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Reducing transmission delay and maximizing the network lifetime are important issues for wireless sensor networks (WSN). )e
existing approaches commonly let the nodes periodically sleep to minimize energy consumption, which adversely increases packet
forwarding latency. In this study, a novel scheme is proposed, which effectively determines the duty cycle of the nodes and packet
forwarding path according to the network condition by employing the event-based mechanism and reinforcement learning
technique. )is allows low-latency energy-efficient scheduling and reduces the transmission collision between the nodes on the
path. )e Monte Carlo evaluation method is also adopted to minimize the overhead of the computation of each node in making
the decision. Computer simulation reveals that the proposed scheme significantly improves end-to-end latency, waiting time,
packet delivery ratio, and energy efficiency compared to the existing schemes including S-MAC and event-driven adaptive duty
cycling scheme.

1. Introduction

Wireless Sensor Network (WSN) has been used for a wide
range of applications, primarily for target area monitoring
[1]. Event monitoring applications such as intrusion,
lightning, or fire detection should be designed according to
their operating condition [2]. In WSN, a large number of
sensor nodes are distributed in the target area, which can
process the signal and communicate with each other. )e
major problem in such a WSN-based monitoring system is
the limited energy of the nodes, and, therefore, it is im-
portant to minimize the energy consumption of these for
extensive network operation. Various energy-efficient
communication algorithms and schemes have been pro-
posed to maximize the life of the WSN. )e Media Access
Control (MAC) layer is responsible for scheduling nodes in
WSN to effectively manage communication between nodes.

)e method commonly adopted with the MAC protocol
for minimizing energy consumption inWSN is duty cycling.
Here, the nodes stay awake only a fraction of time for sensing
and communication. )e periodic dormancy, however,

increases the transmission delay, which is detrimental es-
pecially to human life-critical applications. Energy-saving at
the sacrifice of performance might be fatal for them. )e
transmission delay is caused by the sleeping nodes on the
multihop path between the source and the destination node,
called sleep latency [2–7]. )is is a serious concern with
WSN where the transmission range of a node is usually
smaller than the distance between the communicating
nodes. As the network operation is dynamic, the duty cycle
of the nodes is required to be continuously adapted to avoid
early sleep under high traffic load or overlistening under low
traffic load. Event-driven adaptive duty cycling of the nodes
can satisfy this requirement, which is the main objective of
this paper.

It was shown that a significant amount of energy can be
saved by employing sleep and idle listening mode for the
nodes [8].)e duty cycle-basedMAC protocols are classified
into synchronous and asynchronous approaches. In the
synchronous protocol, such as S-MAC [7], T-MAC [9],
RMAC [8], and P-MAC [10], a schedule table is created for
all the nodes to specify the sleep and wake-up time. S-MAC
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is based on broadcasting the preframe of SYNC and DATA
packet for scheduling. Here, the performance metrics related
to the network operators were not included in designing the
protocol [10]. )e asynchronous MAC protocol such as
B-MAC [11], X-MAC [12], and RI-MAC [13] allows the
nodes to operate independently to enhance the adaptability
against dynamic load changes. To achieve a more adaptive
schedule, the authors of [14] have shown that a significant
amount of energy can be saved, and the delay is reduced by
dynamically adjusting the latency. BADCS is proposed to
reduce event detection latency and data routing delay using a
duty cycle adjustment algorithm [15].

In this paper, a novel event-driven scheduling approach
employing the reinforcement learning (RL) algorithm is
proposed to reduce the sleep latency and improve the
performance of packet switching inWSN. It adjusts the duty
cycle of the nodes in the multihop path according to the
status of the network so that the delay and waiting time
incurred during packet transmission can be minimized.
Here, the low-delay energy-efficient transmission path from
the source to the sink node is decided using the RL algo-
rithm. For a node on the path, the feedback information on
the delay and energy taken by the path is provided to its
next-hop nodes called the parent nodes. )e RL algorithm is
used to choose the best parent node and wake it up for
forwarding the data. Additionally, to reduce the waiting time
due to early sleep, the node of high traffic such as the one
having many neighbors or close to the sink node is woken up
for a relatively long time. )e simulation results show that
the proposed approach substantially outperforms S-MAC
and the existing adaptive duty cycling scheme [16] under
various network conditions. )e main contributions of the
paper are summarized as follows:

(i) )e existing node scheduling problem is trans-
formed into a decision problem employing the
event-driven approach and RL to effectively deal
with the dynamically changing network condition
of WSN.)e transmission delay is due to early sleep
and transmission collision. Early sleep is avoided by
the event-driven approach to wake up the sleeping
nodes promptly, while transmission collision is
avoided by the RL technique to properly select the
forwarding path.

