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Human behavior modeling in smart environments is a growing research area treating several challenges related to ubiquitous
computing, pattern recognition, and ambient assisted living. Thanks to recent progress in sensing devices, it is now possible to
design computational models able of accurate detection of residents’ activities and daily routines. For this goal, we introduce in
this paper a deep learning-based framework for activity recognition in smart homes. This framework proposes a detailed
methodology for data preprocessing, feature mining, and deep learning techniques application. The novel framework was
designed to ensure a deep exploration of the feature space since three main approaches are tested, namely, the all-features
approach, the selection approach, and the reduction approach. Besides, the framework proposes the evaluation and the
comparison of several well-chosen deep learning techniques such as autoencoder, recurrent neural networks (RNN), and some of
their derivatives models. Concretely, the framework was applied on the “Orange4Home” dataset which represents a recent dataset
specially designed for smart homes research. Our main findings show that the best approach for efficient classification is the
selection approach. Furthermore, our overall results outperformed baseline models based on random forest classifiers and the
principal component analysis technique, especially the results of our RNN-based model for the all-features approach and the

results of our autoencoder-based model for the feature reduction approach.

1. Introduction

Analyzing human routines in ambient and smart environ-
ments represents a growing research area due to its multiple
scientific, engineering, and data-privacy challenges [1].
Smart homes are a typical example of these intelligent en-
vironments. They represent classic living houses equipped
with multiple sensors measuring various modalities such as
energy consumption, luminosity, lights status, doors
opening, human movements, etc. [2]. These sensing tech-
nologies have opened new opportunities to understand
humans’ behavior and model their routines. In the
healthcare field, daily routines, describing daily human
activities, are known as Activities of Daily Living (ADLs) [3].
For instance, cleaning, sleeping, eating, using stairs, cooking,
and showering are some typical examples of these ADLs.
Thanks to smart homes, it is henceforth possible to monitor

resident’s ADLs, track their vital status, evaluate life quality,
and enhance their well-being [4]. Indeed, one goal of these
augmented environments is to assist elderly and disabled
people to have decent and autonomous living [5, 6]. More
generally, smart homes sensing technologies come with
several benefits not only for persons with special needs. They
help in optimizing energy consumption, guarantee house
security, improve general comfort, and enhance entertain-
ment applications within the house [7].

Our main challenge in this research is to build com-
putational models to efficiently recognize ADLs in smart
home livings. The long-term goal of this work is to build
user-aware houses able to analyze humans’ behavior and
respond to their daily needs. To reach this aim, our meth-
odology in this research is to mine the complete process of
ADLs detection task: from data preprocessing to the eval-
uation of many machine learning approaches. To ensure this
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deep mining of the detection task, we propose in this paper
an original framework based on several data mining tech-
niques and deep learning approaches. The suggested deep
learning-based framework should enable smart processing
of multimodal data, a deep analysis of human behavior
subtleties, and an accurate detection of activity patterns.
Compared to other works, it can be considered as a powerful
guideline for researchers and engineers to process any ADL
classification task, especially on similar datasets format.

The rest of the paper is organized as follows: the next
section reviews the state of the art of ADLs recognition
approaches. In Section 3, we propose a rapid introduction to
the main deep learning approaches applied in this work. In
Section 4, we introduce our proposed framework and its
different compartments. In Section 5, we detail our exper-
iments: we present the used dataset and how the proposed
approaches in the framework were applied and imple-
mented. All recognition results and main findings are dis-
cussed in Section 6. Section 7 summarizes our contributions
and concludes the paper.

2. Related Work

Activity recognition is a foundation stone of a myriad of
real-world applications such as social robots [8, 9], personnel
skills analytics [10-12], sports analytics [13, 14], education
analytics [15], group interaction analysis [16, 17], affective
computing [18], human behavior understanding [19, 20],
assisted living and healthcare [5], and security and well-
being in smart homes [7]. For these applications, ADLs
recognition is considered as a classification problem [4]. It
consists of inferring resident’s activities based on the smart
home sensors or cameras. In our research, we focus par-
ticularly on the sensors-based detection approach [21]. Two
types of sensors are widely used: (1) wearable sensors such as
smart watches and helmets [22] and (2) ambient sensors that
are installed directly within the house or its compartments
[23, 24]. Both sensors share the same objective of catching all
possible human actions and interactions. Data generated
from these sensors may suffer from several defects such as
noise, redundancies, missing values, and other imperfec-
tions. Before any classification step, a preprocessing step is
then crucial to deal with these problems [25] but also to unify
data types and rescale numeral values. Researchers should
also decide which features to use by either selecting a subset
of features, extracting new features [26], or reducing the
feature space [27]. Afterward comes the classification task,
which consists of simply mapping the input features to the
right output activity. At this step, several metrics should be
used to control and evaluate the accuracy of this operation.

