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With the increase in intelligence applications and services, like real-time video surveillance systems, mobile edge computing, and
Internet of things (IoT), technology is greatly involved in our daily life. However, the reliability of these systems cannot be always
guaranteed due to the hard disk drive (HDD) failures of edge nodes. Specifically, a lot of read/write operations and hazard edge
environments make the maintenance work even harder. HDD failure prediction is one of the scalable and low-overhead proactive
fault tolerant approaches to improve device reliability. In this paper, we propose an LSTM recurrent neural network-based HDD
failure prediction model, which leverages the long temporal dependence feature of the drive health data to improve prediction
efficiency. In addition, we design a new health degree evaluation method, which stores current health details and deterioration.
,e comprehensive experiments on two real-world hard drive datasets demonstrate that the proposed approach achieves a good
prediction accuracy with low overhead.

1. Introduction

,e applications and services are greatly increasing recently,
and global spending on the IoT reached 1.29 trillion dollars
in 2020. For example, video surveillance is widely used in
public and private security environments, accompanied with
the popularity of outdoor cameras, the cost of data storage,
and transmission is enormous [1]. To guarantee the per-
formance of the surveillance systems, mobile edge com-
puting solutions and IoT technologies are applied to process
and transfer huge amounts of data in real-time [2]. ,e edge
node is responsible for collecting data from one or more
sensors and performing lightweight preprocessing compu-
tations. ,us, frequent read and write operations, combined
with hazard edge environments (such as violent vibration
and high temperatures) lead to high HDD failure rates. It
greatly influences the reliability and performance of sur-
veillance systems.

Passive failure tolerance is a common technique used to
improve storage system reliability in data centers [3].
However, this technique does not work well in the mobile

edge computing environment due to the high cost and poor
scalability [4]. ,erefore, it is very urgent to develop suitable
proactive failure tolerance approaches.

,e HDD failure prediction method usually analyzes
drive health data and replacement logs to build a classifi-
cation model; then, it will indicate the soon-to-fail HDDs.
Once an impending failure is detected, the prediction system
alerts the administrator to backup data and to replace drives.
HDD manufacturers usually adopt threshold algorithms,
which are built based on SMART (Self-Monitoring Analysis
and Reporting Technology) data [5]. Unfortunately, the
failure detection rate (FDR) of this method is very low, at
only 3–10%, and the false alarm rate (FAR) is approximately
0.1% [5]. ,e low accuracy of failure prediction hinders the
effectiveness of proactive fault tolerant approaches.

To improve the performance of HDD failures prediction,
many machine-learning-based prediction approaches have
been proposed, including Bayesian algorithms [6–9], support
vector machine (SVM) [10], classification tree (CT) [11, 12],
random forest (RF) [13, 14], artificial neural network (ANN)
[15], convolution neural network (CNN) [16], and recurrent
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neural network (RNN) [17, 18]. RNN-based prediction
models achieve the highest FDRs, and RF-basedmodels attain
the lowest FARs. ,e reason is that the temporal dependence
of drive health data is extracted by RNNmodels to acquire the
characteristics of drive deterioration, while early researchers
[5, 7] seldom utilize the time sequence feature since the
dataset scale is small. However, traditional RNN models only
keep short-term memory due to the gradient vanishing or
exploding [19]. To address this issue, some researchers [17, 19]
adopted a segmentation method to simplify drive deterio-
ration. Unfortunately, comparing with cloud computing, the
worse environmental conditions in mobile edge computing
lead to more complicated drive deterioration. Hence, the
method does not work well. In addition, labeling accuracy of
HDD health status is also one of the major determinant
factors for prediction performance. Binary methods and
deterioration degrees are widely used approaches, but the
former neglects the deterioration process of HDDs which is
highly related to current health status, and the latter only takes
time sequence into consideration. Sample imbalance is also a
major hindrance for HDD failure prediction as the number of
good drives is far more than the failed drives in the training
dataset.

In this paper, we apply the long short-term memory
(LSTM) RNN to detect abnormal drive health samples
according to the long temporal dependence feature of
drive health data. LSTM models complex multivariate
sequences accurately. To improve the accuracy of training
sample labeling, we propose a novel health degree eval-
uation approach which simultaneously considers both the
time-sequence features and the drive health status to
comprehensively depict the deterioration of drives. To
address the issue of imbalanced samples, we use a k-means
clustering-based undersampling method to reduce the
sample scale of good drives in the training set. It retains the
characteristics of good drive samples and dramatically
lowers the computation overhead.