(ii) )e existing MAC protocols are based on local
feedback information in deciding the schedule. In
this paper, the Monte Carlo (MC) evaluation
technique is employed to obtain global information
and sampling, which greatly improves the speed and
accuracy for finding a suitable schedule.

(iii) A technique for finding maximum achievable re-
ward in RL is developed by solving Bellman’s op-
timal equation, which allows accurate solutions in
the small number of computation steps.

)e rest of the paper is organized as follows: in Section 2,
the work related to duty cycling and RL-based scheduling for

the MAC of WSN is discussed. )e proposed scheme is
presented in Section 3. Section 4 discusses the simulation
results, and the conclusion is made in Section 5.

2. Related Work

2.1. Duty Cycling. Generally speaking, each sensor node in
WSN operates on battery power, where two factors affect the
rate of energy consumption. Firstly, the rate is high if the
transceiver is in transmission, reception, idle (or over-
hearing), and low during sleeping. Secondly, the event other
than successful packet transmissions such as collision or
retransmission causes energy waste. Also, the existence of
two kinds of delays explained below increases the trans-
mission time, which is affected by transmission character-
istics and duty cycle.

Early Sleep Delay. Assume that some packets in a node
are needed to be sent to another node that awakes and
sleeps periodically. )e problem with early sleep occurs
when a packet is sent to the sleeping node on the
multihop path, and the data transmission is delayed
until it switches back to the active state.
Transmission Collision Delay. Collision occurs if some
nodes send packets at the same time when they are in
the transmission range of the other node.

Figure 1 compares two types of duty cycling schemes. As
shown in Figure 1(a), the nodes of S-MAC periodically
switch from sleep to listen mode for prolonging the lifetime.
Only the nodes in the listen mode can receive, forward, or
process the packets. If the packet arrives during the sleep
mode (event-A of Figure 1(a)), the process is delayed until
the node switches to the listen mode. )erefore, the latency
with periodic duty cycling is usually high. Figure 1(b) shows
event-driven duty cycling, which controls the listen/sleep
mode of a node based on the arrival and departure event of a
packet [16]. Here, the next-hop node is woken up when a
packet arrives to reduce the latency.

Various event-driven approaches have been proposed to
address the problem of delay caused by early sleep [17], and
the state change of a node is promptly reported by con-
tinuous monitoring of the operation.While the event-driven
approach reduces the transmission time and energy con-
sumption of a node, an efficient scheme needs to be de-
veloped to properly reflect the occurrence of the events to the
scheduling. )e machine learning technique such as RL is
effective for meeting this requirement. RL is a biology-based
machine learning approach that acquires knowledge by
exploring the operation environment without external su-
pervision or prior knowledge. Numerous studies have been
conducted on RL for various applications [18–21], including
the reduction of transmission delay and maximization of
sensor node lifetime [22, 23]. Improving the performance of
the network by replacing time-based duty cycling with
event-driven reinforcement learning (EDRL) is the main
objective of this paper.
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2.2. Markov Decision Process (MDP). MDP is an analytical
model applicable to the process having Markov property,
modeled by 4 tuples <S, A, R, P> defined below:

(i) S: a finite set of states, where si is the state at step-i
(ii) A: a finite set of actions.
(iii) P(a|sn, sn+1): the probability that action a, leads the

system in sn to s(n+1). S×A× S⟶ [0, 1] is the state
transition probability density function.

(iv) R(a|sn, sn+1): the return after the transition from sn
to s(n+1) due to action a. S×A⟶R is the reward
function.

A key feature of MDP is the Markovian property; the
probability to reach state s at step-n depends on only the
previous step, step-(n− 1) [24]. In discrete-time MDP,
which is considered in this paper, the agent is in state sn(∈S)
and takes action a(∈A) according to the policy, π, at step-n.
In response to the action, the environment provides scalar
feedback, called a reward, R(a|sn, s(n+1)). )is process is il-
lustrated in Figure 2, where the value of state v(sn) and
action, q(s, a), is returned as the reward. RL is a commonly
employed solution for MDP when the application possesses
the Markov property. RL algorithm aims to find a policy that
maximizes the accumulated reward. If the system operates in
a finite time domain, it can be solved using the dynamic
programming approach and Bellman optimality equation.
Otherwise, it is solved using the value iteration, policy it-
eration, linear programming, approximation method, or
online learning technique [25]. RL has been used to solve the
typical sequence decision problem, using the learner and
decision-maker called agent [26]. )e agent chooses a good
action based on only the current sensory observation and
remembers the past sensations to select a good action [27].
)e proposed scheme is presented next.

