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-e pedestrian dead reckoning (PDR) technique is widely used due to its ease of implementation on portable devices such as
smartphones. However, the position error that accumulates over time is the main drawback of this technology. In this paper, we
propose a fusion method combining a PDR technique and the landmark recognition methods for multi-floor indoor envi-
ronments using a smartphone in different holding styles. -e proposed method attempts to calibrate the position of a pedestrian
by detecting whether the pedestrian passes by specific locations called landmarks.-ree kinds of landmarks are defined, which are
the WiFi, the turning, and the stairs landmarks, and the detection methods for each landmark are proposed. Besides, an adaptive
floor detection method using a barometer and a WiFi fingerprinting technique is suggested for tracking a pedestrian in a multi-
floor building. -e developed system can track the pedestrian holding a smartphone in four styles. -e results of the experiment
conducted by three subjects changing the holding style in a three-floor building show the superior performance of the proposed
method. It reduces the error rate of positioning results to less than 57.51% compared with the improved PDR alone system.

1. Introduction

In recent years, the attention and demand for indoor lo-
cation-based services have been increasing due to its wide
range of applications such as emergency rescue and sur-
veillance in buildings. -e global navigation satellite system
such as the global positioning system (GPS) typically works
well for outdoor environments, but in the case of indoor
ones, it fails to provide good results. Two types of indoor
localization systems that attract a lot of attention are the
radio-based methods and the dead reckoning technique for
pedestrian localization, known as pedestrian dead reckoning
(PDR) [1]. -e former can solve the localization problem in
two ways: the triangulation and the fingerprint. -e major
limitations of this type of technique are time-consuming and
expensive initial installation costs. -e latter type, which
uses inertial sensors to estimate the displacement of the user
based on the user’s previous position, is also a promising
technique due to the absence of any infrastructure. -e PDR

only requires lightweight and inexpensive sensors which can
be found easily on many portable devices such as smart-
phones, smartwatches, and tablets. Its major drawback,
however, is the accumulation of errors over time or distance
traveled. To handle this problem, some researchers have
applied different kinds of filters such as the Kalman filter
[2–5] or the particle filter [6–9]. Some researchers used
special locations such as stairs or corners, to calibrate the
position of the user. -e WiFi fingerprinting technique is
one example that can help the PDR system [10–14]. Activity-
based map matching [15, 16]focuses on the detection of
different activities or events such as taking the escalator or
elevator and going up or downstairs. Magnetic-based map
matching methods [7, 17, 18] have also been suggested to
improve the performance of the conventional PDR system.
-ese works can be considered as fusing schemes of a PDR
technique and attempts to remove the cumulative errors.

We propose a fusion method combining a PDR tech-
nique and the landmark recognition methods for multi-floor
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indoor environments using a smartphone in four holding
styles. -e proposed method attempts to calibrate the po-
sition of a pedestrian by detecting whether he or she passes
by specific locations called landmarks. -ree kinds of
landmarks are defined, which are the WiFi, the turning, and
the stairs landmarks, and the detection methods for each
landmark are proposed. In addition, a simple but robust
floor detection method using a barometer and a WiFi fin-
gerprinting technique is suggested. Due to this floor de-
tection capability, the developed system can track a
pedestrian walking in a multi-floor building. -e main
contributions of this work are listed as follows:

(i) A hybrid pedestrian localization method is pro-
posed. -e method tries to track the position of a
pedestrian holding a smartphone in four styles
based on the outputs of an improved PDR and
landmark recognition.

(ii) -ree kinds of landmarks as the compensators are
introduced to correct the errors, and methods to
detect the landmarks are proposed.

(iii) A robust method to estimate the current floor level
and the detection of interfloor changes is suggested.
-e proposed approach uses the advantages of the
WiFi fingerprinting technique and a barometer.

(iv) -e proposed method is implemented on the An-
droid platform to evaluate the performance in real-
time. Various experiments were conducted to verify
the usefulness of the proposed method. In partic-
ular, the performance according to the four holding
styles was analyzed. Based on the experimental
results, a comparative analysis was performed with
other related approaches.

2. Related Works

Harle [1] made a survey for developments in the dead
reckoning for walking users and hybrid systems using PDR
techniques. He reviewed several techniques for detecting the
walking step, estimating the step length, and calculating the
heading of the user for two types of localization systems, the
inertial navigation systems (INSs), and the step and heading
systems (SHSs). He concluded that the traditional PDR
approach can work well in a short-to-medium term tracking,
but it needs the help of other absolute localization systems.