,e main contributions of this paper are as follows:

(1) We propose an LSTM-RNN-based HDD failure
prediction model for mobile edge computing envi-
ronment. It extracts the long-term temporal de-
pendence feature of drive health data to improve the
accuracy of health degree computation.

(2) A health degree evaluation method is presented,
which takes into account the time-series features and
current health status of drives to solve the labeling
issue in the training set.

(3) We performed a comprehensive evaluation with two
real-world datasets from production data centers.
,e experimental results show that the proposed
prediction model can archive an FDR of 94.49% with
an FAR of 0.09%, and the lead times of most drives
are less than 168 hours. ,e majority of soon-to-fail
drives are predicted within 7 days, which is rea-
sonable and acceptable.

,e remainder of this paper is structured as follows.
Section 2 reviews the background information of SMART,

evaluation of drive health and related works. Section 3 in-
troduces the LSTM-RNN-based prediction model and the
HDD health degree evaluation method. Section 4 presents
the experimental results, including a comparison with the
state-of-the-art failure prediction approaches. Section 5
concludes the paper.

2. Background and Related Work

2.1. SMART. SMART is a self-monitoring system used to
collect and report various performance indicators of
HDDs, which is supported by almost all HDD manufac-
tures [5]. SMART allows up to 30 internal drive attributes
such as reallocated sector count (RSC), spin up time (SUT),
and seek error rate (SER). Every attribute has five fields, raw
data, value, threshold, worst value, and status. ,e raw data
are the values measured by a sensor or a counter. ,e value
is the normalized value of the current raw data; the al-
gorithm for computing the values is defined by HDD
manufacturers and is distinct between manufacturers.
SMART issues a failure alarm to the user when the value of
any attribute exceeds the given threshold at which it be-
comes a warning.

,e SMART drive attributes can be roughly categorized
into two groups, incremental counting and cumulative
counting [20]. ,e former records incremental error counts
over a fixed time interval. Most of the SMART attributes
belong to this group, such as SUT, which is the period of
time from power on to a readiness for data transfer. RSC is
the count of reallocated sectors, which is an indicator of the
health status of the disk media; this attribute belongs to the
cumulative counting group. For cumulative counting at-
tributes, their values and change rates correlate strongly with
degradation of the drives and are helpful for detecting ab-
normal SMART samples. Hence, we add the value as well as
the change rates of SMART attributes to the candidate
feature subset.

2.2. Evaluation of Drive Health. Drive health evaluation
influences the prediction accuracy of soon-to-fail drives
directly and primarily falls into three groups: the binary
method [8, 20], phase method [17], and health degree
method [11, 18, 21].

,e binary method categorizes drive health into two
states: failed and good. ,e drive deterioration is usually a
gradual process; however, these evaluation methods
neglected the change process of drive health, which leads to
unsatisfactory FDRs and a large range in lead times.

,e phase method separates the process of drive deg-
radation into several phases. Xu et al. [17] classified the
health status of the drive into six levels that gradually de-
crease over time. Levels 6 and 5 indicate that the drive is
good and fair, respectively. Levels 1–4 mean that the drive is
going to fail. Level 1 indicates that the remaining time is less
than 72 hours. ,e standard of interval division in this
method depends on experience.

,e health degree method builds functions to describe
drive degradation. Zhu et al. [10] used a linear function to
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describe the relation between deterioration and time se-
quence, where the value range of this function is [− 1, 0].
However, the health degree of these evaluation functions
only changes with time, and the drive health also changes as
the system workload fluctuates in a real-world storage
systems. ,erefore, linear evaluation methods also cannot
describe the deterioration process accurately enough. Huang
et al. [21] proposed a quantization method for evaluating the
health state of HDDs based on Euclidean distance methods
and divided the failed drives into three groups by analyzing
the last drive health samples. A CART-based prediction
model was built for each group of drives. ,e researchers
assumed that the drives in a group have a similar deterio-
ration process and built deteriorationmodels for each group.
,e drive has complex structure, and the drive deterioration
is affected by inner and outer factors, such as health status,
workload, and age. Health degree calculated simply based on
Euclidean distances involves nonignored noises. ,erefore,
the evaluation method in our proposed model takes account
of current drive health status and deterioration together to
improve the accuracy of sample labeling.

