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Multiaccess edge computation (MEC) is a hotspot in 5G network. +e problem of task offloading is one of the core problems in
MEC. In this paper, a novel computation offloading model which partitions tasks into subtasksis proposed. +is model takes
communication and computing resources, energy consumption of intelligent mobile devices, and weight of tasks into account.We
then transform the model into a multiobjective optimization problem based on Pareto that balances the task weight and time
efficiency of the offloaded tasks. In addition, an algorithm based on hybrid immune and bat scheduling algorithm (HIBSA) is
further designed to tackle the proposedmultiobjective optimization problem.+e experimental results show that HIBSA canmeet
the requirements of both the task execution deadline and the weight of the offloaded tasks.

1. Introduction

With the rapid development of the Internet of +ings (IoT),
intelligent mobile devices (IMDs) have become indispens-
able tools in people’s daily life, and their functions have
become more and more powerful, which can meet people’s
needs in social, shopping, travel, entertainment, and so on.
Due to the physical size constraint, mobile devices are
usually resource-constrained and have a limited power
supply. However, most of the computation-intensive ser-
vices, such as image processing or video-based applications,
need high processing power and have high resources con-
sumption [1, 2]. Compute-intensive tasks cannot be com-
pleted in time or may even be blocked if they are only
processed locally [3]. Hence, how to solve the contradiction
between the limited resources of mobile terminals and the
high resources requirement of compute-intensive services
has become one of the main problems to be solved [4].

Nowadays, multiaccess edge computation (MEC) [5] has
been a promising paradigm to resolve the abovementioned
problem [6, 7]. In MEC, an edge site/server is a microdata
center, which is deployed attached to a small base station
(SBS). By moving computing storage and service capabilities
to the network edge, MEC can provide high reliability, high

bandwidth, and low-latency computing services for mobile
devices. Since mobile terminals can then offload tasks to the
nearby edge computing servers with rich computing re-
sources, the problem of resource limitation of IMDs can be
resolved to some extent.

Obviously, whenmultiple IMDs upload tasks at the same
time, they will inevitably compete with each other for both
communicational and computing resources [8]. Unrea-
sonable resource allocation can result in a low data trans-
mission rate and high delay. +erefore, the designation of
the task scheduling scheme has an important influence on
the performance of the MEC system. So far, many re-
searchers have focused on the computation offloading
scheduling problem. However, most of these studies have
performance limitations, which can be explained from the
following aspects. Firstly, some researches allocate tasks to
only one edge server. However, since the density of SBSs is
high [9, 10] in the future and the signal coverages of the SBSs
often overlap with each other in real-world scenarios, there
are multiple options when unloading tasks. In addition,
application partitioning and repartitioning have been
studied in depth in mobile cloud computing and distributed
systems [11, 12], which can be used in the MEC system.
Following these two ideas, assigning tasks to multiple edge
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servers is more reasonable. Secondly, some works [13] ig-
nored the energy consumption of the IMDs. In fact, the
energy consumption of mobile device must be considered
because they usually cannot be recharged timely. +irdly,
most studies did not consider the weight of offloading tasks.
However, those tasks that are important or have a long
waiting time in the scheduling queue should be scheduled in
priority for fairness. Finally, some studies have not jointly
considered the allocation of both the communication and
computing resources. Compared with the prior works, the
contributions of our paper are as follows:

(i) +e proposed task offloading model takes com-
munication and computing resources, energy
consumption of the IMD, and weight of tasks into
account.

(ii) We consider the scenario that the mobile device can
generate multiple tasks at the same time, which is
more realistic compared with most related works.
Moreover, we partition compute-incentive tasks
into subtasks and then offload them tomultiple edge
servers for parallel computing. Compared to off-
loading a single task to an edge server, tasks can be
executed in a more efficient way.

(iii) A novel multiobjective task scheduling algorithm is
designed, which combines the advantages of both
the bat algorithm and the immune algorithm to
improve the reliability of task offloading while re-
ducing the task completion time.

(iv) Extensive simulations have been conducted, and the
results show that the proposed algorithm can ef-
fectively shorten the task execution time and has
higher reliability compared with conventional
algorithms.

+e rest of this paper is organized as follows. Section 2
presents related works. Section 3 describes the system model
and the problem formulation. In Section 4, we transform the
offloading decision problem into a multiobjective optimi-
zation problem based on Pareto and then design a multi-
objective task scheduling algorithm based on hybrid
immune and bat scheduling algorithm (HIBSA). Section 5
gives the experimental comparisons of HIBSA with other
algorithms, which validate the superior performance of
HIBSA. Finally, we make the conclusion in Section 6.

2. Related Work

Task offloading refers to the process of allocating tasks to
edge servers with sufficient resources according to some
offloading policies. +ese policies determine both the effi-
ciency and the achievable computation performance of the
MEC. Task offloading is also called computing migration or
computing offloading [14]. By delivering compute-incentive
tasks such as face recognition and video optimization to
MEC servers, high task quality of service (QoS) is achieved.
In the last few years, task offloading problems have attracted
great interest of researchers. For instance, Wu et al. [10]
proposed an offloading algorithm based on support vector

machine (SVM). +e proposed algorithm firstly segments a
task into several subtasks by using a weight allocation
method. +en, each subtask is determined to be offloaded or
executed locally. In [11], Mao et al. developed an online joint
radio and computational resource management algorithm
for a multiuser MEC system, with the objective of mini-
mizing the long-term average weighted sum power con-
sumption of the mobile devices and the MEC server, subject
to a task buffer stability constraint. In literature [12], the
authors proposed an efficient computation offloading al-
gorithm by jointly optimizing user association and com-
putation offloading where computation resource allocation
and transmission power allocation are also considered. Also,
the authors in work [13] proposed a novel offloading system
to design robust offloading decisions for mobile services.
+is system considers the dependency relations among
component services and aims to optimize task execution
time and energy consumption of mobile devices. +ese
abovementioned researches focus on the computation off-
loading problem in the single-server MEC system.