To calibrate a PDR system, radio signal-based systems
have been developed. Zhuang et al. [3] provided an inte-
grated system that consists of PDR, INS, and WiFi. -e
proposed system used the extended Kalman filter to com-
bine the position information from PDR/INS/WiFi com-
ponents. -e average accuracy of the system is 4.5m. -e
same approach was developed by Deng et al. [11] which also
used the extended Kalman filter to fuse different information
from PDR, WiFi, and some special locations (i.e., elevators,
escalators, and doors) in order to reduce the error. -e
average positioning error of this method was only 1.22m.
With the support of the Bluetooth beacons, a 2m precision
PDR system was demonstrated by Li et al. [19]. Using the

RFID, Seco and Jimenez [20] applied the particle filter to fuse
the information of PDR and active RFID nodes, resulting in
an under-2m error. -e suggested infrastructure-assisted
PDR approaches could reduce considerably the amount of
time and effort of making the preliminary offline map
construction, compared with the system without PDR ca-
pability. Wang et al. [14] suggested a fusion method called
landmark-aided PDR (LaP) to correct the cumulative error
from the PDR by detecting landmarks. -ey defined WiFi
signal-based landmarks and the turning activity landmark.
Despite its simplicity, the method performed better than
other complex methods.-e basic idea of this fusionmethod
is the same as ours, but our proposed method is different in
that it defines and recognizes more landmarks, responds to
various holding styles, and applies to multi-floor
environments.

Activity-based map matching methods also can calibrate
the position error by detecting user’s activities and matching
their activities to corresponding specific positions. Elhoushi
et al. [16] attempted to classify the activities of a pedestrian
between walking on a floor plan or stairs and taking an
escalator or elevator. Based on each detected activity, they
treated their PDR system in different ways. A better posi-
tional accuracy was shown at the endpoint with 2.2m. Park
et al. [21] suggested a calibration method of PDR using the
hidden Markov model (HMM) and a detection method of
corners as landmarks using a magnetometer and an accel-
erometer. Zhou et al. [15] have proposed an interesting
hybrid PDR system called the activity sequence-based in-
door pedestrian localization system, which uses HMM and
the detection of special activities such as turning at a corner,
taking the elevator or escalator, and walking stairs. Using
HMM and the introduction of a network of nodes
(equivalent to landmarks), they could release the assumption
that the system knows the initial position in prior.

-e PDR technique can only estimate the position on a
plane. To make it possible to multi-story buildings, a lo-
calization system could recognize the floor level. It is often
thought that the conventional WiFi fingerprinting method
solves this problem easily; however, it is not due to the
complexity or the irregularity of the structure of a building.
Zhao et al. [22] pointed out that at well-partitioned areas
(i.e., thick ceilings), the difference of the received signal
strength indicator (RSSI) values between two adjacent floors
is large so it could be used to estimate the floor level.
However, at hollow areas (i.e., stairways), the signal variation
and the small signal propagation attenuation between ad-
jacent floors will make it impossible to identify the floor level
well. Elbakly et al. [23] attempted to estimate the floor level
using a neural network. -e proposed method achieved an
accuracy of over 90%.

Nowadays barometers are widely integrated into many
smartphones, so they can be used to determine the floor
level. -e major problems of using barometers are device
heterogeneity and variations due to the changes in tem-
perature and wind. Shen et al. [24] and Zhao et al. [22]
suggested hybrid floor identification methods that utilize the
advantages of WiFi and barometers. -ese systems can
achieve accuracies of floor detection of over 95%. -is is
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different from our system, which uses a simple but robust
adaptive lookup table approach. Our floor detection method
uses the Wifi fingerprinting method and a barometer like
this approach; however, unlike previous studies, it uses the
idea of applying two methods separately depending on the
stationary and moving state. -e proposed method uses an
adaptive lookup table to provide a simple but robust
performance.

3. The Proposed Method

3.1. Overview. A block diagram of the proposed system is
shown in Figure 1, which is composed of three main
components: the improved PDR, landmark recognition, and
floor detection. A position coordinator is also included in the
diagram. -e system operates in two modes, the stopping
mode and the walking mode. When the user does not walk
for more than 10minutes, the system is set to the stopping
mode. If a new walking step is detected, then it is set to the
walking mode.

-e improved PDR component (i-PDR) means a con-
ventional PDR method with an improved capability of step
detection, step length estimation, and measuring the
heading of walking using the recognition of holding styles,
which was reported in our previous works [25, 26].

One major advantage of our proposed method is freeing
the user from a fixed smartphone holding style, by recog-
nizing four styles: holding the phone in one’s hand in front
of the body (HA), holding the phone parallel to the ears like
calling (CA), swinging the phone during walking (SW), and
putting the phone into the pants’ pocket at the front (PO).
-e holding styles are classified using a decision tree method
(J48 classifier) with 30 features. -e accuracy of the clas-
sification is over 99%. Based on the detected holding style,
our approach then uses different methods to detect a new
walking step and to estimate the step length. It is well known
that a remaining critical issue in PDR is the estimation of the
walking direction [27]. -e proposed heading estimation
method uses the quantization technique with hysteresis
property that themeasured heading is mapped to one among
the eight directions. -e central value of each direction was
chosen according to the major directions of the corridors in
given buildings. -is idea is similar to the proposed ap-
proach using dominant directions by Ju et al. [28]. -e PDR
component outputs a 2D position as (x (t), y (t)). -e
sampling frequency of the reading sensors is 30Hz. -e
moment of detecting a new step is considered as another
kind of major sampling time.