2.3. Prediction of Soon-To-FailHDDs. Prediction of soon-to-
fail HDDs usually employs statistical approaches, Bayesian
approaches, SVM, BPNN, decision tree, random forest,
RNN, and CNN.

Considering that many SMART attributes are non-
parametrically distributed, Hughes et al. [20] adopted a
multivariate rank-sum test and an OR-ed single variate test
to detect soon-to-fail drives. ,e rank-sum test is only used
in feature selection for later related research [22].

,e Bayesian approach is commonly used in failure
detection. Ma et al. [9] found that RSC correlates with drive
failure and proposed RAIDShield, which uses Bayes to
predict drive failures on RAID storage systems. ,is ap-
proach eliminated 88% of triple disk errors. ,e Bayesian
network failure prediction method has been used with
transfer learning so that HDD models with an abundance of
data can be used to build prediction models for drives with a
lack of data [6]. ,e Bayesian network-based method for
failure prediction in HDDs (BNFH) [7] was proposed to
estimate the remaining life of HDDs.

A BPNN-basedmodel and an improved SVMmodel [10]
were developed on a SMARTdataset from the data center of
Baidu Inc. ,e BPNN model achieved a higher FDR than
SVM, and SVM obtained a lower FAR. ,e experimental
data contained 22,962 good drives and 433 failed drives, and
the scale of this dataset is much larger than the datasets in
previous studies.

Li et al. [11] proposed CT-based and classification and
regression tree (CART)-based prediction models that
achieved an FDR of 95% and an FAR of 0.1%. ,e good
prediction performance is due to the health degree model
they proposed and a bigger experimental dataset. Rincón
et al. [23] used a decision tree to predict hard disk failures
owing to missing SMART values [24]. Kaur and Kaur [12]
introduced a voting-based decision tree classifier to predict
HDD failures and an R-CNN-based approach for health

status estimation. A prediction model using online random
forests (ORFs), which evolve as new HDDs health data
arrived, was proposed to achieve online failures prediction
for HDD [13]. A part-voting RF-based failure prediction for
drives was proposed to differentiate failure prediction [14].

Deep neural networks achieve better performance than
the others. A temporal CNN-based model for system-level
hardware failure prediction was proposed to extract the
discrete time-series data [16]. An RNN-based model was
used for health status assessment and failure prediction for
HDDs [17]. A layer-wise perturbation-based adversarial
training for hard drive health degree prediction was also
proposed [18]. ,ese networks have also become popular in
mobile edge computing [24, 25].

,e works described above achieve good prediction
efficiency; however, there is still much room for improve-
ment. In this paper, we attempt to use an LSTM RNN for
soon-to-fail HDD prediction to extract long temporal de-
pendence feature of drive health data and propose a new
health degree evaluation.

3. The Proposed Method

In this section, we start with an introduction to an LSTM-
RNN-based prediction model in Subsection 3.1 and then
present the health degree evaluation method in Subsection
3.2.

3.1. LSTM-RNN-Based Prediction Model. RNNs have been
extensively used for various applications, such as language
understanding [26], image processing [27], and computer
vision [28]. Unlike ANNs, RNNs use their internal mem-
ories to process arbitrary sequences of input samples.
,erefore, RNNs are chosen to extract temporal dependence
feature of drive health data in our prediction model to
calculate the health degree of drives.

RNN can be divided into three layers: the input layer,
hidden layer, and output layer. Computing cells in an RNN
have a time-varying, real-valued activation, and modifiable
weight. ,e same set of weights is used recursively over the
direct-graph-structure network in an RNN. Let Hi be the ith
hidden layer and Ii be the input of the ith hidden layer. ,e
output of the hidden layerHt− 1 and the input It at time t have
a cooperative effect on the output of the hidden layer Ht, as
seen in the following formula:

H
t

� f H
t− 1

, I
t
; θ􏼐 􏼑. (1)

,rough use of an RNN, the historical drive health data
are persistently transmitted and the time sequence of drive
health data can be used. However, it is difficult for RNNs to
learn long-range dependence because of gradient vanishing
or exploding [29, 30]. ,e former describes the exponential
decrease in the gradient for long-term cells to zero, and the
latter describes the opposite event. To address these issues,
an LSTM architecture was proposed [19, 31], which has
become popular for many applications [32, 33]. During the
drive deterioration process, certain health status changes
and workloads influence HDD health over a long period;
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LSTM can account for these long sequences. Hence, we build
a drive failure prediction model based on LSTM networks to
take advantage of the temporal dependence feature of drive
health data.