3. The Proposed Scheme

In this section, the proposed scheme is presented, which
decides the communication path using RL, which minimizes
the transmission delay and energy consumption. )e list of
notations used in the paper is given in Table 1.

3.1. Design Goal. Regarding packet transmission in WSN,
the transmission delay and energy efficiency are conflicting
factors due to the limited energy of the nodes. Various
protocols have been developed to reduce the transmission
delay between the nodes of finite energy.)e primary task of

WSN is to monitor and report abnormal or emergency
conditions, and each node in the network may serve as a
source or relay node. )e existence of a duty cycle increases
the delay due to early sleep. Another cause of delay is a
collision. )e proposed scheme effectively avoids early sleep
by employing an event-driven approach to wake up the
sleeping nodes promptly and avoids transmission collision
by the RL technique properly selecting the forward path.

Considering the trade-off between performance and
scalability, an event-based wake-up strategy is adopted. )e
proposed scheme consists of two phases: RL phase and report
phase. During the RL phase, the nodes of the forwarding
path are selected by carrying out exploration producing the
consumed energy and delay data as a reward. In the report
phase, the value of the RL function is obtained, where the
state is input and the state-action pair is output. )en, the
function is used to decide and explore the next action with a
greedy algorithm. Finally, through the interaction between
the nodes and the environment, the optimal wake-up
schedule is decided. In the learning process of the proposed
scheme, each node selects the forwarding path and then
calculates the reward. )e result affects the decision and
exploration of the next state. Applying the proposed scheme,
a proper duty cycle is obtained using the wake-up mecha-
nism for timely transmission. Figure 3 compares the op-
erations of different duty cycling schemes, where the length
of the working cycle, |T|, is 12 and the number in the bracket
denotes active time slots of each node.

Figure 3(a) shows the fixed duty cycle scheme, where the
node is woken up on fixed time slots indicated by the
number in the bracket. In this case, a dormant node only
switches to the active state when (i) it is scheduled to switch

Listen Listen ListenSleepSleep

A B Time

A: packet arrival
B: packet departure

(a)

ListenSleep Sleep

A B Time

A: packet arrival
B: packet departure

(b)

Figure 1: )e comparison of two duty cycling schemes.
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Figure 2: )e operational structure of RL.
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to the active state to receive data packets, or (ii) it has some
packets to transmit to a receiver that is active at that time. A
cycle is divided into 12-time slots, and each is enough to
send and receive a packet. In Figure 3(b) of S-MAC, the
forwarding nodes and their active slots are predecided and
fixed, where n7 sends data to n4 at slot-6 because n4 works
only at slot-6 and n8 has to wait for n4 to work in the next
cycle and send data. )e transmission latency is increased
due to this problem. In Figure 3(c) of the event-driven
scheme, the node wakes up the next-hop node to reduce the
waiting delay if it has a packet to transmit. Observe from the

figure that n10 wakes up n5 and transmits a packet at slot-4,
while n6 transmits a packet to n3. Since n5 is within the
transmission range of n6, a collision occurs causing
retransmission, and as a result, the latency becomes greater
than 8. As shown in this example, a node needs to be
properly chosen when there exists more than one neighbor
node to avoid collision and transfer the packet to the sink
node fast. )us, this scheme, waking up appropriate nodes
based on reinforcement learning, is proposed to make use of
the available time slots and neighbor nodes. )e latency can
be reduced to 8, as shown in Figure 3(d).

Table 1: )e notations used in the paper.

Notation Description
qi )e capacity of the queue for nodes as node-i (i� 1, ..., N)
S, A, P, R Components of MDP: state space, action space, transition probability, the reward function
α Learning rate
c Discount factor
v(i) Value of node-i
G� (V, E) WSN with the set of nodes, V, and edges, E
r Transmission range of a node
NB(i) Neighbor nodes of node-i
w(i) Duration of slots when node-i works
wk(i) Slot when node-i is wake-up
p(i) )e parent node of node-i
c(i) )e child node of node-i
sch(i) Transmission schedule of node-i
F(i) Nodes of NB(i) forbidden to wake up
pc(i) Candidate parent nodes of node-i
τ � (ns, . . ., nd) )e path from the source to the destination node

