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Cloud storage provides elastic storage services for enterprises and individuals remotely. However, security problems such as data
integrity are becoming a major obstacle. Recently, blockchain-based verification approaches have been extensively studied to get
rid of a centralized third-party auditor. Most of these schemes suffer from poor scalability and low search efficiency and even fail to
support data dynamic update operations on blockchain, which limits their large-scale and practical applications. In this work, we
propose a blockchain-based dynamic data integrity verification scheme for cloud storage with T-Merkle hash tree. A decentralized
scheme is proposed to eliminate the restrictions of previous centralized schemes. The data tags are generated by the technique of
7SS short signature and stored on blockchain. An improved verification method is designed to check the integrity of cloud data by
transferring computation from a verifier to cloud server and blockchain. Furthermore, a storage structure called T-Merkle hash
tree which is built based on T-tree and Merkle hash tree is designed to improve storage utilization of blockchain and support
binary search on chain. Moreover, we achieve efficient and secure dynamic update operations on blockchain by an append-only
manner. Besides, we extend our scheme to support batch verification to handle massive tasks simultaneously; thus, the efficiency is
improved and communication cost is reduced. Finally, we implemented a prototype system based on Hyperledger Fabric to
validate our scheme. Security analysis and performance studies show that the proposed scheme is secure and efficient.

1. Introduction

Nowadays, more and more companies have built their cloud
computing services and open them to individuals or other
enterprises, for instance, Amazon, Alibaba, Tencent, and
Microsoft. As an important service of cloud computing,
cloud storage allows clients remotely to store their data in
cloud. By data outsourcing, clients enjoy many benefits, such
as relieving themselves of heavy storage management, un-
limited access at any time and any place, reducing expen-
diture on hardware/software, and employee maintenances.
However, storing data in cloud makes clients lose local
control over their data, which may cause potential security
risk. One big problem is how to make sure that the integrity

of outsourced data is intact. As we know, data loss or
corruption with cloud servers often occurs due to malicious
attacks, hardware failures, insider attacks, and even human
mistakes [1-3].

Public verification has been extensively studied to verify
the integrity of cloud data in recent years. A third-party
auditor (TPA) is introduced to verify data integrity on behalf
of clients periodically without local copies. The key ideal is
that each data block is attached with a tag or signature, and
the integrity verification depends on the correctness of these
tags or signatures. During verification, the TPA sends a
query with some random sampled data blocks to cloud
server and then the cloud server calculates the proofs using
the queried data and tags stored on it and respond them to
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the TPA. Finally, the TPA checks these proofs to judge the
integrity of cloud data. The benefits and basic requirements
of public verification in cloud storage have been discussed in
previous scenarios [4, 5].

However, public verification is still subject to a series of
restrictions. First, the assumption of complete trust on TPA
is impractical because centralized TPA is more vulnerable to
internal and external security threats from the Internet.
Second, the TPA may cheat clients for profits by conspiring
with cloud server to generate fake verification results. Third,
when the received tasks exceed its processing capacity, the
TPA has to delay the completion of previously agreed tasks.
Therefore, the TPA cannot be absolutely trusted and may
turn into a bottleneck of the system [6, 7].

Fortunately, blockchain technology provides a new
perspective to dispose of the above problems for the
properties of decentralized data storage, point-to-point
transmission, consensus mechanism, and encryption [8].
Nevertheless, designing a decentralized verification scheme
based on blockchain without TPA is a great challenge. If
blockchain is used to store clients’ data, the data tags or
signatures are not required [9]. It may limit its extensive
applications because the structure of blockchain has a major
obstacle in terms of capacity and scalability. Besides, it is not
convenient for future data access and sharing. To overcome
this drawback, Wang et al. [10] proposed a private PDP
scheme to check remote data integrity by using blockchain
technology. They used blockchain to store data tags while
data files are still stored in cloud. However, their scheme
should iterate through blockchain to obtain the challenged
tags during verification, which is inefficient and impractical
when blockchain grows large.

Another major concern is that data dynamic operations
have not been supported in previous blockchain-based
schemes. Clients may not only access but also need to update
cloud data, e.g., data modification, deletion, and insertion.
Unfortunately, blockchain-based verification schemes
mainly pay attention on static data files. Because blockchain
is tamper-proof, a block cannot be modified once it is
formed. This seems to make data dynamic operations dif-
ficult to implement. Thus, how to achieve blockchain-based
data integrity verification and support data dynamic oper-
ations is necessary and valuable, which needs further
exploration.