Our model has two stages: computing the health degree
of health samples by an LSTM network and detecting soon-
to-fail HDDs by a sliding window (see Figure 1). To describe
our proposal of the prediction model, consider the LSTM
structure on the left side of Figure 1. ,e LSTM takes drive
health samples as input and produces health degrees for
samples entering the second stage. As shown in Figure 1, X
denotes an input drive sample sequence,
X � x1, x2, . . . , xT􏼈 􏼉, where xt represents a k-dimensional
vector of a sample at the t-th time step. An LSTM block
consists of four parts, including a neural cell state, a forget
gate, an input gate, and an output gate. S is the neural status
vector that is used to pass historical drive health informa-
tion. ,e neural cell state St − 1 merges with the intermediate
output and subsequent input xt to determine which elements
in the internal state vector need to be updated, maintained,
or erased. ,e forget gate determines the fraction of the
information to be allowed. ,e forget gate is shown by the
following equation:

ft � σ W1 xt, yt− 1􏼂 􏼃 + b1( 􏼁, (2)

where ft is the forget gate, which is used to determine
whether the health sample of the last period has been deleted
from the history; xt is the drive health sample at time t; yt − 1
is the health degree of a drive at time t − 1; andWk and bk are
the parameter matrices and vector when k� 1, 2, 3, 4.

,e value of sigmoid is between “0” and “1,” where “0”
means completely forgotten and “1” means completely
recorded.

,e input gate consists of the input, which is shown in
equation (3). ,e LSTM maintains an internal memory cell

state throughout its entire life to build temporal connections.
Equation (4) shows the current state.

it � σ W2 xt, yt− 1􏼂 􏼃 + b2( 􏼁, (3)

ht � tanh W3 xt, yt− 1􏼂 􏼃 + b3( 􏼁, (4)

where i is the input gate, which is used to determine whether
the drive health information from this period has been
stored in the neural state; h is the current state; and tanh () is
the hyperbolic function, which generates a new vector that
will be added to the state. ,e LSTM merges the current
status with the historical status and calculates the new neural
state after processing the matrix operations, as given by the
following equation:

St � St− 1 × f + i × h, (5)

where St is the neural cell state at time t. ,e output gate is
shown by the following equation:

o � σ W4 xt, yt− 1􏼂 􏼃 + b4( 􏼁, (6)

where o is the output gate, which is used to determine the
output for a part of the neural status and pass the output
value to the next neuron, as shown by the following formula:

yt � o × tanh St( 􏼁, (7)

where yt is the health degree at time t.
In the second stage, we use a sliding window to smooth

the sample noise and adopt a count-based decision method
to identify a drive as good or soon-to-fail. Sliding windows
are widely used in time sequence prediction [34]. ,e
counting-based decision method is shown as the following
formula:

S(i) �
soon − to − fail, ∃ε> 0, ∀j ∈ [ε, ε + w), healthi(j)<Threshold,

good, other,
􏼨 (8)

where ε is a number greater than 0, w is the size of a sliding
window, and healthi (j) is the health degree of HDD i at time
j computed by the LSTM. A drive is detected as soon-to-fail
if the health degrees of this drive in a sliding window w are
all less than the threshold.

3.2. Health Degree Evaluation Method for HDD. ,e quality
of the training dataset, such as sample labeling and noises,
determines the performance of the prediction model when
using deep learning. HDD deterioration is a gradual process;
we adopt health degree rather than a binary method to label
drive health samples as a way to record the change of drive
health. Health change trends and rates are influenced by
usage and the current health status of the drive, so we take
health status as well as deterioration into account to evaluate
HDD health degree.