Initially, ADLs classification literature considered tra-
ditional approaches of machine learning [28] such as sup-
port vector machines (SVM) [5, 29], Naive Bayes [30],
random forests (RF) [23, 31], Ensemble approaches [32], and
hidden Markov models (HMM) [33-35] (see Table 1).
However, in recent years, a major shift is observed since the
rapid development of deep learning techniques [42]. In fact,
conventional techniques require heavy handcrafted feature
exploration based on researcher knowledge [43], which
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TaBLE 1: Human activity recognition models.

Traditional approaches Deep learning approaches

Deep belief network [36]
RNN [37]
CNN, LSTM [38, 39]
CNN-LSTM [40]
CNN-Bi-LSTM [41]

Support vector machines [5, 29]
Naive Bayes [30]

Random forests [23, 31]
Ensemble approaches [32]
Hidden Markov models [33-35]

limits model development and extensions. Besides, they are
inefficient in capturing highly complex activities composed
of micromovements sequences and gestures [44]. On the
opposite side, deep learning techniques can automatically
infer and extract relevant features reducing then complex
handcrafted operations. Moreover, recent results of these
methods have shown unparalleled performance in many
related fields to sequence classification [45] such as object
recognition, speech recognition, natural language process-
ing, and CyberSecurity [42, 46]. For all these reasons, deep
learning has received a lot of attention in many recent works
[36-38, 47-49] and represents, with no doubt, a promising
approach for ADLs recognition and classification.

For instance, using available smart home datasets for
activity recognition, researchers in [38] compared deep
learning techniques such as convolutional neural networks
(CNN) and Long Short-Term Memory (LSTM), to other
traditional machine learning approaches. Experimental re-
sults show similar results from CNN and LSTM but both
classifiers outperform other classic models. In [36], the
authors addressed the classification problem by applying the
Deep Belief Network (DBN) model on data recorded from
resident’s wearable devices. The paper shows the effective-
ness of the proposed approach compared to other classic
approaches such as SVM (support vector machines). In [37],
activity recognition for elderly people with dementia was
explored using many types of recurrent neural networks
(RNN). Obtained results showed promising and competitive
performance compared to classic state-of-the-art tech-
niques. Other works demonstrating the efficiency of deep
learning approaches for ADLs detection task can be found in
[39-41, 47-49].

Consequently, we have chosen in our proposed frame-
work to apply multiple deep learning approaches well-
known for their efficiency, such as MLP (Multilayer Per-
ceptron), deep autoencoder, RNN (Recurrent Neural Net-
works), LSTM (Long Short-Term Memory), and GRU
(Gated Recurrent Units). To compare these techniques in
different configurations related to feature extraction and
reduction, our proposed framework was carefully designed
to ensure an exhaustive evaluation of all possible approaches.
Indeed, the proposed deep learning framework englobes and
mines the whole process of the activity detection task from
data preprocessing to the application of deep learning
models and their final evaluation. This framework was ap-
plied to an interesting dataset in the field of smart homes
called the “Orange4Home dataset” [24]. The advantages of
this recent dataset can be found in Experiments section. One
challenge of our framework is to outperform the classifi-
cation rates of baseline models computed on the same
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dataset. Actually, our main contributions can be listed as
follows:

(i) The introduction of a deep learning-based frame-
work for activity recognition: this framework pro-
poses a detailed methodology for data
preprocessing, feature selection, and feature re-
duction as well as the training/testing steps for the
chosen deep learning models. Note that this
framework can be easily generalized and applied to
other similar datasets’ format.

(ii) The enhancement of recognition rates computed
with baseline models based on random forest
classifiers and the principal component analysis
technique.

(iii) The testing of multiple approaches to ensure a deep
exploration of the feature space. These approaches
are the all-features approach, the feature selection
approach, and the feature reduction approach.

(iv) The evaluation and comparison of several well-
chosen deep learning techniques (MLP, autoen-
coder, RNN, LSTM, and GRU). From our findings,
several conclusions were drawn concerning the best
approaches for relevant ADLs detection.

In the next section, we start by briefly presenting the
main concepts behind neural networks and deep learning.