w (1) = {4, 10}

wk (
4)

s

{6}

{8}

{2}
{3}

{4}

{5}

{6}

{2}

{8, 11}

{4, 6}

n1 n2 n3

n5 n6

n11n10

n9

n8
n7

n4

(a)

s

n1 n2 n3

n5 n6

n11
n10

n9

n8
n7

n4

t = 2|7| + 11

t =
 2

|7
| +

 1
0

t = 12

t = 2|T| + 6t = |T| + 6

t =
 7

{6}

{6}

t =
 4

t =
 6 t =

 8

t =
 8 t = 11{4, 6}

{4, 10} {8, 11}

{8}

{3}
{2}

{4}

{5}
{2}

(b)

n1 n2

s

n3

n5 n6

n11
n10n9

n8
n7

n4

{7} {5, 4}

{3}

{2}
{3}{4}

{6}

{4}

{2}
{5}

{3, 5, 6}

t = 8

t =
 5

t = 5

t =
 4

t =
 7

t =
 3

t = 4

t = 6t =
 3

t = 6

t =
 7

(c)

{7} {5, 4}

{3}

{2}
{3}{4}

{6}

{2}
{5}

{3, 6}

t = 8

t = 5

t =
 7

t =
 7

t =
 3

t = 4

t = 6

t =
 3

t = 6

n11
n10

n5

n9n8
n7

n4

n1 n2

s

n6

n3

t = 4

(d)

Figure 3: An example of comparing different schemes.
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3.2. Operation

3.2.1. Selection of Parent Node. InWSN, G= (V, E), where V
is a set of N sensor nodes, and node-i has a queue of the
capacity of qi packets. E= {(u, v)∣1≤u≤N,1≤v≤N} denotes
the link between node-u and node-v. As in [28], all nodes are
assumed to have the same transmission range, r, for sim-
plicity. dis(u, v) (∈E) represents the distance between node-u
and node-v, which is smaller than r if node-v is the neighbor
node of node-u, i.e., v ∈NB(u) (dis(u, v)≤ r). Each node has
sleep and work states. Let T denote a work period that is
usually divided into a fixed number of time slots. Each slot is
long enough so that a source node and a relay node can
either cooperatively transmit one data packet to the desti-
nation or transmit one of their packets. )en, the work
schedule of node-i, w(i), is defined as the active time slots in
T. wk(i) is the slot when node-i is woken up and working.

wk(i) � c|T| + tl(∈ w(i)), (1)

where c is a nonnegative integer and tl is an element in the set
of the active time slot of the node. With duty cycling, each
node can receive data in only a working state, and thus the
time duration for receiving data is quite limited. Concerning
the energy efficiency of a single node and lifetime of the
entire network, min(|wk(i)|) and min(|wk(i)|(i ∈V)) are
the objectives, respectively. )e ratio of duty cycle of a node
is k/T if it works for k slots. Note that k and wk(i) are fixed
with time-based duty cycling. Considering early sleep delay
and collision delay, wk(c(i))≤wk(i)≤wk(p(i)) is the basic
condition of successful transmission when a packet is
transmitted from c(i) to p(i). Here, p(i) and c(i) denote the
parent and child node of node-i, respectively, which receives
and sends the packet. )e delay caused by early sleep is
wk(p(i))−wk(c(i)) (≤|T|). )e total transmission delay, D, is
then

D � 

qi

i�1
wk(p(i)) − wk(c(i)) + dc, (2)

where dc represents the delay caused by transmission col-
lision and duty cycling. )e existence of collision between
the hidden and exposed node in the wireless network en-
vironment causes the delay. )e time-based scheduling ap-
proach is not efficient due to the synchronization overhead
and lack of information on the network condition. )e
proposed scheme is based on event-driven, and RL helps the
nodes make the proper local decision based on the feedback
information on the global network status. Here, a mechanism
is employed to wake up a proper node on the next hop and
alleviate the early sleep problem. As for data transmission
scheduling, the goal is to construct a set of collision-free
transmission schedules allowing aggregation of the data in the
sink node. )e delay caused by early sleep is reduced by
waking up the node instead of waiting for the termination of
sleep period. Note that unreasonable selection of the parent
node makes dc larger. Assume two transmission schedules for
node-u and node-v ((u, v)∈E), {p(u), wk(u)} and {p(v),
wk(v)}. Here, {p(u), wk(u)} means that the nodes in the set of
the senders of node-u are scheduled to transmit to p(u) at

wk(u), which is decided by c(u). A collision-free transmission
should satisfy one of the following two conditions:

(1) wk(v)≠wk(u)
(2) wk(v) =wk(u) & p(v)∉NB(u) & p(u)∉NB(v)

)e transmission schedules are collision-free if the wake-
up slots of node-u and node-v are different. Otherwise, their
parent nodes must not be in the transmission range of each
other (p(v)∉NB(u) and p(u)∉NB(v)). In the following, the
formal definition of the minimum latency problem based on
the event-driven scheduling approach is given.