On the other hand, many researchers have devoted their
efforts to task offloading problems in multiuser and mul-
tiserver MEC systems. For example, in [15], a cross-edge
computation offloading framework for compute-incentive
applications was proposed. +e transmission cost, task ex-
ecution cost, coordination cost, as well as penalty for task
failure were considered together in the offloading model
designation. An online algorithm based on Lyapunov op-
timization is proposed to jointly determine edge server site
selection and energy harvesting. Work [16] investigated
computation offloading in a dynamic MEC system with
multiple edge servers, where computational tasks with
various requirements were dynamically generated by IoT
devices and then offloaded to MEC servers in a time-varying
operating environment. +e objective of this work is to
maximize the task completion time andminimize the energy
consumption of IoT devices. In [17], the authors used an
improved glowworm swarm optimization algorithm to solve
the task offloading problem for a multiuser-multi-MEC
environment. Also, the authors in work [18] presented a
reinforcement learning framework based on the theory of
stochastic learning automata towards enabling the end-users
to select an MEC server to offload their data. To realize the
proposed framework, an iterative and low-complexity al-
gorithm is introduced and designed. Literature [19] pro-
posed a cooperative offloading technique based on the
Lagrangian suboptimal convergent computation offloading
algorithm (LSCCOA) for multiaccess MEC in a distributed
Internet of +ings (IoT) network. However, none of the
abovementioned methods considered the weight of the
offloaded tasks. In fact, different tasks are of different im-
portance to users.

To indicate the importance of different tasks, the authors
in [20] proposed a multiobjective task scheduling algorithm,
which aimed to optimize the allocation of the weight of the
offloaded tasks. However, this work has the following
limitations. First, tasks in this work can be offloaded to an
edge server only. Second, the energy consumption of the
mobile terminal was ignored. Finally, a bat algorithm was
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used in this work to get the optimization result. Since the bat
algorithm has no mutation operation, sometimes, the so-
lutions are lack of diversity. Specifically, Table 1 shows the
differences between some related studies and our work
proposed in this paper.

In this paper, the proposed model takes many aspects of
task offloading into account. Moreover, the bat algorithm is
combined with an immune algorithm to improve the per-
formance of the bat algorithm and get better optimization
results. Meanwhile, the scenario that mobile devices can
generate multiple tasks simultaneously is considered. To the
best of our knowledge, each device can only generate only
one task in the related studies. Hence, our work is more
realistic compared with relevant studies.

3. System Model and Problem Formulation

3.1. SystemModel. Suppose the proposed system consists of
n IMDs and m MEC servers. Let D � D1, D2, . . . , Dn􏼈 􏼉

denote the set of IMDs and CS � CS1,CS2, . . . ,CSm􏼈 􏼉 de-
note the set of MEC servers. We also discretize time into
multiple time slots, and all time slots have equal length as σ.

Among set CS, one edge server in the central location is
selected as the controller. +e proposed HIBSA algorithm,
which is detailed in Section 4, is executed on this controller.
In each time slot σ, the IMDs generate computation task
requests. +ose requests along with the basic information of
the IMDs (e.g., app type, local CPU-cycle frequency, and
battery energy level) are then sent to the controller. By
executing the HIBSA algorithm, the controller chooses the
edge server for each IMD for task offloading. +e archi-
tecture of this system model is shown in Figure 1.

For any IMD Di ∈ D, there exists a task queue
Ti � (Ti

1, Ti
2, . . . , Ti

k, . . .), where Ti
k denotes the k-th task

generated by the i-th IMD at a certain time slot. For task Ti
k,

it can be denoted by four tuples (dnumik, cnumik, wik,φik),
where dnumik is the size of the input data for computation,
cnumik is the CPU cycles to be processed for offloading, wik

is the weight of the task, and φik is the remaining battery
energy value of this IMD when generating this task. All
generated tasks can be divided into two types. One is the
real-time task, and another is the delay-tolerant task. +e
real-time task owns a maximum latency and must be fin-
ished before the delay threshold whereas the delay-tolerant
task can tolerate a much longer delay.

Furthermore, we use a binary matrix
s � sij|sij ∈ (0, 1)􏽮 􏽯

n×m
to represent one scheduling solution,

where sij � 1 denotes that the latest task generated by the i-th
IMD is allocated to the j-th server in this scheduling so-
lution, while sij � 0, otherwise.

3.2. Performance Evaluation. For any scheduling solution,
its performance is described by a vector (time cost and
weight), where time cost is the sum of the time consumption
for executing all tasks. Moreover, time cost consists of two
parts: one is the time delay for successfully completed tasks,
and the other is the punishment time for failed tasks. +e
time tik for successfully finishing task Ti

k is as follows:

tik � tcomm + tcomp + tcoor + tlocal, (1)

where tcomm is communication cost and is denoted as

tcomm � maxj∈CS,sij�1
dnumik

Cij · 􏽐j∈CSsij

, (2)

where Cij is the approximate data rate between the i-th IMD
and the j-th edge server, based on the 3GPS TS 38.306; the
transmission rate is as follows:

Cij � 10− 6
· 􏽘

K

k�1
v

(k)
Layers · Q

(k)
m · f

(k)
· Rmax ·

N
BW(k),μ
PRB · 12

T
μ
S

· 1 − OH(k)
􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭, (3)

where K is the number of aggregated component carriers
(CC) in a band or band combination between the i-th IMD
and the j-th edge server. Rmax � 948/1024. For the k-th CC,
v