-e landmark recognition component detects whether
the user walks on the landmarks. -ree kinds of landmarks
are defined. Firstly, the WiFi landmarks are the same as the
reference points (RPs) in the typical WiFi fingerprinting
system. As the WiFi fingerprinting system operates at the
running phase, this module estimates the current position by
comparing the current measurement of RSSI with the
landmarks. If some conditions are met, the recognition
component produces the position of the detected landmark
as a calibration position (xc, yc). If we select the WiFi
landmarks carefully, we can get a very good result with a

much smaller number of RPs compared with the conven-
tional WiFi fingerprinting systems. -e costs of the radio
map construction therefore can be reduced. -is WiFi
landmark detection has two roles. One determines the initial
position with the assumption that the user starts from a
certain WiFi landmark. -e other determines whether the
user passes by the area of one WiFi landmark during
walking. Next, the turning activities could be used to match a
specific location with a given map. -e turning landmarks
are defined at specific corners (normal turning) and loca-
tions of dead ends (U-turning). -e module detects the
user’s behavior through the corners using the inertial sen-
sors. -e developed method uses only the changes of
heading in consecutive walking steps. Lastly, the detection of
the stairs landmark uses the results of the turning detection
and floor estimation. In our work, we assumed the shape of
the stairs includes an intermediate area, where the user
should turn around. -is module, therefore, checks the
conditions of the changes in altitude and turning behavior.

At every new step detection, the position coordinator
determines the current position based on the outputs from
both components. -e system updates the position with the
given position (xc, yc) of the landmark whenever it was
detected.

-e two roles of the floor detection component are to
estimate the current floor level and to detect the changes
between floors. To handle the limitations of using only the
barometer, an adaptive approach is suggested.-e basic idea
is to use the barometric pressure measurements only in short
terms. It uses the results of the WiFi module whenever the
user does not move.-is simple adaptation strategy can help
to reduce the search burden for the WiFi landmarks while
the user walks, by searching only the landmarks on a given
floor. We used the discrete value, zFL (t), for the floor level.

3.2. Landmark Recognition. -is section describes the def-
inition of landmarks and their recognition method in detail.
-e common data structure of three landmarks is defined as
{the ID, the type of landmark, the calibration position (xc,
yc), the floor level, the data if it is needed}. -e meaning of
each attribute could be easily understood by its name. -e
last field could be any sort of data for the given landmark.
For the WiFi landmark, it should be a set of fingerprint data,
and it is none for the turning landmark.

3.2.1. WiFi Landmark. As described earlier, the WiFi
landmark is the same RP as those in typical WiFi finger-
printing systems, which means that the WiFi landmark has
its fingerprint from the training (or radio map building)
phase. In our work, the fingerprint is defined as five pieces of
paired data, which are the ID of the access point (AP) and
the mean value of RSSI from the AP. Five APs with the
strongest signal strength when the device collects the signal
at the landmark are chosen. -e matching error is the
Euclidean distance between the measured RSSI and the
fingerprint value of the landmark. Our scheme could show
good performance for detecting the landmarks even when
using a limited number of APs.
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In the stopping mode, the module estimates the position
of the user among all WiFi landmarks as the initial position.
Here, we assumed that the initial position of the user is one
of the WiFi landmarks. -e module finds the landmark that
shows the minimum matching error among the landmarks
locating on the floor, which is determined from the floor
detection component as

(x(t), y(t)) � xc, yc(  of the landmark min
i

ei(t) , (1)

where ei(t) is the matching error of the landmark (i).
-e estimation of the initial position is very important

because the PDR can only provide incremental or relative
changes in position. Using floor detection, the module could
reduce the searching burden.

After the estimation of the initial position, the module
operates in the walking mode. When the pedestrian walks,
the module finds the events that the user passes through a
WiFi landmark. At every scanning of the WiFi signals, the
module computes the following features:

F1: find the landmark (i), min
i

ei(t) .
F2: calculate the geographic distance dg(t) as

dg(t) � (x(t), y(t)) − xc, yc( 
����

���� of the landmark (i). (2)

F3: calculate the escaped feature, Nesc (t), which is de-
fined as the cumulative number of walking steps since the
last WiFi landmark detection event. -is is reset to zero
when a WiFi calibration occurs. -is feature can solve the
recalibration problem that occurs before the user escapes the
area covered by a WiFi landmark.

-en, the module tests the following conditions:

min
i

ei(t) <Th1,

dg(t)<Th2,

Nesc(t)>Th3.

(3)

If these conditions are met, then the module notifies the
coordinator about the detection of a WiFi landmark by
providing the calibration position (xc, yc) of the landmark.