In consideration of the key points of integrity verifica-
tion and data dynamics for large-scale cloud storage, we
propose a decentralized and dynamic integrity verification
scheme with blockchain to check data integrity without
requiring TPA and support fast retrieval. The main con-
tributions can be summarized as follows.

First, we present a decentralized cloud storage verifi-
cation framework. Our scheme uses blockchain to overcome
the obstacles brought by TPA and enhances the reliability of
verification result. Data tags are calculated by the technique
of ZSS short signature [11], and a new verification method is
proposed to improve efficiency by transferring computation
from a verifier to cloud server and blockchain.

Second, to reduce storage overhead and improve search
efficiency of blockchain, we propose a new storage structure
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called T-Merkle hash tree which is built based on T-tree and
Merkle hash tree and design its search algorithm.

Third, we extend the proposed scheme to support data
dynamic operations, which is not considered by most existing
blockchain-based schemes. In addition, our scheme achieves
batch verification, which can handle massive verification tasks
from different clients or for different data files at once.

Fourth, we validate the correctness and performance of
our scheme by implementing a prototype system. Detailed
security deduction shows that our scheme is secure, and
experiment results demonstrate the efficiency of our scheme.

L.1. Organization. In the rest of this work, we introduce
related work in Section 2 and discuss the system model in
Section 3. We design a verification scheme in Section 4,
analyze the security of our scheme in Section 5, and further
evaluate our scheme by simulations in Section 6. Section 7
concludes the work.

2. Related Work

2.1. Centralized Data Integrity Verification. According to the
adopted technologies, data integrity verification approaches
can be divided into two kinds: Proofs of Retrievability (POR)
and Provable Data Possession (PDP). Juels and Kaliski [12]
presented a proof of retrievability (POR) scheme to protect
the integrity of remote data. They used the technologies of
spot-checking and error correcting code to ensure the
retrievability and ownership of files on archive service
systems. Ateniese et al. [13] defined a framework of provable
data possession (PDP) model to prove the possession of data
files stored on untrusted servers. Wang et al. [4] utilized a
third-party auditor to verify the integrity of cloud data on
behalf of clients. Based on these works, lots of works have
been conducted in public verification to address the issues of
privacy protection, data dynamic, batch processing, and so
on. Wang et al. [14] proposed a dynamic PDP scheme based
on Merkle hash tree. Yang and Jia [15] encrypted the proofs
to preserve the data privacy against TPA during verification
and utilized hash index to realize efficient data dynamic
update. They also extended their verification method to
support batch verification in multicloud scenario.

Afterwards, lots of third-party verification schemes have
been studied, mainly taking into account data sharing, dedu-
plication, availability or reliability, pretended or disguised third-
party auditors, etc. Wang et al. [16] and Yuan and Yu [17]
studied the revocable integrity verification on shared data. Chen
and Lee [18] presented a verification scheme for cloud data based
on regenerating code, which allows a client to check the integrity
of outsourced data and repair the corrupted data. Liu et al. [19]
proposed a public verification scheme to eliminate the threat of
untrusted auditor to issue unauthorized audit challenges. The
dynamic data update of their scheme operates on variable size
file blocks and is fine grained rather than block level.

2.2.  Blockchain-Based — Data  Integrity = Verification.
Recently, many blockchain-based data integrity verification
schemes have been put forward to ensure the integrity of
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outsourced data or multimedia data [20, 21]. To resolve the
defects of uncredible TPA, Xue et al. [22] proposed a public
verification scheme against malicious auditors based on
blockchain technology. However, it fails to ensure that the
audit tasks are performed on time. Zhang et al. [23] pre-
sented a certificateless verification scheme using blockchain,
which can avoid malicious and delayed auditors, but has
high computing cost and does not handle the case of dy-
namic data update.

By avoiding relying on TPA, Liu et al. [24] presented a
data integrity scheme to check based on blockchain for IoT
service. However, the basic functions of their scheme are only
effective for small-scale scenarios. Liang et al. [25] proposed
an architecture for data provenance which involves inserting
the provenance information into transactions on blockchain
to prove the integrity of cloud data. Wang et al. [26] designed
a decentralized scheme to solve the problem of untrustable
single point and allow clients to record the trace of their
history data. To reduce the computation and communication
overhead in large-scale Internet of Things, Wang and Zhang
[27] proposed a blockchain-based integrity verification
scheme using multiple chains. However, they increased the
storage space of blockchain. Yu et al. [28] presented a
decentralized verification scheme for big data in smart urban
environments; they employed a data auditing blockchain
(DAB) to store auditing evidences. Similarly, Huang et al. [29]
proposed a blockchain-based cooperative auditing framework
for cloud data storage, which recorded auditing requests and
results on blockchain in perpetuity. Miao et al. [30] proposed
a blockchain-based public verification scheme to achieve
decentralization and privacy protection. They employed
blockchain to generate challenge request and recorded the
process of verification onto the blockchain. However, all of
these schemes use blockchain to validate verification results
afterwards and cannot check whether the data are integrated
in time.