(k)
Layers is the maximum number of layers; Q(k)

m is the
maximum modulation order; f(k) is the scaling factor; µ is
the numerology; T

μ
S is the average OFDM symbol duration

in a subframe for numerology μ; N
BW(k),μ
PRB is the maximum

RB allocation in bandwidth BW(k) with numerology μ, where
BW(k) is the supported maximum bandwidth in the given
band or band combination between the i-th IMD and the j-
th edge server; and OH(k) is the overhead. tcomp, which is the
time for computing this offloaded task, is given as

tcomp � maxj∈CS,sij�1
cnumik

fj · 􏽐j∈CSsij

, (4)

where fj is the CPU cycle frequency of the j-th edge server
and tcoor is the coordination cost between multiple servers
and is calculated as follows:

tcoor � ulc · 􏽘
j∈CS

sij, (5)

where ulc is the unit latency cost and tlocal is local execution
time that includes data preprocessing time and data packing
time. tlocal is given as

tlocal �
cik

fi

, (6)

where cik is the amount of CPU cycles to process the local
execution and fi is the CPU cycle frequency of the i-th IMD.
Besides, tik should satisfy
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tik ≤TCik, (7)

where TCik is the execution deadline of this task. Successfully
completed tasks are put into the successful set Gsuc. Ac-
cordingly, the whole time consumption for successfully
completed tasks is 􏽐i∈Gsuc

tik.
+ere are two possibilities for the failed task. One is the

task is overtime, namely, tik>TCik. +ese tasks must be
omitted or wait for the next time to be scheduled again,
which depends on the type of the task. +e other is that the
task is not assigned to any server in this schedule at all,
namely, 􏽐j∈CSsij � 0. +ese tasks also need to wait for the
next schedule or to be omitted. In these conditions, a time
punishment F was given (F>TCik), and the failed tasks are

put into unsuccessful set Gfail. +us, at a certain time slot σ,
the total time cost of all the scheduling is defined as follows:

tall � Σi∈Gsuc
tik + Gfail

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · F. (8)

Another evaluation metric is weight. +e sum of the
weights of all successfully offloaded tasks is

w � 􏽘
i∈Ssuc

wi. (9)

3.3. Problem Formulation. For the task scheduling problem
involved in this paper, there are 2n×m possible scheduling
solutions.+e set of scheduling solutions is denoted as S.+e

Table 1: +e differences between several references and our work.

Related
works Problem formulation Optimization objectives Algorithm proposed

[15] Markov decision process (MDP) Minimize the overall delay cost of all mobile devices
subject to some constraints

+e sampling and classification
(SAC) based edge site selection

(SES) algorithm

[18] A two-layer optimization
framework

Maximize its profit by processing the end-users’ data
for each MEC server while maximizing its perceived

satisfaction for each end-user

Data offloading and MEC server
selection (DO-MECS) algorithm

[19] Single-objective optimization
problem with multiple constraints

Lessen the weighted amount of power consumed by
communicating devices subject to some constraints

+e Lagrangian suboptimal
convergent computation offloading

algorithm (LSCCOA)

[20]
Multiobjective optimization

problem with multiple constraints
based on Pareto

Minimize the total execution time and maximize the
total weight under the constraints of communication

and computing resources
Bat algorithm

Our
method

Multiobjective optimization
problem with multiple constraints

based on Pareto

Minimize the total execution time and maximize the
total weight under the constraints of

communication, computing and energy resources

Hybrid immune and bat
scheduling algorithm (HIBSA)

MEC Server 1

MEC Server 2

MEC Server m

Moblie Device 1
Face Recognition

Moblie Device 2
Image/Video Editing 

Moblie Device 3
Gaming 

Moblie Device n
AR/VR

MEC Server (Controller)

Sending request Computing result

Figure 1: +e architecture of system model.
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optimization goal of this model is to find a scheduling s(s∈S)
under the constraints of communication, computing, and
energy resources, which can minimize the total execution
time and maximize the total weight. Here, any scheduling
solution should satisfy two constraints: one is the computing
resources constraint, which is shown as

∀j∈CS 􏽘
i∈D

sij ≤Mj, (10)

which means that the j-th server can be assigned up to at
most Mj tasks due to its limited computational capability.
+e other one is the energy consumption constraint, which
is shown as

εl + 􏽘
j∈CS

εtx
i,j · sij ≤φik,

(11)

where εl is the energy consumption of local execution and εtx
ij

is the energy consumption for transmitting between the i-th
IMD and the j-th edge server and is given by

εtx
i,j � p

tx
i · tcomm, (12)

where ptx
i represents the fixed transmit power of the IMDi.

Formula (11) means the total energy consumption of the i-th
IMD must be less than the current battery energy value of
this device.

+erefore, the proposed task scheduling problem can be
formulated as the following combinatorial optimization
problem P:

P
minf1(s) � tall � Σi∈Gsuc

tik + Gfail

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · F,

minf2(s) � w � − 􏽘
i∈Ssuc

wi,

⎧⎪⎪⎨

⎪⎪⎩

s.t. C1: ∀j∈CS 􏽘
i∈D

sij ≤Mj,

C2: εl + 􏽘
j∈CS

εtx
i,j · sij ≤φik.

(13)

3.4. Demo. In this section, a simple demo was given to il-
lustrate the task scheduling problem in multiple server envi-
ronments. As shown in Figure 2, suppose there are three
devices (D1,D2, andD3) and twoMEC servers (CS1 andCS2) in
the system, and there are three queues T1, T2, T3, respectively.
At the first time slot, tasks in each queue are denoted as
T1
1(2, 2, 1, 1), T2

1(5, 5, 3, 2), T3
1(3, 3, 1, 1), respectively.