3. Deep Learning Models

3.1. ANN. Deep Learning [42] is a branch of machine
learning that relies on artificial neural network architectures
(ANNSs) [50]. ANNs are computational models that are
inspired by the biological neurons of the human brain
attempting to simulate similar information processing and
task performing. ANNs are composed of multiple inter-
connected and successive layers. Each layer is represented by
a set of artificial neurons called nodes. Each node is con-
nected to the next layer nodes via links, the same way as
natural neurons and their connections. Each link is repre-
sented by a numeric weight corresponding to the impact of
each node on the next layer node. Nodes are typically or-
ganized in multiple successive layers. The first layer is called
the input layer since it receives input data that will be in-
jected into the network. The intermediate layers are known
as the hidden layers and the last one is called the output
layer. The output layer typology depends essentially on the
network task whether it is regression or classification, etc.
The basic form of ANNs is also known as Multilayer Per-
ceptron (MLP) or Feedforward Network (see Figure 1).
Like the rest of machine learning models, MLP models
can be learned using data samples. The training process in
MLP consists of adjusting connections weights to better
handle the desired task. In supervised learning, this training
process is ensured by the backpropagation algorithm [50].
Technically it consists of minimizing a loss function that
computes observed errors from the output layer. Then, with
respect to the loss function, network weights are updated.
MLP has shown to be a good technique in many

classification or regression problems [51]; however, it may
not be the most appropriate approach to handle sequential
and temporal input data.

3.2. RNN, LSTM, and GRU. For time-series data, the most
appropriate models are recurrent neural networks (RNN)
[52] and their derivatives since they were particularly de-
veloped to model temporal and sequential data. In its basic
form, RNN is a basic Feedforward Network in which a
hidden layer receives, in addition to actual inputs, the
outputs of the hidden layer calculated in the previous time
step (see Figure 1). The recurrent hidden layer as shown in
Figure 1 represents a temporal layer that allows the infor-
mation to flow from one step to another. This information is
known as the hidden state of the RNN. That is why it is often
said that RNN, thanks to their hidden state, have a certain
kind of memory that remembers what has been computed.
However, when RNN processes long sequences, it shows
more difficulties in retaining information from old steps.
This problem is known as the vanishing gradient problem
[53, 54]. The vanishing gradient problem causes the RNN to
be a short-term memory network unable to learn long-term
dependencies. To overcome these issues, two models were
developed which are LSTM (Long Short-Term Memory) and
GRU (Gated Recurrent Units) [52].

LSTM and GRU are derived from RNN but present new
internal mechanisms and gates concepts allowing for reg-
ulating the flow of information over time. These concepts
allow retaining previous information as in RNN but with
more efficiency in carrying relevant information from earlier
time steps. For LSTM models, the core principles rely on
carrying two pieces of information through the processing
which are a cell state and a hidden state. Actually, an LSTM
cell contains three gates: a forget gate to decide which in-
formation should be deleted or retained, an input gate to
update the cell state, and an output gate to decide the next
hidden state. For GRU, the process is simplified by letting
down the cell state and retaining only a hidden state over
processing. Moreover, it has only two gates: a reset gate and
an update gate. The update gate decides how to combine the
previous memory with actual input while the reset gate
determines how much of the previous memory should be
kept. More details on RNN, LSTM, and GRU can be found
on [52].

3.3. Autoencoders. Another type of ANN is autoencoders
[55]. An autoencoder (denoted as AE) is considered as a
Feedforward Network similar to MLP since it contains at
least three layers: one input layer, one or more hidden layers,
and an output layer. “Deep autoencoder” notation is used
when more than one hidden layer is used. The major dif-
ference with MLP is that the latter model tries to predict a
target variable, while AE aims to reconstruct the input data
with a minimum of errors. To achieve this goal, the input
and the output layers must be identical in the learning phase.
Moreover, an AE can be considered as a dimension re-
duction technique trying to extract an optimal compressed
representation of the initial data. Concretely, an AE chains



Feed-Forward Network

e

© Input layer

@ Hidden layer

Mobile Information Systems

Recurrent Neural Network

@ Output layer

FiGure 1: (a) Topologies of Feedforward Network and (b) the recurrent neural network.

two main stages: the encoding stage and the decoding stage
(see an example in Figure 2). In the encoding phase, the
network reduces the number of nodes from the input layer to
the middle hidden layer, called the bottleneck layer. This
bottleneck layer represents the new compressed represen-
tation of the input data. In the decoding phase, the network
increases the number of nodes from the bottleneck to the
output layer to retrieve the initial input data. Encoding and
decoding mechanisms have made AE approach a great data-
driven technique for learning and extracting relevant fea-
tures avoiding many troubles related to handcrafted features
[56]. Furthermore, since neural networks apply nonlinear
transformation between layers, AE has shown great per-
formance for feature reduction compared to other state-of-
the-art reduction techniques [47]. In the next section, we
present our proposed framework in which we detail the
different proposed approaches.