Additionally, data dynamic operations have been widely
studied in centralized verification schemes. In the block-
chain-based solutions, Wang and Zhang [27] realized block-
level dynamic update operations including appending,
modification, and deletion. Yu et al. [28] proposed a
modified Merkle hash tree to achieve data dynamic update.
Yang et al. [31] supported dynamic update by using dynamic
hash table and modification record table. These dynamic and
blockchain-based verification schemes only use blockchain
to record verification process or result, and the dynamic data
update is basically independent of blockchain. Nevertheless,
our solution makes use of blockchain to store data tags,
which makes dynamic update operations more difficult.

In summary, most existing blockchain-based data in-
tegrity verification schemes focus on removing centralized
TPA and recording verification process or results on
blockchain. In our work, we use blockchain to store data tags
and deal with the query efficiency of blockchain and together
with data dynamic update operations on blockchain.

Part of this work has previously appeared as an extended
version in a conference [32]. We revise and extend the work
mainly from five aspects compared with [32]. First, we
analyze the impact of data dynamic operations on the

blockchain-based system and extend our scheme to dispose
of secure data dynamic operations. Second, we extend our
verification method to support batch processing, by which
massive tasks can be handled concurrently and efficiently.
Third, we propose a blockchain optimization method which
is not discussed in conference paper. Fourth, we add ex-
periments to validate the performance of data dynamic
operation and batch verification.

3. Definitions and Preliminaries

3.1. System Model. The blockchain-based storage verifica-
tion system involves three kinds of participants: Client,
Cloud Server (CS), and Blockchain (BC), as presented in
Figure 1. Client intends to outsource a large amount of data
to the cloud, and it can be either a company or an individual
consumer. Cloud Server is built and maintained by cloud
service providers, who have sufficient storage space and
computational resources to serve Client’s demands and
should prepare for the integrity check. Blockchain stores
Client’s data tags or metadata and is used to check the
integrity of cloud data.

The framework of our scheme includes two stages:
initialization stage and verification stage.

Initialization Stage. (1) Client splits the encrypted data file
into a set of equal sized blocks. (2) Client signs the blocks
by computing a data tag for each block of data. (3) Client
outsources the set of data blocks to CS. (4) Client uploads
the data tags to BC rather than CS. (5) CS generates a
challenge to BC. (6) BC answers with a tag proof based on
the challenge, and then CS checks the integrity of data
which will be stored on itself.

Verification Stage. (7) Client randomly constructs a
challenge, which includes an index subset of data blocks
and a series of random values, and sends the challenge
to CS and BC, respectively. (8) As proof providers, CS
and BC respond to the data proof and tag proof after
receiving the challenge. (9) Client checks the received
proofs. If the verification passes, it indicates that the
cloud data are integrated; otherwise, the cloud data are
lost or corrupted.

Because of the security assurance of blockchain, the hash
value of root or data tags stored on BC cannot be corrupted,
which makes integrity verification results more credible. For
convenience of description, we use Client as the verifier.
Actually, the verification stage can be launched by any entity,
i.e,, Client, CS, BC, data sharers, or other third parties.
Anyone with the public parameters can perform sampling
verification on a regular basis or when accessing cloud data.

3.2. Threat Model and Design Goals. To protect privacy, data
file is encrypted before uploading to CS by Client. Following
the security model defined in [12-14], we consider two
different kinds of threats: semitrusted or untrusted CS and
malicious Client. CS may not be in accordance with the
contract to store Client’s data and hide data loss or even
discard the corrupted data to deceive Client for reputation.
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FIGURE 1: Blockchain-based verification model for cloud storage.