For simplify, we make the following assumptions: (1) each
MEC server can run only one task at one time; (2) the delay
constraint of all these three tasks is 7, namelyTc� 7; (3) the data
transmission rate Cij, the computation rate ηj, and the unit data
energy consumption of transmission between i-th IMD and j-
th server εtx

ij are all assumed to be 1; (4) the local execution time,
energy consumption, and the coordination cost are ignored,
namely εl � 0 and tcoor� tlocal� 0. As shown in Table 2, three
task scheduling solutions are given.

Since s1 cannot meet constraints (10) and (11), it is
invalid scheduling. s2 satisfies constraints (10) and (11).

According to formula (1), the task completion time of T1
1 is

4, which is less than the delay constraint. +erefore, this is
a successful offloading, and sequence number 1 is put into
set Gsuc. As a result, Gsuc � {1}. T2

1 is not assigned any
computing server in this scheduling, so sequence number
2 is put into the failure set Gfail. According to formula (1),
the task completion time of T3

1 is 6, which is less than the
delay constraint value. Since it is a successful offloading,
sequence number 3 is put into the success set Gsuc, and
Gsuc is updates to {1, 3}. According to formulas (8) and (9),
tall � 4 + 6 + F � 10 + F and w � 2. Also, s3 satisfies the
constraints (10) and (11). T1

1 is not assigned any com-
puting server in this scheduling. +us, s3 is a failed off-
loading. According to formula (1), the completion time of
T2
1 is 5. +erefore, this is a successful offloading, and

sequence number 2 is put into the success set Gsuc and
Gsuc � {2}. T3

1 is not assigned any computing server in this
scheduling, so it is a failed offloading. +us, we have
tall � 5 + 2F and w � 3.

In all, none of these scheduling schemes has both the
least time consumption time and the largest task completion
weight. Generally, the best solution that meets all the ob-
jectives cannot be found. However, the noninferior solution
can be found.

4. Proposed Algorithm

4.1. Multiobjective Optimization Problem

4.1.1. Problem Statement. +e general description of the
multiobjective optimization problem is as follows:

Given the vector X � (x1, x2, . . . , xn) ∈ Rn, and it sat-
isfies the following constraints:

1st time slot
moblie (dnum,cnum,w,ψ)

Computation ServerT1
2

T2
2

T3
2 T3

1

T2
1

T1
1

CS1

CS2

D1

D2

T1

T2

T3

D3

Figure 2: Initial condition of DEMO.

Table 2: Solutions.

Solution s CS\D D1 D2 D3

s1 CS1 1 1 1
CS2 1 1 1

s2 CS1 1 0 0
CS2 0 0 1

s3 CS1 0 1 0
CS2 0 1 0
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gi(X)≤ 0(i � 1, 2, . . . , k), (14)

hi(X) � 0(i � 1, 2, . . . , l). (15)

Suppose that there are r optimization objectives, which
are in conflict with each other. +e optimization objective
can be expressed as follows:

minf(X) � min f1(X), f2(X), . . . , fr(X)( 􏼁. (16)

We want to find X∗ � (x∗1 , x∗2 , . . . , x∗n ) in order that
f(X∗) can be optimized while satisfying constraints (14)
and (15). Obviously, the scheduling problem mentioned in
this paper is a multiobjective optimization problem. Gen-
erally, it is necessary to consider the conflicting subobjectives
comprehensively and make the trade-off among the
subobjectives.

4.1.2. Pareto-Optimal Set. Multiobjective optimization is to
simultaneously optimize multiple subobjectives, and these
subobjectives often conflict with each other. +e optimi-
zation of one objective may result in the deterioration of

another objective. Normally, no single solution can optimize
all the objectives simultaneously. +e trade-off among
multiobjectives can be properly attained by using Pareto
optimality [21].

Definition 1 (Pareto dominance). A decision vector XA is
said to dominate another decision vector XB (noted as
XA≻XB) if and only if

∀i�1,2,...,r, fi XA( 􏼁≤fi XB( 􏼁∧∃j�1,2,...,r, fj XA( 􏼁<fj XB( 􏼁.

(17)

Definition 2 (Pareto optimal). A solution X∗ ∈ Xf is said to
be Pareto optimal if and only if

¬∃X′ ∈ Xf: fj X
∗

( 􏼁≥ fj X′( 􏼁, ∀j � 1, 2, . . . , r, (18)

where Xf represents the set of solutions.

Definition 3 (Pareto-optimal set). Set P∗ includes all Pareto-
optimal solutions, which can be defined as follows:

P
∗

� X
∗

􏼈 􏼉 � X ∈ Xf| ¬∃X′ ∈ Xf: fj(X)≥fj X′( 􏼁, ∀j � 1, 2, . . . , r􏽮 􏽯. (19)

4.1.3. General Framework of MOEA Based on Pareto. An
evolutionary algorithm (EA) is a kind of random search algo-
rithm that simulates the natural selection and evolution of or-
ganisms. It is widely used because it is suitable for solving highly
complex nonlinear problems. At the same time, it has good
versatility. +e advantages of EA have been fully demonstrated
in solving single objective complex system optimization prob-
lems. However, EA cannot resolve multiobjective optimization
problems effectively. For the multiobjective optimization
problem, it can be resolved by the multiobjective evolutionary
algorithm (MOEA). Over the last decades, the design method of
MOEA has attracted great interest of researchers [22–24].

Most MOEAs adopted the general process, which is shown
in Figure 3.+e whole process of MOEA is described as follows.
Firstly, an initial population P is generated, and an algorithm is
selected to operate on P to obtain a new evolutionary population
R. Next, a strategy is adopted to construct the nondominated set
(NDSet) of P∪R. Generally, the set size is set when designing the
algorithm (such asN). If the size of the current set is greater than
or less than N, the size of the NDSet needs to be adjusted
according to a certain strategy. In the adjusting process, the
NDSet must meet both the size requirements and the individual
diversity. +en whether the termination condition is satisfied is
judged.+e process ends if and only if the termination condition
is satisfied. Otherwise, we need to copy the individuals in NDSet
to P and continue to the next round of evolution.