4. Proposed Framework

The proposed deep learning framework (see Figure 3) ex-
plores the whole process of the activity detection task. It was
carefully designed to ensure an exhaustive evaluation of all
possible approaches related to feature choice and the ap-
plication of deep learning models. In fact, it proposes de-
tailed guidelines for the following:

(i) Data preprocessing
(ii) Features to use
(iii) Models building

Each of those steps is detailed in the following subsec-
tions. Note that this framework can be generalized and
applied to any smart home dataset built over ambient
sensors and devices.

4.1. Data Preprocessing. From a smart home setting, each
sensor data could be stored in one file. Each file contains two
columns: timestamp and sensor value. Time granularity is
different from one sensor to another. OQur preprocessing
approach aims at merging all data sensors to one matrix in
which row index is timestamp and column indexes are
sensor labels. The output matrix should not contain any
missing values and all values must be normalized. To reach
this goal, we propose a specific preprocessing algorithm that
chains essentially three big steps (see Figure 3):
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Input layer
258 nodes

Encoding layer
100 nodes

Bottleneck layer  Decoding layer
50 nodes 100 nodes

Output layer
258 nodes

y
\/

Encoding stage Decoding stage

FIGURE 2: The autoencoder model applied to Orange4Home for
feature reduction purposes.

(i) Data fusion: this first manipulation is effectuated by
the fusion of all timestamps from all sensors. Some
missing values may appear since sensors do not
share the exact timestamps.

(ii) Filling missing values: many strategies are proposed
to replace missing values with relevant ones. First,
missing values should be replaced by the last valid
observation from the past. Next, the remaining
ones, especially in the beginning, are replaced by
zero in case of numerical sensor and by the first
valid observation in case of a categorical sensor. This
way all missing values are suitably treated.

(iii) Data normalization: for many machine learning
models, it is recommended and even required in
some cases to normalize data to a standard format.
For this goal, a min-max scaler is firstly applied to
numerical values. Secondly, Binarization is applied
for two-category variables (e.g., “ON” and “OFF”
are, respectively, replaced by 1 and 0). Lastly, hot
encoding is applied for multiple-categories variables
(i.e., three categories or higher).

Therefore, applying these three steps, we should come
out with a homogenous numerical table in which all
columns’ values are ranged between 0 and 1. These table
columns represent the initial input features of the next
steps.
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FIGURE 3: Deep learning-based framework for activity recognition: this framework proposes a detailed methodology for data preprocessing,
feature selection and reduction, and training/testing steps for the chosen deep learning techniques.

4.2. Which Features to Use?

4.2.1. The All-Features Approach. Once data processing is
complete, we should decide which features to use for the
classification task. The first approach is to use all available
features without any selection or reduction technique.
Despite its basic form, this approach is quite interesting in
the deep learning context. In fact, data transformations
applied in the intermediate hidden layers can be interpreted

as automatic features extraction computations. This process
is known as the “Automatic Features Learning” process [56].
These extracted features are repeatedly tuned during the
training phase, ending up in optimized and well-suited
features for the classification task.

4.2.2. The Feature Selection Approach. The feature selection
approach consists of using classic data mining methods to



select from the initial number of features a fewer subset of
features that are most relevant to the classification task. This
approach is widely used by researchers to remove insig-
nificant variables, simplify models, decrease training time,
overcome overfitting issues, etc. In this work, we applied, in
particular, the “Univariate Selection Approach” also known
as the “F-ANOV A selection” (see Figure 3). The key idea of
this method is to select the most relevant features by
computing univariate statistical tests (ANOVA tests [57])
between each input feature and the target variable. Con-
cretely, if we want k features, we compute ANOVA F-value
score between each input and the desired output variable
and then we select the best k features having the k highest
ANOVA F-value scores.