As we known, data loss or corruption can be caused by
incidents such as hardware failure, management errors, and
internal and external attacks. Client may deliberately out-
source corrupted data or tags to defraud CS to obtain
compensation. As a result, they may carry out the following
types of attacks:

Forgery attack: CS forges data proofs with the intention
of cheating verification

Replace attack: CS replaces the challenged data blocks
with old versions or other uncorrupted data blocks with
the intention of passing the verification

Fraud attack: Client uploads corrupted data blocks to
CS or incorrect data tags to BC and then claims the data
are intact to defraud CS for compensation

The proposed verification scheme is intended to achieve
the following objectives:

Decentralized verification: data blocks and tags should
be stored on different parties rather than single point.
The integrity of data can be checked by any entity
publicly without relying on centralized TPAs

Low cost of blockchain storage: the storage cost of data
tags stored on BC should be as minimum as possible

Efficient blockchain query: the proposed scheme en-
ables binary search to quickly find the challenged tags
without traversing the entire BC

Data dynamic update: cloud data and tags on BC can be
updated without introducing new security threats
Batch verification: the verifier can handle massive
verification tasks simultaneously and efficiently

Verification efficiency: the computational and com-
munication overhead of verification method should be
as low as possible to meet practical application

3.3. Preliminaries

3.3.1. Blockchain. Blockchain is a point-to-point trading
system which achieves decentralized, transparent, tamper-
proof, and traceable features through the techniques of
distributed consensus, data encryption, Merkle hash tree
(MHT), and so on. System nodes do not need to trust each
other. Each data or operation is recorded as a transaction.
Multiple transactions form a block, and many blocks are
linked together to form a blockchain. Each block has two
parts: blockchain header and blockchain body. The header
consists of version, hash value of the previous block,
timestamp (the time block is created), Merkle root value,
target, and nonce (a counter). To improve query efficiency,
a field which stands for tag index range of current block is
inserted into header in our design. All data tags are stored
in blocks, and the integrity can be maintained by the
Merkle hash root of each block, as shown in Figure 2. Since
Merkle hash tree only stores data tags in leaf nodes, when
the number of tags is large, the data structure will grow
huge and the efficiency of tag query will decrease. To ad-
dress this problem, we build the blockchain body through
the improved Merkle hash tree called T-Merkle hash tree
described in the following section.

3.3.2. T-Tree. T-treeis a balanced binary tree, and each node
keeps multiple data value items [33]. Figure 3 shows the
structure of a T-tree. A T-node contains several data fields, a
parent pointer, and two child pointers pointing to its right
and left subtrees separately. Generally speaking, the number
of data values is kept smaller than the data fields’ size of a
node for the purpose of efficient data insertion. When data
are inserted into a full node, the node will split into two
nodes. Both data insertion and deletion may cause tree
rotation to achieve balance.
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FIGURE 2: Data tag blockchain.
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F1GURE 3: Structure of T-tree.

3.3.3. Bilinear Mapping. Assuming that G, is a gap Dif-
fie-Hellman group and G, is a multiplicative cyclic group
with prime order p, P is a generator of G,. The bilinear
mapping e: G, x G; — G, has some properties. (1) Bili-
nearity: e(aP,bQ) = e (P, Q)™ and e(P+R,Q) =e(P,Q) -
e(R,Q)forall P,Q,R € Gyanda,b € Z,.(2) Computability:
there is an effective algorithm to calculate e(P,Q) for all
P,Q € G,. (3) Nondegeneracy: e(P, P) # 1.

For ease of reference, the main symbols we used in this
work are summarized in Table 1.

4. The Proposed Blockchain-Based Data
Integrity Verification Scheme

In this section, first, we design the structure of T-Merkle
hash tree. Second, we present the decentralized data integrity
verification scheme based on blockchain. Then, dynamic
verification and batch verification are carried out, respec-
tively. Finally, we analyze our proposal from several aspects.

4.1. Structure of T-Merkle Hash Tree. In order to decrease
storage space and improve query efficiency, we modify the
Merkle hash tree from three aspects: (1) data tags are stored
on each node instead of only on leaf nodes, and each node
stores multiple data tag items from small to big; (2) index key

TaBLE 1: Notation.

Notation Description

Client The uploader or owner of cloud data
CS Cloud server

BC Blockchain

v; A T-Merkle hash tree node
H(v;) Hash value of node v;

k Number of data tags in a node

h, # A secure hash function:h: {0,1}" — Z;
P A large prime number

G, A gap Diffie-Hellman (GDH) group
G, A multiplicative cyclic group

p A generator of group G,

e A bilinear map:e: G, xG; — G,
sk The client’s private key

pk The client’s public key

F,m; Data file and data block, i € [1,7]
T, Tag; Tag set and data tag, i € [1,7]
DP The data proof generated by CS
TP The tag proof generated by BC

is attached to each data tag to support efficient tag query; and
(3) the index range field indicating the minimum and
maximum index values of the current node will be em-
bedded into the header of each block.