4.2. Individual Evaluation Method. Different from the
single-objective optimization problem, the multiobjective
optimization problem needs vector comparison. +e

multiobjective optimization strategy adopted in this paper
is similar to the method of NGSA-II [25–27], but some
changes have been made. All scheduling schemes are di-
vided into three types. For any scheduling s of the first type,
it can complete all tasks on the premise of satisfying
constraints (10) and (11). Obviously, this type of scheduling
is ideal, so it is set to the highest rank 0, namely ranks � 0.
+e scheduling of the same level is ranked according to the
task completion time, and the higher priority value has
little task completion time.+e second type is also to satisfy
constraints (10) and (11), but it can only complete a part of
offloaded tasks. We regard each scheduling s of this type as
an individual in the evolutionary algorithm. According to
the NSGA-II method [28], all individuals in the first
nondominated front are found firstly. In order to find the
individuals in the next nondominated front, the solutions
of the first front are discounted temporarily, and the above
procedure is repeated. +e rank of the scheduling s in the
first front is 1, namely ranks � 1. Similarly, the rank of the
scheduling in the second front is 2, so back and forth.
Compared with the crowding distance of individuals in the
same rank, individuals with higher aggregation density
have a higher priority value. +e third type is the sched-
uling that violates constraints (10) and (11). Assuming that
the second type is divided into n ranks, for the scheduling s
that belongs to the third type, its rank is n+ 1, namely
ranks � n + 1. +e scheduling that violates constraint (10) to
a lower degree has a higher priority. According to the
abovementioned method, suppose there are scheduling p
and scheduling q, the comparison strategy between them is
described in Algorithm 1.
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4.3. Our Algorithm

4.3.1. Bat Algorithm. As mentioned above, the basis of
multiobjective evolutionary algorithm is an evolutionary
algorithm. At present, the most commonly used evolu-
tionary algorithms include simulated annealing algorithm,
genetic algorithm, distribution estimation algorithm, and
particle swarm optimization algorithm. However, in these
algorithms, the individual’s movement mode does not adopt
the position update mode of the deterministic algorithm.
+at is, “only move to the solution that is better than the
current position” method is used. Yang [29] proposed a bat
algorithm (BA) that adopts the method of “only move to the
solution which is better than the current position.” BA
simulates the behavior of microbats in nature, which uses
echolocation to hunt prey and avoid obstacles. Compared
with other evolutionary algorithms, BA has the character-
istics of higher computational efficiency, stronger optimi-
zation ability, and robustness.

According to the bat’s echolocation behavior and its
correlation with objective optimization, the parameters
and updating equations of n bats during flight are given
below: Suppose that there are n virtual bats living in the
domain. In the t-th generation, the information con-
taining the i-th (i � 1, 2, . . ., n) bat can be expressed as five
tuples: 〈xi

→
(t)t, nvi

→
q(t)h,f xri7(t)C, ; Ai(t), ri(t)〉, where

xi
→

(t) � (xi1(t), xi2(t), . . . , xik(t), . . . , xiN(t)) denotes the
position information of the t-th generation of the i-th bat
and a solution of the search space, the speed vi

→
(t) �

(vi1(t), vi2(t), . . . , vik(t), . . . , viN(t)) represents the

velocity direction of the i-th bat in the t-th generation,
while frequency fri (t), loudness Ai (t), and pulse emission
frequency ri (t) are three parameters needed by i-th bat in
the algorithm. In the (t+1)-th generation, each bat firstly
updates its speed according to the formula, which is
described as follows:

vi(t + 1) � vi(t) + xi( ( t) − p(t) · fri(t)m, (20)

where p
→

(t) � (p1(t), p2(t), . . . , pk(t), . . . , pN(t)) indi-
cates the historical optimal position of the previous t
generations, while (xi(t) − p(t))fri(t) represents the effect
of the deviation between xi

→
(t) and p

→
(t) on the speed of

the next generation, and the frequency fri (t) is randomly
generated according to the following formula:

fri(t) � frmin + frmax − frmin( 􏼁 · rand1, (21)

where rand1 is a uniformly distributed random number
in (0, 1) and the two parameters frmax and frmin are the
preset as the upper and lower frequency limits,
respectively.

On this basis, when each bat performs a global or local
search, the selection of its search mode is determined in a
random way. It means random number rand2, which is
uniformly distributed between 0 and 1 needs to be deter-
mined. If rank2 < r1(t), the i-th bat will search for food in the
following global search mode:

xi
′(t + 1) � xi(t) + vi(t + 1). (22)

Start

Generate initial population p

A new group R was obtained
by EA evolution

Constructing Non Dominated Set NDSet of
P U R

Adjust the scale of NDSet to meet the
requirements of distribution

Satisfy termination
conditions?

N

Y
Output result, end

P≤NDSet

Figure 3: General flow of multiobjective evolutionary algorithm based on Pareto.
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Otherwise, the i-th bat will perform a local search
according to the following formula:

xi
′(t + 1) � p(t) + εi · A(t), (23)

where εi is a uniformly distributed random number belongs
to (− 1, 1) and A(t) � 􏽐

n
j�1 Aj(t)/n is the average loudness of

the bat at the t-th time.

