tran(l) − μST ,

d
2
WT

hWD_Tran(l)  � hWD_Tran(l) − μWT 
T


− 1
hWD_Tran(l) − μWT .

(14)

To determine whether the value of l(0≤ l≤L − 1)

is a significant channel tap, we define a decision
function

A(l) � d
2
ST(l) − d

2
WT(l). (15)

If A(l)< 0, it is a significant channel tap. If A(l)> 0, it
belongs to the noise class. Record the significant
channel tap positions.
Step 3: update the covariance matrix and the average,
and return to Step 2 to traverse l

μi+1
ST �

1
L

i+1 μi
ST · L

i
− hWD_Tran(l)



 , (16)

where Li+1 � Li − 1.
Step 4: when all l have been traversed, the following
judgment condition is executed, i.e., setting the non-
significant taps to zero.

hWD_Tran_DDA(n) �
hWD_Tran(n), n ∈ ST,

0, n ∉ ST,
0≤ n≤N − 1.

⎧⎨

⎩

(17)

Step 5: transform the result of time domain to fre-
quency domain.

4.3. WD-DDA-Based Channel Estimation in the Transform
Domain. In this section, we present an improved channel
estimation algorithm in the transform domain based onWD
and DDA. -e principal block diagram of the improved
algorithm is shown in Figure 4.

After the LS algorithm, WD is added. HLS(k) is
decomposed by wavelet denoising algorithm, and high-
frequency components are denoised by threshold. -en
wavelet reconstruction is performed to complete the initial
denoising of HLS(k), and HWD(k) is obtained. IDFT or
IDCT is then performed to complete the transform domain
channel estimation. In the transform domain, we propose an
improved algorithm based on DDA, which applies the
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Figure 3: Two-level decomposition and reconstruction of the signal.
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Mahalanobis distance to DDA, divides hWD′ (n) into noise
class and important tap class, and makes a decision to get
h′(n). And finally, perform DFT or DCT to obtain the
channel estimation H′(k).

-e MSE of the improved algorithm is

MSEWD−DDA(k) �
LWD−DDA

N

β
SNR

, (18)

where LWD−DDA is the number of significant channel taps
selected by the improved algorithm and LWD−DDA <L.

By comparing equations (5), (10), and (18), we can get

MSEWD−DDA(k)<MSETran(k)<MSELS(k). (19)

Compared with the threshold-based channel estimation
algorithm in the transform domain, the improved algorithm
proposed in this study can distinguish the noises better and
filter the residual noises by constantly updating the centroids
(average of variances) of the two classes when making the
decision analysis of noises and important taps for the
sampling points in CP length in CIR.

5. Simulation Results

In this study, Matlab is used as a simulation platform to
verify the proposed algorithm, and the simulation param-
eters are shown in Table 1. In order to reflect the perfor-
mance of the improved algorithm in the wireless channel
more realistically, the whole simulation environment is built
by simulating the actual Physical Broadcast Channel
(PBCH) in 5G new radio (NR) under the tapped delay line
(TDL-A) [25] channel environment. -e channel parame-
ters of TDL-A are shown in Table 2. In the simulation
environment of Table 1, the abovementioned value of β is 1,
and L � 288 is the length of CP. However, LWD−DDA of the
improved algorithm is not fixed. It will float with the change
of the channel environment. When the channel environ-
ment is good, the noise within the CP length can be filtered
better. When the channel environment is poor, the noise-
filtering effect within the CP length will be reduced.
However, the floating range of the number of selected
important channel taps is generally between L/3 and L.
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Figure 4: Block diagram of the proposed algorithm.

Table 1: Simulation parameters.

Parameter Value
Numerology (μ) 3
Carrier frequency 4GHz
Channel bandwidth 100MHz
Sampling frequency 122.88MHz
Modulation QPSK
FFT size (N) 4096
Cell ID 4
CP Normal
Eb/N0 0 to 20 dB
Channel model TDL-A
Wavelet base type Haar
β 1
L 288

Table 2: Power delay profile of TDL-A channel [24].

Normalized delay Power in dB Fading distribution
0.0000 −13.4 Rayleigh
0.3819 0 Rayleigh
0.4025 −2.2 Rayleigh
0.5868 −4 Rayleigh
0.4610 −6 Rayleigh
0.5375 −8.2 Rayleigh
0.6708 −9.9 Rayleigh
0.5750 −10.5 Rayleigh
0.7618 −7.5 Rayleigh
1.5375 −15.9 Rayleigh
1.8978 −6.6 Rayleigh
2.2242 −16.7 Rayleigh
2.1718 −12.4 Rayleigh
2.4942 −15.2 Rayleigh
2.5119 −10.8 Rayleigh
3.0582 −11.3 Rayleigh
4.0810 −12.7 Rayleigh
4.4579 −16.2 Rayleigh
4.5695 −18.3 Rayleigh
4.7966 −18.9 Rayleigh
5.0066 −16.6 Rayleigh
5.3043 −19.9 Rayleigh
9.6586 −29.7 Rayleigh
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Because this study studies the channel estimation al-
gorithm of the OFDM system, we assume in the simulation
that the synchronization process in the previous step of the
receiver is perfect. For wavelet denoising, 2 layers are se-
lected for wavelet decomposition level. For the simulation
results, the MSE and BER are chosen as the measurement
criteria. Simulations were carried out to compare the LS
algorithm, the threshold-based DFTchannel estimation, and
the threshold-based DCT channel estimation.