3.2.2. Turning Landmark. -e i-PDR component can esti-
mate the heading of walking accurately based on the rec-
ognized holding style as shown in our previous work [25].
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Figure 1: A block diagram of the proposed system.
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-e recognition method for turning landmark uses the
change of heading directly. -e method uses two features,
the average value of the angular velocity, ω60, and the dif-
ferences between heading changes, ΔH. -e calculations
involved in these features are given as follows:

F1: ω60(t) is calculated as

ω60(t) � mean(‖ω(t − k)‖), k � 1, . . . , 60, (4)

where ω is the angular velocity vector from the gyroscope
sensor and ω60 is the average value of the last 60 samples (2 s)
of the magnitude of the ω vector.

F2: ΔH(t) is calculated as

ΔH(t) � H(t) + H t1( (  − H t2(  + H t3( ( 


, (5)

where H(t) is the heading of the current step and H(ti) is
the heading of the i-th steps before the current step.

When the i-PDR component detects a new step, the
turning module computes two features and tests the fol-
lowing conditions:

ω60 >Th4,

ΔH >Th5⟶ Turn.
(6)

-e feature ΔH(t) reflects the degree of changes in
heading, and the feature ω60(t) represents the degree of
orientation movements.

A pedestrian can randomly turn at places where they are
not landmarks, and this can lead to the wrong calibration. To
solve this problem, the turning module tests the geographic
distance condition (i.e., dg(t)<Th2) in a way as same as in
the WiFi module. -e turning landmark has an inherent
disadvantage in that it cannot be defined in an open space
without corners.

3.2.3. Stairs Landmark. In this work, we assumed that all
stairs have an intermediate area where the user should make
turns. Walking in this area can be recognized by detecting
the turning behavior and the changes in altitude. -erefore,
the stairs module can use the results of the turning detection
module. Moreover, it uses the results of the floor detection
component. -e floor detection component uses the ba-
rometer to recognize the walking state such as going up or
down on stairs and walking on a plain area. It also estimates
the current floor level. When two conditions are met, the
system changes the map for the detected floor and updates
the user position to calibrate the position based on the
detected stairs landmark.

3.3. Floor Detection. A simple but robust floor detection
method is suggested.-is method wants to take advantage of
both the WiFi fingerprinting technique and a barometer
sensor. It is easy to recognize the change of altitude of a
pedestrian by measuring barometric pressure values using a
barometer. -e detection of floor changes for a pedestrian,
however, requires a technique that is more powerful than the
barometer. Specifically, the recognition method needs ad-
aptation capability for the changes of environments and

sensors, among others. -e proposed method operates in
two modes, the stopping mode and the walking mode. In the
stopping mode, the component estimates the current floor
level using a simple WiFi fingerprinting method. In the
walking mode, this component detects the floor change of
the pedestrian using a barometer.

In the stopping mode, the component executes a floor
recognition method based on a voting strategy. At every
scanning of the APs, the scheme calculates the sum of the
matching errors at each floor as

Se(i) �
1

N
i
f



Ni
f

j�1
e

i
j(t), (7)

where Se(i) is the sum of matching errors at floor (i), Ni
f is

the number of RPs at floor (i), and ei
j(t) is the matching

error of RP (j) at floor (i).-e error is calculated based on the
idea from Gansemer et al. [29] as

e
i
j(t) �

����������������



Nj

k�1

RSSk(t) − μj

k 
2

N
j




, (8)

where RSSk(t) is the measured RSS value of AP (k), μj

k is the
mean value of the AP (k) as a fingerprint of the RP (j), and
Nj is the number of APs for RP (j).

-en, the scheme chooses the floor that has the mini-
mum value of the sum, Si, then adds one point to the floor,
and stores the results as a list. -e scanning number,
Nscan � 30, is the length of the list. After processing, each
floor has its score, and the sum of all scores isNscan.-e floor
with the biggest score is the current floor.

In the walking mode, the scheme detects the floor
movements by using a barometer. Whenever a new step is
detected, the scheme calculates the feature as

ΔB(t) � b(t) − b t1( , (9)

where b(t) is the pressure value at the current step and b(t1)
is the pressure value at the previous step. -e moving av-
erage filter with a window size of 20 samples and an overlap
of 60% is used for the output of the barometer. -en, it tests
the following condition:

ΔB(t)<Th6⟶ Up,

ΔB(t)>Th7⟶ Down,

Th7 ≤ΔB(t)≤Th6⟶ Plain.

⎧⎪⎪⎨

⎪⎪⎩
(10)

-e recognized current walking state is used to detect the
stairs landmark. If the up or down walking is recognized,
then the scheme attempts to find the closest floor by
comparing the current pressure value against the given floor
pressure value from a table called the floor lookup table. -e
lookup table has a set of pairs such as floor level and the
averaged pressure value. -e walking state and the current
floor level are used to recognize the stairs landmark.

It is known that the device heterogeneity and the weather
changes affect greatly the result of barometric pressure
measurements. -erefore, the floor level estimation requires
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frequent calibration. Our approach uses the result of the
stopping mode. At every stopping mode, the component
estimates the current floor by using only theWiFi signal, and
then it collects the latest pressure values and updates the
lookup table with the calibrated pressure value of the current
floor.