Input:
(1) A duty-cycled sensor network G= (V, E);
(2) A sink node-s.

Output: )e schedule, sch(i) (= {p(i),wk(i)}
∀i ∈V), satisfies the following condition:

(1) |p(u)|≥ 1;
(2) ∪ m

i�1i � V − s{ };
(3) )e length, m, is minimized
(4) Data sent fromni to nj according to sch(i) and

sch(j)are collision-free, ∀i, j ∈V& i≠ j;

)e wake-up schedule is decided for each node. Here,
wk(i)�wk(c(i)) +ϖ, while ϖ denotes the time required for
transmitting the data from node-c(i). Collision occurs if
node-u and node-v send a packet at the same time in the case
of (u, v) ∈E. If (u, v) ∉ E, it still occurs when p(v) locates
inside the transmission range of the other node as (u, p(v)) ∈
E.

To take care of the first cause of collision, for node-u,
some nodes are forbidden to be woken at the same time,
denoted as F(u). Here, wk(u) is decided by c(u) because the
node switches to work state after it is woken up. For the case
of (u, v) ∈E, node-u and node-v are forbidden to be selected
as parent node of a node simultaneously.

F(u) � i≠p(v)&i ∈ NB(p(v))| t � wk(v) , (3)

For the second cause, a node is forbidden to be selected
as a parent node if there is a neighbor node transmitting the
packet in the same time slot.

F(u) � i≠p(v)&i ∈ NB(v)| t � wk(v) , (4)

Combining the two cases, F (u) becomes

F(u) � i≠p(v)&i ∈ NB(v)& i ∈ NB(p(v)) |t � wk(v) .

(5)

)e transmission schedule for each node is decided
starting from the leaf node while moving toward the sink. At
first, the source node decides the schedule for itself and its
parent node, and then the data are sent to the parent node,
which does the same thing as the child node.)e set of nodes,
pc(i) (�(NB(i)−NB(p(u))∪NB(u), (u, i) (∉E)), includes the
nodes that will cause collision less likely. For |pc(i)|> 1, there
exist several neighbor nodes for node-i to be selected as parent
node, and thus a weight for each candidate parent node is
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estimated using RL to select the best one. )e selection al-
gorithm of the parent node minimizing the latency is shown
in Algorithm 1.

3.2.2. Exploration of Packet Forwarding Path. Assume that
neighbor nodes allowing minimum early sleep delay and
transmission delay have been selected. )en, a packet is
transmitted effectively by minimizing the number of hops,
m. )e process of obtaining the weight for each transmission
schedule is given in the following.

Let v(i) be the state value of node-i obtained from the RL
process. A set of nodes forming a path is evaluated using the
rewards, and then v(i) is updated. When a new event occurs,
node-i having a packet to transmit finds p(i) from pc(i) and
wakes it up for packet forwarding. When the sink node
receives data from node-i, it records the path and estimates
the reward due to node-i for improving the schedule based
on RL.

)e following shows the model and the process of
solving the target problem using RL. Here, s(i) and v(i)
denote state-i and the value of state-i estimated by the RL
process, respectively. )e state is estimated by the feedback
information on the amount of energy consumed and for-
warding latency after a packet is successfully transmitted to
the succeeding node or sink node. )e lower the energy
consumption and latency, the larger the estimated value. It is
preferred to choose the state of large value when making a
decision.