After the new location xi
′

→
(t + 1) �

(xi1′(t), xi2′(t), . . . , xik
′(t), . . . , xiN

′(t)) is calculated, the bat
will be judged whether to move instead of moving to the new
location immediately according to the following update
rules:

xi
→

(t + 1) �
xi
′

→
(t + 1), rand3 <Ai(t)andf xi

′
→

(t + 1)􏼒 􏼓<f xi
→

(t)( 􏼁,

xi
→

(t), else.

⎧⎪⎨

⎪⎩
(24)

When updating the position, a uniformly distributed
random number rand3 that belongs to (0, 1) was selected.

When rand3 <Ai(t) and f(xi
′

→
(t + 1))<f(xi

→
(t)) are sat-

isfied simultaneously, the i-th bat updates the location to
xi
→

(t + 1). Otherwise, the location of i-th bat is still xi
→

(t)

without updating the location to xi
→

(t + 1).
+e update formula of the pulse emission rate ri (t + 1) is

as follows:

ri(t + 1) � ri(0) · 1 − e
− ct

􏼐 􏼑. (25)

Loudness Ai(t+ 1) is updated as follows:

Ai(t + 1) � αAi(t), (26)

where α> 0 and c> 0 are both preset parameters, Ai(0) is the
initial value of loudness, and ri (0) is the initial value of pulse
emission rate. In the paper, Ai(0) is random selected from [0,
1] and ri (0)� 0.1.

In the basic bat algorithm, equations (20) and (22)
represent the global search mechanism of the algorithm,
while equation (23) represents the local searchmechanism of
the bat algorithm.

4.3.2. Hybrid Immune Bat Algorithm. It was shown that the
optimization ability of BA mainly depends on the interaction
and influence between bat individuals. Due to the lack of a
mutation mechanism, it is difficult for individuals to get rid of
the constraint of a local extreme value. Moreover, in the
evolution process, the super bats in the population may attract
other individuals to gather around them quickly, which results

in a significant decline in population diversity. Meanwhile, the
bat individuals are getting closer to the optimal individuals of
the population in order that the population has lost the ability of
further evolution [30]. In this paper, the clonal selection
mechanism in the artificial immune system is introduced,which
can enhance the diversity of bat population, enhance the ability
of wide range variation, and increase the convergence rate.

Suppose that an individual population
B � b1, b2, . . . , bn􏼈 􏼉 is obtained through the process of the bat
algorithm, which is a temporary clonal population. Each bat
i (i� 1, 2, . . ., n) in the temporary clonal population is
regarded as an antibody.+e specific methods are as follows:

Step 1: the k (k<n) antibody individuals selected in a
random way were grouped into subpopulation
Sub1 � b1′, b2′, . . . , bk

′􏼈 􏼉. And clone and copy subpopu-
lation Sub1.+e cloning operator is described as follows:

Sub2 � Tc Sub1( 􏼁 � TC b1′( 􏼁, TC b2′( 􏼁, . . . , TC bk
′( 􏼁􏼂 􏼃,

(27)

where TC(bi
′) � qi × bi

′, (i � 1, 2, . . . , k), where qi is
the number of clones of bi

′, which is proportional to the
fitness of bi

′. A new population Sub2 was generated by
cloning.
Step 2: implement high-frequency mutation for each
individual in group Sub2, and the mutation operator is
adaptive, which is related to both evolution genera-
tions and individual fitness. For any
bi
′ � (bi1′, bi2′, . . . , bij

′, . . . , bin
′ ), the mutation formula is

given as follows:

(1) If (rankp< rankq)
(2) p≻q
(3) If (rankp � rankq� 0 and tp< tq)
(4) p≻q
(5) If (rankp= rankq=n+1 and 􏽐j∈csmax(􏽐i∈Dpij − Mj, 0)<􏽐j∈csmax(􏽐i∈Dqij − Mj, 0))
(6) p≻q
(7) If (1≤ rankp≤ n and 1≤ rankq≤ n and dp> dq)
(8) p≻q
(dp and dq represent the aggregation density of p and q, respectively)

ALGORITHM 1: Individual evaluation algorithm (IEA).
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b
′new
ij �

∼ b
′old
ij , rand4 < η(t) and rand5 <Δ,

b
′old
ij , else.

⎧⎪⎨

⎪⎩
(28)

η(t) in formula (28) is given as follows:

η(t) � 1 − r
[1− (t/T)]b

1 , (29)

where b is a positive constant, r1 ∈ (0, 1). In the early
stages of evolution, r

[1− (t/T)]b

1 was smaller, η(t) ≈ 1,
but in the later stage of evolution, when t approaches
T, η(t) ≈ 0, local search is carried out in a small space.
Furthermore, Δ in formula (28) is formulated as
follows:

Δ � 1 − r
Rλ

2 , (30)

where r2 ∈ (0, 1), the parameter λ plays the role of
adjusting the search area, and the value is generally
2–5 [31]. R in the above formula is formulated as
follows:

R � 1 −
fit bi
′( 􏼁

fitmax
, (31)

where fit(bi
′) represents the fitness of antibody bi

′ and
fitmax is the maximum fitness value, which is the
aggregation density of the individual. Obviously, for
those with higher fitness, the Δ value is smaller, and
the mutation possibility is small, while for those with
lower fitness, the mutation possibility is relatively
large.
Step 3: immune clonal selection: the best individual
from the clonal mutation individuals is selected for the
next generation. +e full algorithm of HIBSA is given
in Algorithm 2.

4.3.3. Ee Full Algorithm of HIBSA. 4.4. Time Complexity
Analysis. In this section, the time complexity of HIBSA is
analyzed. Based on the flowchart in Figure 3, assuming that
the population P size, the new group R size are both N, the
number of objectives isM (in fact,M is 2 in this paper). +e
number of decision valuables is m×n (n is the number of
IMDs and m is the number of MEC servers). +e basic
operators and their time complexity analysis are given as
follows:

(1) Generate initial population P. Population initiali-
zation is to generate individuals randomly and cal-
culate the values of objectives, so the time complexity
is O (m× n×N) +O (M×N).