3.4. Localization System. -e whole proposed localization
system is summarized with the pseudocode in Algorithm 1.
As input parameters, the proposed system requires the 2-
dimensional maps of all floors, the database of landmarks,
and the initial lookup table of the pressure value-floor pairs.
As the first step, the system tries to recognize the current
situation of the user among the stopping or walking mode
with given landmarks and sensor readings. By using the
proposed voting method based on the WiFi RSSI, we can
estimate the current floor and the initial position. -en, the
system tracks the position of the pedestrian by using the
results of the PDR and the landmark recognition
components.

4. Results and Discussion

4.1. Experimental Setup. To evaluate the performance of the
proposed system, several experiments were conducted with
three subjects, two males and one female. A three-floor
building on our campus was used for evaluation. Four kinds
of landmarks are defined in Figure 2 as circles (WiFi), tri-
angles (turning), squares (stairs), and stars (overlapped
landmarks of turning and the WiFi). Each landmark has its
ID number as (i), where i� 1 to 23. -e Samsung Galaxy
Note 4 was used for the experiments.

We use the thresholds as follows:21 � 40m,22 � 6.5m,
23 �15, 24 � 0.5 rad/sec, 25 � 20 degrees, 26 � 0.02 hPa,
and 27 � −0.02 hPa. -e whole system is implemented on
the smartphone (Android platform), which means the
proposed method can run well in real-time.

4.2. Floor and Initial Position Detection. When the subject is
not moving, the scheme detects the current floor level and
then the initial position among the WiFi landmarks with the
same scanned data. It is well known that the WiFi signal is
strongly influenced by the orientation of the device, so we
have experimented with four major directions at each WiFi
landmark. Five trials for each direction were tested on one
landmark, so there were 20 trials per landmark. Table 1
shows the results of floor detection, and the average accuracy
is 98% for 300 trials. -e floor error occurs mostly when the
user is at the landmarks which are nearby the hollow area
such as stairs (i.e., landmarks (14), (15), and (19)). In [22], the
authors showed that it is not easy to discriminate the dif-
ferences of the WiFi signals in the hollow area.

Table 2 shows the results of detecting the initial posi-
tions. -ere are five WiFi landmarks on each floor, a total of
15 landmarks on three floors. As mentioned earlier, if floor
detection is incorrect, then the initial position cannot be
recognized accurately. -e cases of landmarks (14), (15), and
(19) show the wrong results that were induced from the

wrong floor detection. -e average error rate of the initial
position detection is 2% over 300 trials. As discussed by Zhao
et al. [22], in hollow areas such as stairways, the WiFi signal
propagation attenuation between adjacent floors is small.
-erefore, our experimental result also shows that the floor
detection errors occurred at landmark (15) which is located
near the stairways. Table 3 shows the precision, recall, and
F-score of the initial position detection results. -e worst
results are the landmarks (6) of the 3rd floor and (23) of the
1st floor with the precision is 0.91 since sometimes these
landmarks are wrongly recognized as the initial position
while the pedestrian starts to walk from another initial
position such as the landmarks (14) or (15) of the 2nd floor.
-e recalls of these two landmarks of the 2nd floor are lower
than those of others since the system cannot detect these
landmarks correctly.

4.3. WiFi, Turning, and Stairs Landmarks Detection.
During the walking, the subject holds the smartphone with
different holding styles (i.e., HA, CA, SW, and PO).
-erefore, we first evaluated the detection performance of
three kinds of landmarks while the subjects walk with these
four holding styles.

To evaluate the WiFi landmark detection, two subjects
walked across 13 WiFi landmarks on three floors (not in-
clude landmarks (3) and (21)). For each holding style, the
subjects walked six times, which means a total of 78 times
crossing the landmarks. Table 4 shows the result.-e average
error rate is 8.33%. -e error rate of the WiFi landmark
detection for the cases of (HA) and (CA) is lower than those
of (SW) and (PO). In the (SW) and (PO) cases, the motion of
the device is larger than in the other holding styles. We think
it is because the big movement has a bigger effect on the RSSI
values.

For the turning landmark detection, two subjects walked
five times for each holding style on a given path, which
includes 14 turning landmarks. -us, for each holding style,
there are 70 times the subjects turned at the corners. As
shown in Table 5, the case of (CA) gave the worst result
(11.43%, 8 misses) and the case of (SW) showed the best
result (7.14%, 5 misses). Most errors occurred when
changing direction very slowly.

Lastly, two subjects walked a round trip path from the
third floor to the first floor. -is path includes a total of four
times changing the floor. -e experiment was repeated 10
times for each holding style, which means there were 40
trials in total for each one. Table 6 shows the results, from the
best result (only 2 misses) to the worst result (5 misses).