Figures 5 and 6 are the MSE performance curves and
BER performance curves of the five algorithms in the TDL-A
channel environment, respectively. It can be clearly seen that
although the LS algorithm is simple to implement, the
threshold-based transform domain channel estimation al-
gorithm is superior to the LS algorithm in both MSE and
BER. Moreover, the MSE and BER of the improved algo-
rithm proposed in this article are significantly superior to the
threshold-based channel estimation algorithm, and it can
achieve better performance in the case of a poor channel
environment. Simulation results verify that the performance
of noise cancellation after WD and DDA processing is better
than the performance of the threshold-based transform
domain channel estimation algorithm. With the increase of
SNR, the interference of noise decreases, and its perfor-
mance gradually approaches that of the threshold-based
transform-domain channel estimation algorithm.

-e 5G NR PBCH uses QPSK to modulate and de-
modulate the signal, and a comparison of the constellation
diagrams of the received signal after equalization using
different channel estimation algorithms is shown in Figure 7.
It can be seen that, at SNR� 14 dB, the constellation diagram
of the WD-DDA algorithm is more aggregated compared to
the other two algorithms, allowing for a high-quality re-
covery of the data.

To quantify the performance gap between these algo-
rithms, we performed a comparison by calculating error
vector magnitude (EVM). -e EVM is the difference be-
tween the ideal signal and the equalized measured signal
[26]. -e EVM value is proportional to the BER. Mathe-
matically, we define the error vector Ek for the kth subcarrier
as

Ek � Ik − Ik 
2

+ Qk − Qk 
2
, (20)

where Ik and Qk are the ideal in-phase and quadrature
components of kth subcarrier, respectively, and Ik and Qk

are the measured versions.
For the demodulated QPSK signal, the equation for EVM

can be defined as [27]

EVM �

����������������

1/N 
N
k�1 Ek

1/N 
N
k�1 I

2
k + Q

2
k 




, (21)

where N is the number of subcarriers.
After calculation and analysis, the EVM values of signals

(b), (c), and (d) in Figure 7 are, respectively, 18.331%,
17.105%, and 15.919%. -e larger the value of EVM, the
higher the degree of signal degradation and the larger the

error of the recovered signal. On the contrary, the lower the
degree of deterioration, the smaller the signal error.
According to the constellation diagram, when the signal-to-
noise ratio is fixed, the constellation diagram aggregation of
LS algorithm is not strong, and the constellation diagram of
DFT algorithm is relatively aggregated, while the constel-
lation diagram aggregation is better when WD-DDA al-
gorithm is adopted. From the perspective of EVM, an
increase in the EVM value may result in overlapping states
between symbols of different phases, whichmay lead to error
codes. -e EVM value of the improved algorithm proposed
in this study is relatively smaller than that of the existing
algorithm, and the antinoise performance is improved.
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Figure 5: MSE performance of different algorithms.
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-e computational complexity of channel estimation
based on transform domain is O(NL) [13]. For DWT,
IDWT, and the application of threshold function, the
computational complexity is O(N) [28], the algorithm
proposed in this study only needs a simple operation to
calculate the average value, standard deviation, and so on in
the WD part and does not need complex calculus operation.
-e DDA part is also a single traversal, so the computational
complexity required to improve the algorithm is
O(N(L + 1) + L). Although the improved algorithm adds a
small amount of computational complexity, it still has a
performance gain of about 1 dB in the acceptable range.

6. Conclusion

In this study, the existing channel estimation algorithms in
OFDM systems are discussed, and an improved channel
estimation algorithm in the transform domain based onWD
and DDA is proposed. Using WD and DDA for secondary
filtering of noise within the CP length in CIR, the inter-
ference of noise on the selection of significant channel taps
in the channel estimation algorithm is effectively suppressed.
Simulation results and analysis also show that the proposed
improved algorithm has lower BER compared to the
threshold-based transform domain channel estimation al-
gorithm at low signal-to-noise ratios.

Although the performance of the improved algorithm
proposed in this study has been improved, in theWD part,
only a relatively simple Haar wavelet basis function is
selected to implement. In the follow-up work, more in-
depth research may be conducted in this part of WD to
explore whether there is room for performance im-
provement. At the same time, for the DDA part, the future
work can consider whether to reduce some computational
complexity as much as possible on the premise of ensuring
performance.
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