(2) A new group Rwas obtained by EA evolution. In this
paper, the evolutionary algorithm combines the bat
algorithm and the immune algorithm together. In
both these two algorithms, identifying non-
dominated individuals was needed. When identify-
ing nondominated individuals, individuals are

compared with each other based on the objectives.
Hence, the time complexity is O (M×N2).

(3) Construct nondominated set (NDSet) of P∪R. As
these operators are performed in the P∪R, so the time
complexity of nondominated individuals identifi-
cation is O (M× (2N)2)

(4) Adjust the scale of NDSet to meet the requirements
of distribution. In this stage, adjust operator selects
nondominated individuals with greater fitness values
to preserve. +erefore, in the assignment of fitness
values, the time complexity of the crowding-distance
assignment is O (M×N× log (N)).

Based on the above analysis, in a single generation, the
worst time complexity can be written as follows:

O M × N
2

􏼐 􏼑. (32)

5. Experimental Evaluation

In this section, we evaluate the performance of HIBSA
through simulations and compare its performance against
several algorithms.

5.1. Verification Policies. Suppose that at one time, there are
n mobile devices and m computing servers, and each device
currently has a task queue to be offloaded. Assuming that on
the t-th slot, the k-th task Tk

i in the current queue on the i-th
device is ready to be offloaded. If the offloading is successful,
the device intends to offload the next scheduling task in the
queue at the (t+ 1)-th slot, which means the (k+ 1)-th task
Tk+1

i prepares to be offloaded. However, if task Tk
i fails to be

offloaded at the t-th slot, the current task Tk
i can be omitted

or wait to be scheduled at the (t+ 1)-th slot, which is decided
by whether the task is a real-time task or not. In order to
verify the performance of the proposed scheduling algo-
rithm, it is compared with sequential scheduling algorithm
(SSA), random scheduling algorithm (RSA), time priority
greedy scheduling algorithm (TPGSA), and weight priority
greedy scheduling algorithm (WPGSA). +e comparison
algorithms are described as follows:

(1) SSA: the scheduling is carried out according to the
equipment number, and the one with a small
equipment number is scheduled first.

(2) RSA: in this method, each task is scheduled
randomly.

(3) TPGSA: at one time, all tasks to be scheduled are
sorted by the expected completion time. +e shorter
the task completion time, the earlier the task is
scheduled.

(4) WPGSA: at one time, all the tasks to be scheduled are
sorted by the task weight.

+e experimental platform used in this paper is MAT-
LAB 2016a [32], and the main simulation parameters are
presented in Table 3.
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5.2. Experimental Result. In this section, experimental re-
sults are given. Due to the limitation of space, we only show
the experimental data of the first 20 time slots.

5.2.1. Execution Time Analysis. +e results about total task
execution time in the first 20 time slots obtained by the five
algorithms are shown in Table 4.

We take the task completion time of TPGSA as the
benchmark and normalize its value to 1. +us, the

comparison of the results about the task completion time of
these five algorithms at 20 time slots is shown in Figure 4:

We can see from Figure 4 that SSA, RSA, and WPGSA
are all not as good as TPGSA in task execution time.
However, the performance of HIBSA is better than TPGSA.
As shown in Figure 5, if the average execution time of the
TPGSA algorithm is 1, the average task execution time of the
SSA algorithm is 1.04; the average scheduling time of the
RSA algorithm is 1.13; and the average scheduling time of
the WPGSA algorithm is 1.05. However, the task execution

(1) +e scheduling population P0 is randomly generated, the population size is n, and the initialization generation t� 0
(2) According to the individual evaluation algorithm, all the individuals of rank 0 and rank 1 in P are put into the set Pt

0 and Pt
1,

respectively
(3) If (Pt

0 ≠Φ)
select the optimal solution in Pt

0 as the result and the algorithm ends
(4) else
(5) while (t<T)
(6) A solution is randomly selected from Pt

1 as the historical optimal position of the current population, and BA is implemented for
Pt to get Pt

B

(7) Clear set Pt
0, Pt

1. According to the individual evaluation algorithm, all the individuals of rank 0 and rank 1 in the set Pt
B are put

into the set Pt
0 and Pt

1, respectively
(8) If (Pt

0 ≠Φ)
(9) select the optimal solution in Pt

0 as the result and the algorithm ends
(10) else
(11) For Pt

B, the immune clonal selection algorithm is implemented to get Pt
I

(12) Clear set Pt
0 and Pt

1. According to the individual evaluation algorithm, all the individuals of rank 0 and rank 1 in the set Pt
B

are put into the set Pt
0 and Pt

1, respectively
(13) If (Pt

0 ≠Φ)
(14) select the optimal solution in Pt

0 as the result and the algorithm ends
(15) else
(16) According to the individual evaluation algorithm, put the first n individuals in the set Pt

B ∪Pt
I into Pt+1

(17) t� t+ 1
(18) end if
(19) end if
(20) end while
(21) end if
(22) select a solution randomly from Pt

1 as the result and the algorithm ends

ALGORITHM 2: Hybrid immune and bat scheduling algorithm (HIBSA).

Table 3: Simulation parameters for task offloading.