4.4. Tracking Performance. For experiments, three subjects
walked on three given paths as shown in Figure 2. -e first
path is walking on the same floor (the orange line), the
second one is traveling over three floors (the green line), and
the last one is to go back and forth through the long cor-
ridors on the same floor with changing the holding styles
during walking (the indigo-blue line). -e lengths of the
three paths are 48.8m, 277.3m, and 147.0m, respectively.
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Input: maps for all floors: Map(zFL)
Input: landmark database and the floor lookup table
Input: sensor readings up to current time t: d1:t
Output: current floor level and initial position
Output: the detected landmarks
Output: the current position of the pedestrian

(1) CurrentMode� estimateMode (d1:t)
(2) if (CurrentMode�� stopping) then
(3) Estimate the floor and then initial position
(4) Update the floor lookup table
(5) end if
(6) else if (CurrentMode��walking) then
(7) Recognize the holding style
(8) if (detect new step) then
(9) if (plain walking) then
(10) Update the position by the PDR
(11) Test for detecting the landmarks (WiFi, turning)
(12) if (detect a landmark) then
(13) Update the current position to landmark position
(14) end if
(15) end if
(16) else if (walking on stairs) then
(17) Test for detecting the stairs landmarks
(18) if (detect a landmark) then
(19) Change the floor level of the current position
(20) Change the floor map
(21) end if
(22) end if
(23) end if
(24) end if

ALGORITHM 1: Localization method.

3rd floor

2nd floor

1st floor

Stop

Start

Stop
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Figure 2: -e floor plans, three reference paths, and landmarks.
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We assumed that the subjects walk at a normal speed. Each
subject walked three times for a path with a holding style.

Figure 3 shows the trajectories of the proposed method
and the i-PDRmethod for walking on the first path with four
holding styles. In Figure 3, the black line is the reference
path, while the dots and the stars represent the estimated
positions of both methods. -e four colors represent four
holding styles, respectively.-e figure shows that most of the

estimated positions of the proposed method are on the
reference path except for the first part of the (CA) case by
detection of the four landmarks (1, 2, 4, 5). As summarized
in Table 7, the errors at the final position show that the
proposed method is superior to the i-PDR method in all
cases of four holding styles. -e average values of both
measures (mean and RMSE) for four holding styles show
that the proposed method is much less than the i-PDR.
Figure 4 shows the box plots of these errors. An interesting
thing is that the interquartile range of the proposed method
is very small compared with the i-PDR. We think that the
correction by detecting the landmarks during walking
produces this result. All four holding styles showed a re-
duction of errors, but the (PO) and (SW) cases especially
decreased dramatically.

To calculate the position error of each walking step, we
need to know the true position of the step. In this work, the

Table 1: Accuracies and error rates of floor detection.

Recognized 3rd 2nd 1st Error rate (%)
3rd 100 0 0 0.0
2nd 3 95 2 5.0
1st 0 1 99 1.0

Table 2: Errors in initial position detection.

Recognized (1) (2) (3) (6) (7) Position
error

Floor
error

3rd

(1) 20 0 0 0 0 0 0
(2) 0 20 0 0 0 0 0
(3) 0 0 20 0 0 0 0
(6) 0 0 0 20 0 0 0
(7) 0 0 0 0 20 0 0

Recognized (10) (11) (13) (14) (15) Position
error

Floor
error

2nd

(10) 20 0 0 0 0 0 0
(11) 0 20 0 0 0 0 0
(13) 0 0 20 0 0 0 0
(14) 0 0 0 17 0 3 3
(15) 0 0 0 0 18 2 2

Recognized (18) (19) (21) (22) (23) Position
error

Floor
error

1st

(18) 20 0 0 0 0 0 0
(19) 0 19 0 0 0 1 1
(21) 0 0 20 0 0 0 0
(22) 0 0 0 20 0 0 0
(23) 0 0 0 0 20 0 0

Table 3: Precisions, recalls, and F-scores of initial position
detection.

Floor Landmark Precision Recall F-score

3rd

(1) 1.00 1.00 1.00
(2) 1.00 1.00 1.00
(3) 0.95 1.00 0.98
(6) 0.91 1.00 0.95
(7) 1.00 1.00 1.00

2nd

(10) 1.00 1.00 1.00
(11) 0.95 1.00 0.98
(13) 1.00 1.00 1.00
(14) 1.00 0.85 0.92
(15) 1.00 0.90 0.95

1st

(18) 1.00 1.00 1.00
(19) 1.00 0.95 0.97
(21) 1.00 1.00 1.00
(22) 1.00 1.00 1.00
(23) 0.91 1.00 0.95

Table 4: Errors in WiFi landmark detection.

HA CA SW PO
Missed 3 4 10 9
Error (%) 3.85 5.13 12.82 11.54

Table 5: Errors in turning landmark detection.

HA CA SW PO
Missed 7 8 5 6
Error (%) 10 11.43 7.14 8.57

Table 6: Errors in stairs landmark detection.