4.2.3. The Feature Reduction Approach. The feature re-
duction approach consists of reducing the initial number of
features by extracting new feature representations. The
extracted features should summarize original data and
guarantee to retain a maximum of information. Depending
on the used approach, these new features can be a linear or
nonlinear transformation of the initial data. In this work, our
main approach for dimensionality reduction relies on deep
autoencoder architecture. Please refer to Subsection 3.3 for
more details on autoencoders. To compare the autoencoder
approach, principal component analysis (also known as
PCA), a state-of-the-art reduction technique, is also applied.
Principal component analysis (PCA) [58] is a statistical
approach that aims to map a set of potentially correlated
features to a set of linearly uncorrelated features named
principal components. Due to an internal mechanism of
variance conservation, PCA transforms feature space to a
more consistent one that allows reducing the number of
features and conserving the original data variability.

4.3. Models Building. In our framework, many models are
explored depending on the chosen approach for treating
features (see Figure 3). First, for the all-features approach, we
simply build the neural network over the complete dataset.
The neural network may be a simple MLP, an RNN model,
an LSTM model, or a GRU model. These models were
particularly chosen since they represent the best state-of-the-
art models for activity recognition as pointed by many lit-
erature reviews [45, 56]. Please refer to Section 3 for more
details about these different neural network architectures.
Second, for the feature selection approach, we begin by
applying the F-ANOVA selection technique. Next, we build
over selected features a neural network model which can be a
simple MLP, an RNN model, an LSTM model, or a GRU
model. Third, for the reduction approach, we start by
building a deep autoencoder using the whole training data.
At this step, we remind that the output layer is set to be
identical to the input layer. After the training, we remove the
decoding part from the AE, keeping only the encoding part.
The last layer of the encoding part is the bottleneck layer
from which are computed the new features. Indeed, the new
reduced features are extracted by getting the output of the
bottleneck layer. To finalize the model, we add a “softmax”
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output layer for the classification task and we retrain the
model to fit the new architecture (see Figure 3). This latter
training step is known as the fine-tuning step. Finally, all
models are tested and evaluated using a multitude of clas-
sification metrics. In the next section, we present how our
framework was implemented and applied to the Orange4-
Home dataset, depending on what feature strategy was used
and which model was adopted.

5. Experiments

5.1. Dataset Presentation. For this work, the “Orange4Home
dataset” [24] was chosen to test our framework for many
reasons. Actually, many datasets already exist in the liter-
ature. However, many remarks and limitations are observed
on these databases. Opportunity dataset [59] for instance is
limited by the presence of only one room, the shortness of
recorded sequences (~30 minutes), and the large use of
body-worn devices which makes the scenario unreal.
Transfer Learning dataset [60] uses 3 houses for experiments
but was limited by the number of recording devices and
takes into account only 8 classes of activities. ARAS dataset
[61] records 27 classes of activities over one whole month in
two different smart homes. Activities were labeled in situ by
the residents with high accuracy. However, the only use of 20
binary sensors limited the richness of recorded data.

In our work, the “Orange4Home dataset” [24] is chosen
due to its numerous advantages and its well-designed
protocol. It represents a promising benchmark for behavior
studies and routines detection. This dataset is the fruit of a
collaboration between INRIA (https://www.inria.fr/en/) and
Orange Labs (France). Recordings were effectuated in a two-
floor smart apartment, named “Amiqual4Home” (https://
amiqual4home.inria.fr/), fully equipped with 236 hetero-
geneous sensors. Four successive weeks of work (9 hours per
day, 5 days per week) were recorded resulting in nearly 180
hours of multimodal data and 24 activity classes labeled
accurately in situ by the single resident of the smart house.

The total list of classes is presented in Table 2. Each class
is labeled by its location followed by the activity label (e.g.,
Office|Cleaning). Note that gaps were observed in activity
labeling when a transition occurs between two different
activities. To deal with this issue, we added a novel class
named “inter” activity, which has raised the total number of
classes to 25.

Back to the experimental setting, the smart apartment
was equipped with several types of ambient sensors gen-
erating various types of recorded data as detailed in Table 3
extracted and slightly modified from [24]. Several modalities
were sensed ranging from environmental information such
as weather variables to more local information such as in-
door temperature, noise, doors states, lights states, presence,
movements, electric and water consumption, etc. Thanks to
the diversity of sensed data and the relevant labeled classes,
the “Orange4Home” represents an appropriate benchmark
to assess the different components of our framework,
namely, the data preprocessing approaches and the deep
learning models. In the next subsection, we detail how our
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TaBLE 2: List of classes (extracted from [24]). Each class is denoted
by its location followed by the activity label.