In deciding v(i) using a stochastic decision process, an
agent interacting with the environment is implemented in
each node. It works as follows. Let A(s) be a finite set of
control actions allowed to be taken with a state-space
denoted as S such that s(i) (∈S). Suppose that an agent
chooses an action, as(i) (∈A(s)), that is available at s(i). After
the action, the agent receives an immediate reward, R, and
the system makes a transition to a new state, s′,
(as(i) × p⟶s′) with a transition probability, p. Policy π,
π(s)⟶a, denotes the rule of action selection. An optimal
policy, π∗, maximizes or minimizes the objective function.
)e state of a high value implies that the transition to this
state gets more reward. )e final solution consists of the
states that have a long-term revenue. )e value of state-s,
vπ(s), is defined as a state-value function:

vπ(s) � Eπ 

∞

k�0
c

k
Rt+k+1|St � s⎡⎣ ⎤⎦. (6)

Accordingly, the state-action is viewed as a decision
made in the current state and evaluated by the value of the
state-action. )e state-action value function is

qπ(s, a) � Eπ 

∞

k�0
c

k
Rt+k+1|St � s, At � a⎡⎣ ⎤⎦. (7)

A global track, τ∗� {u∗0 , u∗1 , . . . , u∗m}, for an m-hop path
from node-i to the sink, node-s, is optimal if it satisfies

J τ∗(  � J u
∗
0 , u
∗
1 , . . . , u

∗
m ≤ J(τ), (8)

where J() is the object function. uj (j≠ i, uj ∈V), which is
decided by node-(j− 1), forms a sequence of states mini-
mizing the delay and energy consumption of the whole
process. Considering the limited feedback information in the
local nodes, it is hard to evaluate the decision once it is made.
After making a decision, the node needs to get the feedback
on the decision regarding the transmission delay and energy
consumption and then update the policy, π. Since they are
local information, the Monte Carlo (MC) evaluation tech-
nique is employed to obtain global information. )e target
function,  R(τ)Pπ(τ)dτ  , is expected value of the cumu-
lative return denoting overall revenue of the policy, π. Define
η(τ, π) as the average reward of a policy as follows:

η(τ, π) � lim
N⟶∞

E
π
π0 

s0∈τ
r si, si+1( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (9)

Here, Eπ
π0 is the expectation with the probability measure

generated by the policy, π, with initial policy, π0. RL is used
to update π0 iteratively, leading to the optimal policy, π∗.
Maximizing the expected discounted total reward is the
objective, which is defined as follows:

maxVπ(s) � Eπ,s 

T

t�1
c

t
R st
′|st( , π at( ⎡⎣ ⎤⎦. (10)

V∗π(s) is the maximum achievable reward at state-s,
which is found by solving the following Bellman’s optimal
equation.

V
∗
π(s) � Eπ,s 

T

t�1
c

t
R st
′|st( , π at( ⎡⎣ ⎤⎦. (11)

v(s) and q(s, a) can be obtained using the principle of
Bellman optimality:

v
∗
(s) � maxaR

a
s + c 

s′∈S

p
a
ss′v
∗
(s),

q
∗
(s, a) � R

a
s + c 

s′∈S

p
a
ss′maxa′q

∗
s′, a′( .

(12)

Even though the process evolves in the continuous-time
domain, a discrete-time model is assumed in this paper,
where time is slotted with intervals of unit length. In the
proposed scheme, a node is represented as a state.

s(i) × π(a|s(i)) × p⟶ s(u), u ∈ NB(i), (13)

where s(i) indicates that node-i has a packet to transmit, and
s(u) is the next hop selected by node-i. )e action taken is
decided according to π and s(i). Eτ (∈{0, 1}) equals 1 if an
event is reported along the path, τ, and 0, otherwise. τ � (ns,
ni, nj, . . ., ndes) represents a path from the source node, ns, to
the destination node, ndes. nτ is the number of nodes in τ.)e
reward function, R(st, at), is then given by

R(c) �
−ϕd − αl, Eτ � 1, nτ ≤L,

−θLT, otherwise,
 (14)
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where d and l denote the delay and total energy consumption
of the path, respectively. To avoid local optimum solution,
the state value is not updated until one period is completed
with the MC process, which updates the value as follows:

V St( ←V St(  + α Gt − V St( ( ,

Gt � Rt+1 + cRt+2 + · · · + c
T− 1

RT ,
(15)

where Gt is the objective of MC. V(St) is the expected dis-
counted rewards, which are updated after one path is tried.
)e method to obtain true expected value by exploring all
possible paths is extremely inefficient. )us, finding an
approximate value through effective sampling is a better
way. )e MC method conducts sufficient sampling of the
state space using the ε-soft greedy algorithm.

π(a|s)←

1 − ε +
ε

|A(s)|
, if a � argmaxaQ(s, a),

ε
|A(s)|

, if a≠ argmaxaQ(s, a),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a
∗
n � arg max

an∈A sn,en( )
sn, sn+1|θ( .