HA CA SW PO
Missed 2 4 5 4
Error (%) 5 10 12.5 10
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Figure 3: Trajectories of twomethods for four holding styles on the
first path.
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virtual points were created on the reference path using a
fixed-sized step length, and the position error was calculated
by one-to-one mapping of the estimated point and the
virtual one in order. Of course, this simple method has a
problem in that the error increases in proportion to the
difference in the number of the detected steps. However,
since the subject’s stride length would be quite constant, the
error made by this method does not have a significant effect
on the comparative analysis. Figure 5 shows the cumulative
position error distributions in this experiment. Note that the
proposed method showed a big difference in performance
improvement according to the holding styles. In the case of
(CA) and (SW), there are few differences in performance
between the two methods. For this reason, as shown in
Figure 5(b), the proposed method for all holding styles
shows smaller errors under the 90th percentile but shows
almost the same error afterward. Statistically, the occasional
recalibration can reduce the error of many estimated po-
sitions, but it does not have much effect on a small number
of extremes that make a large error.

Figure 6 shows the trajectories of the proposed and the
i-PDR methods when a subject walked with a holding style
(HA) on the second path.-e second path is a one-way route
including floor change from third to first as shown in three
plans in Figure 6. -e blue dots represent the trajectory of
the proposed method, and the orange stars represent the
result of the i-PDR method. -e red stars represent that the
system detects one landmark and then calibrates the current

position to the given position of the landmark. -e green
pentagons show the positions of one step before being
calibrated. As shown in the figure, the short-range jumps
from the green pentagons to the red stars are the effect of the
calibration upon detection of the landmarks. For compar-
ison, we set the starting points of the i-PDR method on each
floor to be the same as the proposed method because the
i-PDR can produce only two-dimensional positions. Both
methods show acceptable results for a straight path, driven
using the simple quantized method for measuring the
heading. -e i-PDR method, however, shows a relatively
large positional error.

As an example, Figure 7 shows the errors of the proposed
and the i-PDR methods at the beginning of this experiment
(part as shown in the red rectangle in Figure 6). -e green
circles highlight the events of landmark detection, specifi-
cally three landmarks (4, 6, 7) on the third floor.

Table 8 shows basic statistics of the calibrated distances
(i.e., the size of short-range jumps) by detecting the land-
marks for the second path experiment. In this path, the
subjects walked through a sequence of 20 landmarks. -e
sequence is (4, 5, 6, 7, 8) on the third floor, eight landmarks
(15, 14, 12, 13, 12, 11, 10, 9) on the second floor, and seven
landmarks (18, 19, 20, 21, 20, 22, 23) on the first floor in
order. As shown in Table 8, the system shows different
numbers of landmark detection for each holding style, and
many detection errors occurred in the sequences (12, 13, 12)
and (20, 21, 20). Despite the low detection rate of 68.75%

Table 7: Mean error and RMSE for 4 holding styles at the final position.

Holding style HA CA SW PO
Method i-PDR Proposed i-PDR Proposed i-PDR Proposed i-PDR Proposed
Mean error (m) 5.74 2.59 5.33 1.77 3.63 2.42 3.48 2.64
RMSE (m) 6.06 2.69 5.83 2.07 4.17 2.55 3.93 2.81
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averagely, the proposed method showed accurate tracking
performance compared with the i-PDR method through an
average calibration distance of 3.06m.

Figure 8 shows the cumulative position error distribu-
tions in the second path experiment. At the 50th percentile,
the errors of the proposed method for holding styles (HA),
(CA), (SW), and (PO) are 2.83m, 3.04m, 3.22m, and 3.09m,
and at the 70th percentile, the errors are 4.16m, 4.07m,
4.88m, and 5.39m, respectively.-ese are quite smaller than
the results of the i-PDR method at the same percentiles
0.62m to 1.46m with an average is 0.91m. -e average
RMSE values at the final point for four holding styles are
6.80m for the i-PDR method and 3.51m for the proposed
method. -is result shows that the proposed method has
39.57% to 57.51% less error compared with the i-PDR
method for different holding styles.

In the third path, the subjects started to walk from the
landmark (1) and through (2) and (6), made a turn at (7),
and come back to (1) to finish a round trip. -e subjects
walked from the landmark (1) to (6) with the holding style
(HA), then changed to (CA) at the landmark (6), changed to
(SW) at (7), and changed to (PO) at (6) again until (1). -e
change of holding style was made without stopping walking.
-e total number of trials is 9. Figure 9 shows the trajectories
of the proposed method and the i-PDR method for one trial.
-e dots and the stars represent the proposed method and
the i-PDR method, respectively, and the colors represent the
four holding styles. -e black line is the reference path. As

can be seen in Figure 9, most of the results of the proposed
method are on the reference path except the segment from
(7) to (6) with the holding style (SW). Analysis at the final
point also shows the superiority of the proposed method
such that the average RMSE values are 2.70m for the
proposed method and 3.68m for the i-PDR method. Fig-
ure 10 shows the distributions of the errors of the two
methods at the final point by box plots.-e figure shows that
the proposed method can reduce both the error and the
variance compared with the i-PDR method. Lastly, the
cumulative error distributions of the twomethods are shown
in Figure 11 by using the same method to make virtual
points. As can be seen in Figure 11, the proposed method
could reduce the error size of all data for simple and short-
length paths such as the third path.