Entrance|Entering Entrance|Leaving

Kitchen|Cooking
Kitchen|Cleaning
Living_room|Cleaning
Living_room|Watching TV
Staircase|Going_down
Office|Watching TV
Bedroom|Dressing
Bedroom|Napping
Toilet|Using_the_toilet
Bathroom|Using_the_sink
Bathroom|Cleaning

Kitchen|Preparing
Kitchen|Washing_the_dishes
Living_room|Eating
Living_room|Computing
Staircase|Going_up

Office| Computing
Office|Cleaning
Bedroom|Reading
Bedroom|Cleaning
Bathroom|Showering
Bathroom|Using_the_toilet

TaBLE 3: Number of sensors per location and data type. These
figures were extracted from [24].

Place\Type Binary Numeric Categorical Total
Entrance 3 3 3 9
Kitchen 13 39 0 52
Living room 16 14 7 37
Toilet 3 2 0 5
Staircase 3 0 0 3
Walkway 9 1 0 10
Bathroom 9 14 3 26
Office 9 6 5 20
Bedroom 17 10 7 34
Global 1 33 6 40
Total 83 122 31 236

framework was applied to this dataset to get relevant clas-
sification results.

5.2. Models Implementation. As previously mentioned, the
first component of our framework is data processing. At this
level, three steps are applied which are data fusion, filling
missing values, and data normalization (see Figure 3).
Applying these steps to the Orange4Home dataset results in
a feature space composed of 258 normalized features, 25
activity classes, and a total of 224000 timestamp lines. Next,
we should decide which features to use. To this end, three
approaches were proposed: the first one selects the whole
feature space before model building. The second one uses the
F-ANOVA technique to select a subset of features, and the
third one applies feature reduction techniques. Before
presenting all models results, we remind that, for all ap-
proaches, 4 neural networks models were tested, namely,
MLP, RNN, LSTM, and GRU. The MLP model is built upon
two hidden dense layers in addition to input/output layers.
The RNN model contains three layers besides input/output
layers: one RNN layer followed by one dropout layer (to
limit overfitting issues) followed by one dense layer. The
same architecture is used for LSTM and GRU models (see
Figure 4). This architecture showed to be empirically the
most optimal for our dataset. Moreover, for all approaches
and all models (MLP, RNN, LSTM, and GRU), the number
of nodes in each layer was calculated as follows: (number of

(® ® @
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RNN/LSTM/GRU
layer

Input layer Dropout layer Dense layer Output layer

(@ RNN node or LSTM memory cell or GRU memeory cell
€ Dropout node

FIGURE 4: The main topology of neural networks models (RNN,
LSTM, and GRU) applied to the Orange4Home dataset.

inputs + number of classes)/2. This calculation method
showed to be empirically the best one for our dataset.

For the all-features approach, the number of used fea-
tures for classification corresponds to the initial number of
258 features. For the selection approach, the best classifi-
cation results were computed using exactly 50 selected
features determined by the F~ANOVA technique. Similarly,
the number of reduced features was 50 features. In fact, a
deep autoencoder model was applied for the reduction
approach. Besides input/output layers, the AE model con-
tained three hidden dense layers with, respectively, 100, 50,
and 100 nodes (see Figure 2). The input/output layers
contained the initial number of features, i.e., 258 nodes.
After the training, the decoding part is dropped out, and a
“softmax” output layer (with 25 class nodes) is added just
after the bottleneck layer, which, we remind, was composed
of 50 nodes representing the reduced features. A fine-tune
step is lastly computed to retrain the new model parameters.
To compare the deep autoencoder results, PCA (principal
component analysis) is also tested on our dataset using 50
principal components.

To test all models, 4-cross validation is applied since we
have 4 weeks of recording data. In each round, three weeks
were used for training and one was used week for testing.
Final evaluation metrics represent then the average of the 4
iterations. To conclude this section note that data pre-
processing steps, selection techniques, reduction methods,
models training, models testing, and assessment metrics
were all implemented using Python programming language
with the support of well-known Data Science packages such
as Numpy, Pandas, Scikit-learn [62], and Keras [63]. All
manipulations were ensured by a 16 GB RAM PC charac-
terized by an Intel® Core™ i7-8550U Processor. All results
are presented and discussed in the next section.