(16)

For a node having more than one parent node, |pc|≥ 2,
there exists |pc|m path for the m-hop path. Exploring every
path based on RL is not effective. )e ε-soft greedy is a
popular explorationmethod used to obtain samples from the
probability space and get sampling space, θ, for exploitation.
Also, to ensure sufficient and efficient sampling space, the
variable, ε, is added to the RL for a better learning process.

)e soft greedy policy can ensure sufficient sampling of
the state allowing accurate estimation of the state value. )e
updated state will be relatively small as exploration con-
tinues, while excessive exploration delays the convergence to
the optimal value. )erefore, a constraint on the update
condition for the parameters of the soft greedy policy is
needed. ε is used as the constraint. Note that the bigger the
change in the state value, the greater the chance of exploring
the untried state.

ε � a
dv(i)

dt
+ b. (17)

)e set of sample data, θ, is obtained by the exploration
of the environment with the soft greedy policy. )e node
evaluation process based on RL is shown in Algorithm 2.

)e flowchart of the proposed EDRL scheme is depicted
in Figure 4. It is implemented in two blocks, the network
operation and RL process, which run independently. Unlike
the time-based duty cycling, the nodes switch to sleep mode
for saving energy until packet transmission is required. )e
proposed scheme is evaluated next.

4. Performance Evaluation

In this section, the performance of the proposed EDRL
scheme is evaluated. It is also compared with S-MAC and the
existing adaptive event-driven scheme (ED) [14] in terms of
packet delivery ratio, latency, packet loss rate, and energy
efficiency as the load varies.

In the simulation, 25 nodes are distributed randomly in a
50 ∗ 50 area, and the nodes send packets to the sink node,
via one or multihop path. All the nodes have the same
transmission range, and the interference range is equal to the
transmission range. Here, one node is selected as the sink
node (destination node), which never goes to sleep, while the
other nodes periodically generate packets as an event occurs.
)e parameters used in the simulation are listed in Table 2.

In Figure 5, the delivery ratio of the three schemes is
compared as the number of packets per event varies from 50
to 300. Compared to ED and S-MAC, the proposed EDRL
scheme yields a consistently higher delivery ratio. Note that
the load is high when the number of the packets is large per
event. )is demonstrates that the proposed scheme is quite
effective in dealing with the duty cycle in response to dy-
namic load change.)is is because the decision of the state is
made via RL based on the data obtained from the envi-
ronment, which responds to the changes of the network on
time. )e selection of the parent node effectively reduces the
transmission collision and improves the packet delivery ratio
in the network. )e soft greedy policy can provide an ad-
equate sampling of the state allowing for an accurate esti-
mate of the state value. Since ε is bigger than the others,
however, the performance of EDRL scheme is similar to the
other schemes in the beginning.

Input: Node-u, NB(u) and Node-v, NB(v)
Output: p(u),p(v)

pc(u)←NB(u), pc(v)←NB(v);
for ∀i ∈NB(u) do
sch(u).p(u)←min{d}, wk(p(u))← sch(u)·wk(u) + 1;
pc(v)←NB(v)−NB(p(v))∪NB(v)

for ∀j ∈ pc(v) do
if j ∈NB(k), |sch(k)|> 1& k ∈V then
pc(v)← pc(v)− {j};
if v(j′)≤ v(j) then
sch(v) p(v)← j;

wk(p(u))← sch(u)· wk(u) + 1;

ALGORITHM 1: Selection of parent node for wake-up.
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Figure 6 shows the end-to-end latency of packet
transmission. It can be observed from the figure that the
delay of the proposed EDRL scheme is always smaller than
that of the other schemes. S-MAC is relatively insensitive to
the load, which indicates that it is not adaptable to the traffic
load. )e reduction of transmission conflicts and correct
path selection make the end-to-end delay smaller compared
to the others in the proposed scheme. Small fluctuations with

EDRL are due to the RL process involving exploration and
periodic MC update of state value and policy.