We regard drive health data at the moment of drive
failures as abnormal samples and set the health degree of
these samples to − 1. ,e samples of good drives are set to 1.
As the values and change rates of SMART attributes reflect
the health status of HDDs, we calculate the similarity be-
tween the sample at the time t and the sample at the last
moment of the drive to measure the health status of a given
HDD at time t. ,e similarity is calculated as shown by the
following formula:

O(i) �

�������������

􏽘
M

j�1
xij − xnj􏼐 􏼑

2

􏽶
􏽴

, (9)

whereO (i) is the similarity between the sample at time i and
the last one for a drive, xij is the value of the jth feature of the
sample at time i, xnj is the value of the jth feature of the
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sample at the last moment, and M is the number of features
of a sample. ,e similarity needs to be normalized to [− 1, 1].

Figure 2 describes the health degree of a drive based on
similarity. It is obvious that there are large random fluc-
tuations, and the health degree at some time is very close to
− 1 when they still have more than 100 hours before failure.
Nevertheless, according to the HDD degradation process,
the health degree of a sample approaches − 1 as it approaches
the end of its life.,erefore, transform functions are adopted
to reinforce the health status trends. We introduce an ex-
ponential function or a logarithmic function as the trans-
formation function. More specifically, we import the
similarity into the transform function and regard the
function result as the health degree of drive at a given time.
Algorithm 1 details the process of calculating health degree
for a failed HDD in the training set.

Our evaluation method reinforces the decreasing trend in
health degree along with time and retains the drive health
status details based on similarity. Figure 3 shows the result of
the health degree evaluation method for a failed HDD.,e red
line is computed by a logarithmic function, and the blue line is
computed by an exponential function. We prefer the expo-
nential function because the trend of the blue line’s decline is
more obvious at the end of the period before HDD failure.

Health degree fluctuates during the degradation of a drive.
,is phenomenon occurs because the health status change of a
drive is influenced by several factors, such as age, IO workload,
and environments. To address this issue, we adopt an average
smoothing method to reduce the effect of noises on health
degree. ,e average value of health degree, excluding the
maximum value and minimum value in the time window
[t − (tw/2), t + (tw/2)), is regarded as the health degree at time
t, where tw is the size of the smoothing window. Figure 4 shows
the smoothing result of health degrees in Figure 3.

4. Experimental Results

To evaluate the effectiveness of our method, we conduct
several experiments on two datasets. In this section, we

introduce the datasets, experimental setup, evaluation
metrics, data preprocessing, and feature selection. ,en, we
present the experimental results and analysis.

4.1. Datasets. ,ere are two datasets used in our experi-
ments: one is from the Baidu data center [35] and the other is
from the Backblaze storage system [36]. ,e first dataset has
23,395 enterprise-class hard drives, consisting of 433 failed
drives and 22,962 good drives. ,ese drives are the same
model. According to the replacement log for drives in the
data center, a drive was labeled as “failed” or “good.”
SMART data from these drives are collected once per hour.
For each failed drive, 20-day SMARTsamples before it failed
are used. For good drives, 7-day SMARTsamples are used. In
total, there are 156,312 samples of failed drives and 3,850,141
samples of good drives.,e samples in this dataset only have
12 attributes: RSC, SUT, SER, raw read error rate (RRER),
reported uncorrectable errors (RUE), high fly writes (HFW),
hardware ECC recovered (HER), current pending sector
count (CPSC), POH, TC, and the raw data of RSC and CPSC.

,e dataset from the Backblaze includes 35,491 desktop-
class hard drives with 706 failed drives and 34785 good
drives consisting of 80 models from over the course of more
than 2 years, which is the largest public SMARTdataset. ,e
samples in this dataset were collected once every day. In our
experiments, this dataset is separated by the drive model to
reduce the impact of different models, as the failure rate and
degradation are different across the model andmanufacturer
[4]. We chose three drive families with the largest number of
drives, namely, “ST4000DM000,” “HDS722020ALA330,”
and “HDS5C3030ALA630,” for our experimental data. Each
sample in these datasets has 24 SMART attributes, and all
attributes have a value and raw data.,e details of these four
drive families are described in Table 1. To clearly describe the
experiments, these three drive families are represented as
“B1,” “B2,” and “B3,” and the dataset from Baidu is rep-
resented as “Baidu.”