6. Results and Discussion

6.1. Results of the All-Features Approach. For results com-
parison, we will essentially rely on two main metrics: the



general accuracy and the F-measure which represents the
harmonic mean of recall and precision [64]. These evalua-
tion metrics are reminded in the below formulas. For these
formulas, note that taking a specific class as a reference, TP
refers to True Positive and represents the number of in-
stances correctly assigned to that class. FP refers to False
Positive and represents the number of instances incorrectly
assigned to that class. FN refers to False Negative and
represents the number of instances of that class but assigned
to another class. TN (True Negative) refers to the number of
instances of another class and correctly assigned to that class.

TP + TN

A = >
CURAY = 1P TN + FP + FN
TP
Recall = ———,
TP + FN
(1)
.. TP
Precision = ——,
TP + FP

2 * Recall * Precision
F — measure =

Recall + Precision

In the all-features approach, models were trained using
258 features (the whole feature space). After testing several
baseline classic classifiers, the best results (92.22% for ac-
curacy and 92.83% for F-measure) were computed by a
random forest classifier [31] (which we denote here as the
baseline-RF model). Our proposed MLP model, as well as
the RNN model, has succeeded to enhance this result by
giving, respectively, 94.26% and 94.20% for the accuracy and
94.73% and 94.74% for the F-measure. The rest of the tested
models (i.e., LSTM and GRU) have led to closer results but
with no significant amelioration as shown in Table 4. In fact,
neural network models have given better results than RF
since they have the advantage of the “automatic features
learning” process. As explained before, extracted features
from this process are repeatedly tuned during the training
phase, ending up in optimized and well-suited features for
the classification task. Moreover, looking at the computing
times in Table 4, neural networks models have recorded, as
expected, longer times than RF due to the complexity of
these models. Besides having the best rates, MLP and RNN
models present also better computing times compared to
LSTM and GRU. For instance, for the testing time, the RNN
model has given 3.71sec versus 5.48sec for the LSTM.
Therefore, both MLP and RNN models present a good
tradeoft taking into account all evaluation metrics in the all-
features approach.

6.2. Results of the Feature Selection Approach. Similar to the
all-features approach, after testing several baseline classic
classifiers, the feature selection approach has given optimal
results using a random forest classifier. Thanks to the
F-ANOVA technique, the optimal number of selected fea-
tures was 50 features, the accuracy rate was equal to 95.10%,
and the F-measure was equal to 95.30% as shown in Table 5.
Next, the same selection technique was coupled with our
framework classifiers (MLP, RNN, LSTM, and GRU)
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resulting in the following new models: ANOVA-MLP,
ANOVA-RNN, ANOVA-LSTM, and ANOVA-GRU. The
baseline-RF model is denoted here as the baseline-ANOVA-
RF. While a slight accuracy amelioration was recorded for
the neural network models (especially 95.37% for ANOVA-
MLP versus 95.10% for ANOVA-RF), the F-measure scores
were very close for all models. For instance, the ANOVA-
MLP classifier has given an F-score of 95.39% with no
significant difference with ANOVA-RF results. The same
finding was observed for the rest of the tested models (i.e.,
ANOVA-RNN, ANOVA-LSTM, and ANOVA-GRU). In
fact, for neural networks, the internal process of automatic
feature selection has given these models some advantage
over the RF model in the all-features approach since no
selection operation was applied at all. When applying the
F-ANOVA selection technique, the internal process of
feature selection seems to be unbeneficial for NNs models
since here all classifiers share the same selection approach.
Furthermore, the comparison between these two approaches
(all-features and the selection one) shows that selection
techniques have succeeded to improve classification per-
formances for overall models. As a consequence, when
building smart houses, it is not necessary to have full in-
strumentation and a high number of sensors for efficient
activity detection. It is rather more optimal to precede with a
smart choice of sensors number, sensors type, and their
locations. This approach presents many advantages for re-
ducing costs and technical issues and especially helps in
resolving many challenges related to resident’s privacy since
fewer sensors are needed to capture their movements. Last,
for the computing times, similar results to the previous
subsection were observed since recorded times were
equivalent to the complexity of models; ie., the more
complex the model is, the longer the computing time is.