Figure 7 compares the packet loss rate of the three
schemes. Observe from the figure that the ratio with the
proposed EDRL is always lower than that of the other
schemes regardless of the load. EDRL not only displays the
slower rate of packet loss than the others with the increase of
the load, but also allows no or little packet loss until the

Initialization;
while e is smaller than the number of total episodes do
while n is smaller than the maximum step do
Take action with ε-soft greedy:

π(a|s)← 1 − ε + (ε/|A(s)| ), if a � argmaxaQ(s, a),

(ε/|A(s)| ), if a≠ argmaxaQ(s, a),


While the nodes are in RC phase do
Wake up the nodes decided from the RL process;
Generate data packets or receive data packets;

end while
Determine the subsequent state;
n� n+1;

Observe the delay and energy consumption;
Compute reward

R(c) �
−ϕ d − αl, Eτ � 1, nτ ≤L,

−θLT, otherwise,

Store transition (sn, an, sn+1, R) and τ in sample space Q;
update π, V(s), ε;
V(St)←V(St) + α(Gt − V(St))

qπ(s, a) � Eπ[
∞
k�0 ckRt+k+1|St � s, At � a]

e� e+ 1;
end while

ALGORITHM 2: Node evaluation based on RL.

Start

No Packet in
queue

Yes

Set random action

Set best action

Reset policy

Transmit packet

Packet
transmitted?

Packet
transmitted?No

Yes
Node ID sequence Calculate reward

Network operation RL process

x < ε?
ε-soft greedy

x = rand()

Update a (k) and ε (k)

Yes

G < T

No

Yes
Exploration

end?

Update Q0 (s, a)

Set initial values Q0 (s, a)

GreedyTake best action

Take random
action

Update θ

Figure 4: )e flowchart of RL the proposed EDRL scheme.
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number of packets per event exceeds 150. )is is attributed
to the reward function of RL in equation (14), which in-
dicates that the path is decided based on latency. A packet is
transmitted effectively by minimizing the number of hops to
obtain the weight for each transmission schedule based on
EDRL. Because of this, the proposed scheme is better than
ED.

Figure 8 shows the average waiting time of the schemes.
)e proposed EDRL consistently outperforms the other
schemes, which validates its effectiveness and robustness
regardless of the load condition. It is achieved by properly
selecting the node for packet transmission, which results in a
reduced collision of the data transmission. )e combination
of RL with MC makes adaptive decisions results, which give
more stable and better performance of the proposed scheme
than S-MAC and ED. )e proposed EDRL adjusts the duty
cycle of the nodes in the multihop path according to the
status of the network so that the waiting time incurred
during packet transmission can be minimized.

Figure 9 shows the node survival rate of the three
schemes. Observe from the figure that the fraction of dead
nodes of the proposed scheme is substantially smaller than
that of the other schemes. In the case of relatively low load,
the fraction of dead nodes of ED scheme is smaller than that
of S-MAC due to energy saving. As the load increases, the
awakened nodes may increase transmission collision with
the ED scheme, and as a result, the number of dead nodes
becomes larger than S-MAC of fixed duty cycle.

Figure 10 shows the energy consumption rates of the
three schemes. In the case of high traffic load, the trans-
mission tasks and transmission conflicts significantly in-
crease the energy consumption.)e proposed EDRL scheme
consistently outperforms the other schemes. )is is attrib-
uted to the event-driven approach and RL, which reduce the
operation time of the nodes and waiting time in forwarding
the packet. It can be observed from the figure that the
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Figure 5: )e comparison of delivery ratios as the load varies.
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Figure 7: )e comparison of packet loss rates.

Table 2: )e parameters used in the simulation.

Parameter Value
Number of nodes 25
Discount factor 0.2
Simulation area 50× 50m2

Transmission range 10m
Learning rate 0.3
Energy consumption in transmitting state 0.66mW
Energy consumption in receive state 0.395mW
Energy consumption in idle state 0.350mW
Energy consumption in sleep state 0mW

Mobile Information Systems 9
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waiting time of the proposed EDRL scheme is significantly
smaller than that of the other two schemes because of the set
of nodes that is selected based on equation (5) and because it
causes collision less likely.

5. Conclusion

In this study, an adaptive duty cycle scheduling scheme
applicable toMAC has been proposed forWSN. It effectively
improves the performance of the network by employing
event-driven duty cycling and RL technique to effectively
adapt to dynamic change in the network condition. In
addition, the sampling approach based on Monte Carlo
evaluation greatly improves the speed and accuracy for
finding a suitable schedule. Computer simulation revealed
that the proposed scheme substantially reduces the energy
consumption, latency, and packet loss rate compared with
the existing schemes.

In the future, we will further enhance the proposed
scheme with a more sophisticated adaptive approach and
reinforcement learning technique, along with the study on
other performance metrics including throughput. We will
also consider different learning techniques such as hybrid or
federated learning to effectively cope with various operating
conditions of the network. Furthermore, the proposed
scheme will be extended to be applied to the virtualized
network environment such as software-defined networking.
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