H1 H2 HT

X

σ

σ

tanh
×

×

+

Sliding window

Health degree

σ ×

tanh

St–1

St–1

xt

ht

it

ft

St

yt

Figure 1: Overview of the LSTM-RNN-based HDD failure prediction model.
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4.2. Experimental Setup. To simulate the real-life environ-
ment of a data center, we built experimental datasets
according to the following method: all samples of failed
drives were randomly divided into two parts at a ratio of 7 : 3
to ensure the independence of failed drives between the
training set and the testing set. Given the deterioration
process of drives, we only added the last several samples
from the 70% of failed drives before the failure time in the
training set. All health samples from the 30% of failed drives

were added to the testing set. All samples from good drives
were divided into two parts at a ratio of 7 : 3 according to
their collection timelines. ,e earlier health samples were
used in the training set, and the later samples were used in
the testing set.

To eliminate scale effects, we used data normalization to
encourage fair comparisons between the values of different
features in statistical methods and machine learning algo-
rithms. ,e values and raw data of these attributes were
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Figure 2: Health degree of a drive based on similarity.

Input:
(1) Health samples of a drive: healthsamples
(2) ,e number of sample features: featuresNum
(3) Transformation function: f(·)

(4) Weights of health status and time: ω1,ω2
Output:
Health degree of a drive: drive_health_degree

Begin
(1) last� healthsamples [len (healthsamples) – 1]
(2) for sample in healthsamples
(3) while i< featuresNum
(4) o⟵ o+ pow (sample [i] – last[i], 2.0)
(5) i⟵ i+ 1
(6) Endwhile
(7) O. append (sqrt (o))
(8) endfor

//Standardizing the values of O to [− 1, 1]
(9) O⟵ standard (O)
(10) while i< len (healthsamples)
(11) E[i]⟵ f(i)
(12) i⟵ i+ 1
(13) Endwhile
(14) E⟵ standard (E)
(15) while i< len(healthsamples)
(16) health_degree [i]⟵ω1 O[i] +ω2 E[i]
(17) Endwhile
(18) return health_degree
End

ALGORITHM 1: ,e algorithm for calculating the health degree of a soon-to-fail HDD.
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already normalized in the dataset from Baidu when it was
publicized. For the dataset from Backblaze, the formula for
data normalization that we used is given as follows:

xnormal � 2
x − xmin

xmax − xmin
− 1, (10)

where x is the original value of an attribute, xmax is the
maximum value of the attribute in the dataset, and xmin is
the minimum value of the attribute in the dataset. ,e values
of all attributes were normalized in the range [− 1, 1].

Our experiments were trained and tested on a GPU
because of the heavy computation overheads of the BPTT
algorithm. ,e GPU model was an NVIDIA Tesla K80, and
the server memory was 128G.

4.3. Evaluation Metrics. ,e ability of HDD failure pre-
diction is usually evaluated and compared based on the FDR,
FAR, and lead time. When predicting HDD failure, failed
HDDs are regarded as positive drives and good HDDs are
regarded as negative drives. True positive drives are failed
drives detected by the prediction model before they fail.
False positive drives are good drives misclassified as soon-to-
fail drives.

,e FDR is the ratio of true positive drives to the total
number of failed drives. ,is metric measures the ability of
the prediction model to detect soon-to-fail HDDs.

FDR �
the number of true positive drives
the number of positive drives

. (11)

,e FAR is the ratio of false positive drives to the total
number of good drives. Since there are more good drives
than soon-to-fail drives, a high FAR leads to excessive waste
of resources such as network bandwidth and HDDs.
,erefore, the FAR is used in our experiments.

FAR �
the number of false positive drives
the number of negative drives

. (12)

We employed high FDRs and low FDRs for our pre-
diction model, but it is difficult for deep learning to achieve
both goals at the same time. Hence, we adopt the receive
operating characteristic (ROC) curve, which plots the FDR
versus FAR. ,e ROC curve is used to assess the perfor-
mance of the prediction model to distinguish soon-to-fail
drives from good drives.,e closer the curve is to the left top
corner, the more accurately the model detects soon-to-fail
drives.

,e lead time is the time span from the moment a HDD
was detected as soon-to-fail to the time it actually failed.
Users initiate the backup of data in a timely manner if they
are alerted. It is necessary for users to be provided sufficient
lead time to perform precautionary maintenance, including
backing up data and replacing soon-to-fail drives; however,
an excessive lead time is meaningless and unnecessarily
inflates the reliability overhead. As a result, we adopt the lead
time to evaluate the prediction models in the experiments.