6.3. Results of the Feature Reduction Approach. In this work,
our main approach for feature reduction is to apply the
autoencoder method as described in Subsection 5.2. The
resulting model for the classification task is denoted here as
the AE-MLP model. But before exposing this model’s results,
a baseline model based on an RF classifier coupled to a PCA
reduction strategy (50 components from 258 features) has
given a rate of 79.68% for accuracy and 81.30% for
F-measure. This baseline model is denoted here as the
baseline-PCA-RF model. Next, we have tested a PCA-MLP
approach by combining a PCA reduction technique with an
MLP classifier. Results were significantly enhanced from
79.68% to 86.58% for accuracy and from 81.30% to 88.04%
for F-measure as shown in Table 6. Afterward, we tested our
main proposed approach (the AE-MLP model) and results
were significantly improved to reach an accuracy of 94.09%
and an F-measure of 94.26% as shown in Table 6. Therefore,
our proposed AE-MLP model has outperformed all other
reduction models with relevant accuracy and F-measure
classification rates. Moreover, the computing times of the
AE-MLP model were close to the PCA-MLP model which
supports the relevance of our proposed approach. This result
confirms previous findings in literature showing advantages
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TaBLE 4: Results of all models in the “all-features approach.”

All-features approach (258 features) Accuracy (%)

F-measure (%)

Training time (sec) Testing time (sec)

Baseline-RF 92.22
MLP 94.26
RNN 94.20
LSTM 93.53
GRU 93.40

92.83 12.21 0.96
94.73 61.99 3.13
94.74 84.83 3.71
94.27 153.06 5.48
94.31 153.94 5.13

TaBLE 5: Results of all models in the “feature selection approach.”

Feature selection approach (50 features) Accuracy (%)

F-measure (%)

Training time (sec) Testing time (sec)

Baseline-ANOVA-RF 95.10
ANOVA-MLP 95.37
ANOVA-RNN 95.21
ANOVA-LSTM 95.27
ANOVA-GRU 95.14

95.30 4.94 0.83
95.39 46.3 3.08
95.27 106.71 2.96
95.30 135.04 3.62
95.20 142.87 3.67

TABLE 6: Results for the “feature reduction approach.”

Feature reduction approach (50 reduced features)

Accuracy (%)

F-measure (%) Training time (sec) Testing time (sec)

Baseline-PCA-RF 79.68
PCA-MLP 86.58
AE-MLP 94.09

81.30 112.56 0.61
88.04 41.94 3.29
94.26 54.61 4.15

of autoencoders over PCA since autoencoders perform
nonlinear transformations when compacting reduced fea-
tures, contrary to PCA which performs simple linear cal-
culations. Another advantage of the AE-MLP approach is
the homogenous architecture of this model. In fact, both
reduction and classification models are based on neural
network layers and then combined to a single deep neural
network model. This homogenous topology enables optimal
training and fine-tuning at the same time of the two parts of
the model, namely, the reduction part and the classification
part.

7. Conclusion

\In this paper, we have proposed a deep learning-based
framework to decide the best approaches for ADL classification
in smart home. The framework was intended to ensure relevant
data preprocessing steps, test all possible strategies to choose
relevant sensors, and apply the best state-of-the-art models for
classification. In fact, after preprocessing, three approaches
were explored to determine optimal features, namely, the all-
features approach, the selection feature approach, and the
reduction feature approach. The F-ANOVA technique is ap-
plied for the selection approach, while a deep autoencoder (AE)
is proposed as the main technique for the reduction approach.
The last component of the proposed framework is the ADL
recognition models. Four neural network models were chosen
thanks to their proven discriminative power which are MLP,
RNN, LSTM, and GRU. Our new framework was applied to the
“Orange4Home” dataset which represents a promising dataset
for smart homes research. As a result, our framework has
shown significant improvement over baseline models com-
puted on the same dataset. Actually, for the all-features

approach, our RNN-based model has given the best F-measure
rate (94.74%) compared to the baseline-RF classifier (92.83%).
For the reduction approach, our AE-MLP model has largely
succeeded to outperform the baseline-PCA-RF model (94.26%
vs. 81.30%), thanks to its consistent architecture and training
process. Furthermore, the best overall results were given by the
feature selection approach suggesting that heavy installation
settings in smart homes may not lead to optimal performances
for ADL recognition. As a consequence, it may be more
beneficial to limit the number of sensors and to choose smartly
their types and locations. This recommendation represents a
relevant approach to tackle many smart homes concerns re-
lated to interactivity, costs, and privacy. To conclude, we would
like to emphasize that our proposed framework is designed to
be easily generalized and applicable to any smart home dataset
equipped with ambient sensors. It can be a useful and powerful
guideline for researchers and engineers to process any ADL
classification task. For the perspectives of this research, we
intend to develop the framework to include other types of
sensors such as wearable devices, audio sensors, and video-
based sensors. Moreover, many extensions of this framework
are studied to ameliorate recognition rates using incremental
learning techniques and deep reinforcement learning
approaches.
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