It is not easy to directly and fairly compare the per-
formance of our proposed method to other works, but we
attempted to compare them in some respects. All of the
selected studies are based on an approach that combines the
PDR technique with corrections from different methods,
which is the same idea as our proposed scheme. -e
comparison is shown in Table 9. We compared the proposed
method with six evaluation factors to show the features of
the proposed method. -e results of other studies were
analyzed based on their literature. -e fusion methods in
column “Technique” are divided into two categories: the
triggering method and various filtering methods. -e trig-
gering methods refer to update to a given specific position
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Table 8: Statistics of calibration distances by detection of landmarks.

Holding style HA CA SW PO Avg.
No. of detected landmarks 13 13 14 15 13.75
Detection ratio (%) 65.0 65.0 70.0 75.0 68.75
Max distance (m) 4.11 5.19 5.81 4.64 4.94
Min distance (m) 1.75 1.65 1.03 0.66 1.27
Mean distance (m) 3.37 3.34 3.27 2.27 3.06
Standard deviation (m) 0.95 1.30 1.71 1.37 1.33
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when a system recognizes the position of a pedestrian using
other information. -e other studies were developed by
applying the EKF, UKF, and PF methods. Note that as the
table shows, recent studies [13, 31], including the proposed
method, provide a method to handle various holding styles.
-e system in [12] achieved a positioning accuracy of 1.5m;
however, their experimental setup is simple with a straight
line and an L-shape path. In [14, 30], their proposedmethods
are not running in real-time since they collected data from
sensors and analyzed the results on the offline tools.
Moreover, they tested their system in only one scenario and
with only one holding style. -e works in ([9, 11, 13, 31]
reported good results with the accuracy that can reach 1m
using the complex filters. As a matter of course, complex
filters require a lot of computational costs and power
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consumption. Some of them [9, 30] can track the position of
the user in multi-floor buildings. -e work in [9] reported
the 4.45m errors in a multi-floor path of 363.22m length;
meanwhile, our proposed system gets an error of 3.51m for a
multi-floor path of 277.3m.

5. Conclusions

-is paper presented a pedestrian localization system that
uses an improved PDR technique with the recognition of
four holding styles and a map matching technique by
detecting different landmarks. In this work, three kinds of
landmarks, the WiFi, the turning, and the stairs, are defined,
and the detection methods are proposed. Based on the
detection of various landmarks, the system could reduce
drastically the cumulative errors from the PDR method.
Moreover, a simple but robust floor detection method is
proposed for estimating the initial position and changes
between floors. -ese capabilities can be extended from the
2D positioning to a 3D space (e.g., a multi-floor building).
-e system can reduce the error up to 57.51%, showing
results that are more accurate than the results based on the
improved PDR alone for different holding styles. In con-
clusion, simply calibrating the position in the conventional
PDR system, especially SHSs, using different kinds of lo-
cation-related information (defined as landmarks) that can

be found in the environment can significantly improve the
performance of indoor positioning systems. -erefore, it is
important to find a landmark that is effective in improving
the performance of the PDR system.

However, the proposed method has some limitations.
First, if the user walks through large open spaces such as
huge shopping malls or airports rather than regular office
buildings, the turning landmarks are not useful because
there are not many corners structurally. -is landmark is
more suitable for buildings with many corners. -e second
limitation is that the tracking performance of the proposed
method is proportional to the density of the landmark and
its detecting performance. In other words, the dense land-
marks and high detection capabilities can make frequent
error corrections, which greatly improves the performance
of the system. However, if the landmark density is low in
environments and/or cannot be detected well, the perfor-
mance is almost the same as the PDR only. -erefore, in
order to obtain a certain level of location performance, it
must be required that a certain level of landmark density and
detection performance. Besides, from the Android 9 version,
the scanning interval for the WiFi module increases to
30 seconds per scan. -is means that we can no longer use
the current WiFi landmark.

In the future, we are trying to find more diverse land-
marks that can be used in various environments and develop

Table 9: Comparison of the proposed method and existing studies.

Ref. no. (year) Technique (fusion method) Real-time Holding styles Test scenarios Positioning accuracy 3D capability
Proposed method PDR+LM (triggering) Yes 4 3 <3.1m Yes
[14] (2016) PDR+LM (triggering) No 1 1 2.17m No
[30] (2016) PDR+MM (triggering) No 1 1 2.5m Yes
[12] (2018) PDR+WiFi (triggering) Yes n/a 2 1.5m No
[11] (2016) PDR+WiFi + LM (EKF) No 1 2 1.22m No
[9] (2019) PDR+MM (PF) Yes 1 3 4.45m Yes
[13] (2019) PDR+WiFi (UKF) No 4 1 1.46m No
[31] (2020) PDR+MM (PF) Yes 5 2 2.2m No
EKF: extended Kalman filter; LM: landmark; MM: map matching; PF: particle filter; UKF: unscented Kalman filter.
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methods to detect them. We will also research the effective
fusion methods combining the PDR technique and the
landmark detection method.
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