4.4. Feature Selection. Some SMART attributes are not
strongly correlated with drive deterioration, and retaining
these attributes has a negative impact on prediction per-
formance. Hence, we performed feature selection for our
experimental datasets. Our feature selection consisted of two
steps; the features correlating weakly with drive failure at
first were removed, and then some features that describe the
change of attributes were added.

Samples in “Baidu” only have 12 features and have been
normalized in the public dataset; thus, we did nothing in the
first step. For the other dataset, there are approximately 30
attributes for each SMART sample. We introduced the in-
formation gain ratio (IGR) to evaluate the importance of
each attribute to detect soon-to-fail drives. We chose the
attributes with the top 12 IGRs (see Table 2): RSC, RRER
(raw read error rate), RRSC, TC, SUT, CPSC, HFW, HER,
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Figure 3: Health degree based on transformation functions.
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Figure 4: Health degree with smoothing.
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RCPSC, POH, SER, and RUE for family “B1” and RRSC,
RRER, RSC, RCPSC (raw current pending sector count),
SRC (spin retry count), SUT, RUE, CT (command timeout),
TC, HFW, USC (uncorrectable sector count), POH, and
WER (write error rate) for families “B2” and “B3.” From this
table, we find that the SMART attributes of drives from
different manufacturers are slightly different.

Some changes of SMART attributes are strongly corre-
lated with the health status of drives [14]. We added some
change rates of basic features to improve the performance of
the prediction method. For family “Baidu,” we added the 6-
hour and 12-hour change rate for all features. For families
“B1,” “B2,” and “B3,” we added the 1-day and 2-day change
rates of the following attributes: RSC, RRSC, RRER, TC,
RCPSC, SER, RUE, SER, WER, and POH.

4.5. Parameter Analysis. Our prediction model has several
parameters to optimize: the number of layers in the LSTM-
RNN-based model, the size of the sliding window, and the
threshold. ,e results of experiments in this subsection are
based on the “Baidu” family as the results in the other
families are similar and are limited in length.

Figure 5 shows the effect of different numbers of layers in
the range of 7 to 17 in the LSTM-RNN-based prediction
model. When the number of layers is less than 12, the FDR
increases steadily but the FAR fluctuates. When the number
of layers is more than 12, the FDR no longer increases. ,e
FAR reaches its lowest value at 12 layers. Compared with the
LSTM-RNN-based model, the FDR-based model no longer
increases when the number of RNN layers is more than 6, as
shown in Figure 6.

We tested the influence of different sizes of sliding
window and threshold on the prediction performance. ,e
bigger the window size, the higher the FDR and the lower the

FAR. Our model achieves the best accuracy when the size of
window is set to 14. As the threshold increases, the FDR and
FAR both rise. We set the size of window to 14 and the
threshold to − 0.4 in the following experiments.

,ere was a serious imbalance issue when training
families “Baidu” and “B1” because there are far fewer failed
drives than good ones, and not all samples of failed drives
were added to the training set. To address this issue, we
adopted a k-means-clustering-based undersampling method
[14] to reduce the scale of negative samples in the training
set.,e samples from good drives were clustered into several
groups and then sampled from each group. We added good
samples at a rate 150 times higher than samples with health
degree less than –0.5 of failed drives which were added to the
training set for family “Baidu.”

4.6. Comparison and Analysis. In this section, we quanti-
tatively compare the performance of our method with that of
widely used models on the Baidu and Backblaze test sets. We
focus on the classification and regression tree (CART) and
the RNN-based prediction model.

Figure 7 shows the ROC curves obtained by different
models for family “Baidu.” Our method outperformed the
RNN-based model and the CART-based model. ,e pro-
posed prediction model achieved an FDR of 94.49% and an
FAR of 0.09%. ,e LSTM-RNN-based model takes advan-
tage of the long dependence feature of drive health data, and
health degree evaluation details the drive deterioration and
effectively reduces the FARs. ,e model with exponential
function is in general better than the model with logarithmic
function. Comparisons of FDRs and FARs for families be-
tween different prediction models are shown in Table 3. For
“B1,” “B2,” and “B3,” our methods achieved better FDRs
than the other models. ,e CART-based model achieved the

Table 1: Details of the two experimental datasets.