Parameter Value Note
m 3–5 Number of MEC servers
dnum [1–7]Mb +e size of the input data
ucc [20] 1,000 cycles/bit Unit CPU cycles (per bit)
F 8GHz +e CPU cycle frequency of CS
ulc 0.05ms Unit latency cost
TC 5ms Maximum latency
Mj 5 tasks MEC server computing capacity
ptx

i 0.1W Fixed transmit power of IMD
φ 40mJ Safe discharge threshold
N 10 Number of IMDs
wi [1–100] Task weight
frmax [33–36] 2 +e upper frequency of bat
frmin [33–36] 0 +e lower frequency of bat
α [37–39] 0.9 +e update parameter of the loudness of bat
c [37–39] 0.1 +e update parameter of the pulse emission rate of bat
N 30 Number of initialization populations
Gen 30 Number of generations
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time of HIBSA is only 0.93. +at is, the scheduling time of
the algorithm proposed in this paper is only 93% of the
TPGSA algorithm.

5.2.2. Weight Analysis. +e results about the sum of task
weight in the first 20 time slots of the five algorithms are
shown in Table 5.

We take the weight of WPGSA as the benchmark and
normalize its value to 1. +us, the comparison of the results
about the weight of each algorithm at 20 time slots is shown
in Figure 6:

Taking WPGSA as the benchmark, SSA, RSA, and
TPGSA are not as good as WPGSA in weight, while HIBSA
proposed in this paper is better thanWPGSA sometimes and
slightly worse than WPGSA. As shown in Figure 7, if the
average scheduling weight of WPGSA is 1, the average
scheduling weight of SSA is 0.92; the average scheduling
weight of RSA is only 0.59; and the average scheduling
weight of TPGSA is 0.87, while the scheduling weight of
HIBSA is slightly worse than WPGSA. According to the
scheduling strategy proposed in the paper, the scheduling
weight of the proposed algorithm is 98% of WPGSA.

5.2.3. Analysis of the Total Number of Offloaded Tasks.
+e total number of tasks offloaded by each device in the first
20 time slots by using different algorithms is shown in
Table 6

As shown in Table 6, 10 devices offload 132 tasks in 20
time slots by using SSA. RSA algorithm offloads 93 tasks
only. TPGSA offloads 133 tasks. WPGSA offloads 130 tasks,
while HIBSA has the largest number of offloaded tasks. +is
is because the algorithm proposed in this paper is a mul-
tiobjective optimization algorithm, and it also takes fairness
into consideration in task scheduling. Figure 8 is a com-
parison box plot of the number of scheduling devices using
these five algorithms. As shown in Figure 8, the quartile
deviation between the SSA algorithm and the TPGSA al-
gorithm is large, which results in the unfairness of the

algorithm for the task scheduling of each device. Some
devices offload all generated tasks, while some devices have
no tasks to offload. Obviously, the quartile deviation of
HIBSA proposed in the paper is only 1.75, which is better
than the other four algorithms.

5.2.4. Scalability Analysis. As analyzed in Section 4.4, the
performance of the algorithm proposed in this paper is only
related to the number N of the initialization population.
However, some studies have shown that the setting of the
number of initialization population should be related to the
length of the problem. In this paper, the length of the
problem is the product (m× n) of the number of available
MEC servers and the number of IMDs. +at is, with the
increase of the number of servers and the number of IMDs,
the number of initialization population should be increased
to meet the diversity of the population.
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Figure 4: Comparison of task execution time ratio of various algorithms of 20 time slots.
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Figure 5: Comparison of average task execution time ratio of
various algorithms.
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In the algorithm proposed in this paper, we adopt the
method of adding diversity judgment in the iterative exe-
cution of the algorithm. If the population diversity is lower
than the threshold preset, we can improve the population
diversity through population diversity regulation. As shown

in Figure 9, when the number of available servers is in-
creased from 3 to 5, the number of solution space will grow
from 230 to 250 rapidly. However, the number of initiali-
zation populations we set is all 30. +e experimental results
indicate that the solutions obtained by HIBSA are not
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Figure 6: Comparison of task weight ratio of various algorithms of 20 time slots.
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Figure 7: Comparison of average task weight ratio of various algorithms.

Table 6: +e total number of scheduled tasks for 10 mobile devices in the first 20 time slots.

DEV ID 1 2 3 4 5 6 7 8 9 10 Sum
SSA 20 20 20 20 20 17 9 5 1 0 132
RSA 12 11 8 8 12 10 8 9 6 9 93
TPGSA 20 20 20 19 18 18 7 7 4 0 133
WPGSA 18 17 19 17 13 10 18 8 5 5 130
HIBSA 16 18 14 14 13 13 13 15 13 11 140
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Figure 8: Comparison of the number of tasks offloaded by different algorithms.
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Figure 9: the scalability of the algorithm: (a) tasks execution time, (b) the total weight of tasks, and (c) the number of tasks offloading.
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affected. +ey are significantly improved in terms of tasks
execution time, the total weight of tasks, and the number of
offloaded tasks, which shows the scalability of the algorithm.

6. Conclusions

Task offloading in mobile edge computing relieves the data
computing pressure of local devices and central cloud by
offloading data to the edge cloud, which also reduces the task
execution delay caused by the lack of computing resources.
In this paper, an algorithm based on hybrid immune and bat
scheduling algorithm (HIBSA) is proposed to tackle the
multiobjective optimization problem. +ree main contri-
butions are presented in this paper. Firstly, the proposed
system model considers communication and computing
resources, energy consumption of intelligent mobile devices,
and weight of tasks. Secondly, the scenario that the mobile
device can generate multiple tasks at the same time is
considered, which is more realistic compared with most of
the related works. +irdly, the evolutionary algorithm
presented combines the advantages of the bat algorithm and
the immune algorithm that ensures the convergence and
diversity of solutions. Finally, the practicability of the
proposed algorithm is well verified by simulation. We can
see from experimental results that the algorithm can meet
the requirements of both the task execution time of the
offloaded tasks and the weight of the completed tasks.
Moreover, the algorithm has good scalability. However, the
performance of the proposed algorithm can further be
improved in the future. It needs to be further verified by
using real scene data also.
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