Dataset Family Provider Model Number of failed drives Number of good drives Total number of drives
Baidu Baidu Seagate — 426 22969 23395

Backblaze
B1 Seagate ST4000DM000 706 34785 35491
B2 Hitachi HDS722020ALA330 251 4468 4719
B3 Hitachi HDS5C3030ALA630 131 4540 4671

Table 2: Top 12 information gain ratios of SMART attributes in families B1, B2, and B3.

B1 B2 B3
Attribute IGR Attribute IGR Attribute IGR
RSC 0.0326 RRSC 0.0413 RRSC 0.0339
RRER 0.028 RRER 0.031 RRER 0.0327
RRSC 0.0278 RSC 0.0297 RSC 0.0262
TC 0.0277 RCPSC 0.0277 SRC 0.0231
SUT 0.0276 SRC 0.0271 SUT 0.0228
CPSC 0.0272 SUT 0.0251 RCPSC 0.0227
HFW 0.0269 RUE 0.0248 RUE 0.0214
HER 0.0251 CT 0.0201 TC 0.0208
RCPSC 0.0239 TC 0.0189 WER 0.0189
POH 0.0166 HFW 0.0161 CT 0.0131
SER 0.0118 USC 0.0133 USC 0.0129
RUE 0.0067 POH 0.0098 HFW 0.0117
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Figure 5: Comparison of different numbers of layers in the LSTM-RNN-based prediction model for family “Baidu.”
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lower FARs than the other models.,e FARs for family “B2”
were worse than those for the other families. And the FARs
for family “Baidu” were better than the FARs on families

“B1,” “B2,” and “B3” because the interval between samples in
the dataset from Backblaze is 24 hours, which is too long to
observe the change in health status in the degradation before
drive failed.

In addition, we compared lead time of these models.
Table 4 shows the lead time comparison of prediction
models for family “Baidu.” As it can be clearly observed that
100% true positive drives were predicted at 24 hours in
advance before they failed. Figures 8 and 9 show that most of
drives are predicted by LSTM-RNN-based models at about 7
days in advance before failed. ,is time allows the backup
and data migration process.

5. Conclusion

As more and more services are pushed from the cloud to the
edge of the network, the high storage reliability on the edge
nodes is urgently required, especially in smart surveillance
systems. ,is paper attempts to evaluate the health degree of
HDDs to improve the performance of soon-to-fail drive
prediction in mobile edge computing environment. An
LSTM RNN is employed to extract temporal dependence
feature of drive health data and compute the health degree.
,e deterioration process of drives is greatly influenced by
health status, IO workload, and the environment situation.
,erefore, a k-means-based undersampling method is used
to resolve the problem of data imbalance. It reduces the
computation overhead and improves the FDR of the pre-
diction model. We validated our method with two real-life
datasets. Comparing with the traditional approaches, the
experimental results show that the proposed model achieves
the better forecasting performance with a low overhead.

In the future, more analysis of HDD failure can be
performed to further enhance the prediction accuracy and
make prediction models intelligent enough to provide ef-
fective instructions and suggestions.

Data Availability

,e data used in the experiments of this study are available in
Baidu and Backblaze. ,ese data were derived from the

Table 3: Comparison of the FDRs and FARs for families “B1,” “B2,” and “B3,” between prediction models.

Prediction model
B1 B2 B3

FDR (%) FAR (%) FDR (%) FAR (%) FDR (%) FAR (%)
CART 76.82 0.47 68.67 1.47 63.85 0.84
RNN 73.46 0.65 68.00 2.19 66.67 1.07
LSTM (Exp) 79.15 0.59 77.33 2.43 79.49 0.92
LSTM (Log) 80.00 0.76 69.33 2.63 74.36 1.37

Table 4: Comparison of lead time for family “Baidu” between prediction models.

Model
Lead time

>24 h (%) >48 h (%) >96 h (%)
CART 90.48 67.62 0.95
RNN 100.00 83.49 33.03
LSTM (Exp) 100.00 93.91 41.74
LSTM (Log) 100.00 91.45 41.88
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Figure 8: Lead time distribution of the LSTM-RNN-based model
with exponential function for family “B1.”
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logarithmic function for family “B1.”

10 Mobile Information Systems



following resources available in the public domains: http://pan.
baidu.com/share/link?shareid=189977&uk=4278294944 and
https://www.backblaze.com/b2/hard-drive-test-data.html#dow
nloading-the-raw-hard-drive-test-data.
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