Definition 1. A T-Merkle hash tree is built based on T-tree
and Merkle hash tree. Figure 4 shows the node structure. A
node v; contains minimum index key Min;, maximum index
key Maxl, an index key and tag set {], tag]} kP and hash
value H (v;). k means the number of data tags in each node.

The hash value H (v;) of node v; is calculated by the hash
value of data tags in node v, and the hash values of its
children, namely,

h(v;), leaf node,
H (v, = h(h(v;)IH (rchild)), T right child,
’ h(h(v;)IIH (Ichild)), Jleft child,
h(h(v;)IH (rchild)[|H (Ichild)), 3 two children,
(1)

where h(v;) equals to h(h(tagy)llk(tag,)ll ... [lh(tag,)), in
which & is a secure hash function and || is a concatenation
operation.

To build the T-Merkle hash tree, we firstly generate a
basic T-tree with data tags and index keys and then calculate the
hash value H (v;) of each node from bottom to root. Figure 5
gives an instance of constructing a T-Merkle hash tree through
14 data tags with index key from 1 to 14. Each node keeps two
data tags, which means k = 2. When the verifier wants to
authenticate {Tag,, Tagq}, the BC sends the verifier with the
authentication  information Q= <H (c), H (b), h(Tag,),
h(Tag,),h(Tag,),h(Tagg)>. The verifier can check
{Tags, Tagg} by calculating H (a) = h(h(Tag;)|lh(Tage)llH
(0)llh(Tags|)lh(Tag,)), H'(root) = h(h(Tag,)|h(Tags)|H
(a)|H (b)) and then check whether the calculated H' (root) is
equal to the Merkle hash root H (root) stored in block header.
From the above statement, it can be seen that the authentication
feature of Merkle hash tree is retained in T-Merkle hash tree.

When querying a data tag with index key Qkey, we it-
erate through the blockchain from the last block to the first
block so as to compare the query key Qkey with the index
range field in the block header. If index key Qkey is in the
one block, binary search is used to find the queried data tag
in T-Merkle hash tree stored in block body. Algorithm 1
describes the algorithm of searching on T-Merkle hash tree.
Figure 5 shows an example; suppose that we are going to
look for a tag with index key 5. First, we compare 5 with
minimum index key 7 and maximum index key 8 of root
node. Because 5 is less than 7, we will go through its left
subtree. Second, as 5 is greater than the node a's maximum
index key of 4, we then go through its right child. Finally,
Tag; is obtained in node d. With our careful design, the
T-Merkle hash tree based blockchain not only ensures that
the tags can be quickly authenticated in the block but also
improves the efficiency of query by making full use of binary
tree.

4.2. Construction of the Proposed Scheme. In our scheme,
data tags are calculated by ZSS short signature [11] and
stored on BC. The ZSS scheme uses bilinear pairings and
general cryptographic hash functions such as SHA-1 or MD5
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instead of requiring special hash functions such as BLS.
Besides, it is faster than BLS signature because the verifi-
cation process requires fewer pairing operations.

The construction of the proposed scheme includes two
stages: initialization stage and verification stage.

4.2.1. Initialization Stage. First, Client generates a random
value sk € Z,, as its private tag key and calculates the public
key pk = skP. Under the assumption of Inv-CDHP, the
private key cannot be extracted from the public key.

Second, Client splits the encrypted data file F into n
blocks as F = {m,,m,, ...,m,} and then calculates a data tag
Tag; for each block m; as

1
Tagi = WP, (2)

where 7 is a general hash function such as MD5 or SHA-1.
The tag collection of data file F is T = {Tag,, Tag,, ..., Tag,}.

Finally, Client outsources the data file F to CS and
uploads the tag collection T' to BC. Client removes local data
file and tags. Data tags are organized on BC through
T-Merkle hash tree. CS will check the integrity of blocks
before accepting the outsourced data to prevent malicious
Client. The check process is similar to the verification stage
described below. The process of initialization stage is shown
in Figure 6.

4.2.2. Verification Stage. Client (as verifier) chooses a set of
random elements I = {s,s,,...,s.}, where c is a subset of
[1,n], and then generates a pseudorandom value u; in Z, for
each s;. Client sends Chall = {i,u;},,; to CS and BC
separately.

After receiving Chall, CS calculates the data proof DP by
encrypting it with bilinear map as

DP = e<z ui%’(mi)P,P) (3)

iel

Simultaneously, BC finds the challenged tags by using
Algorithm 1 and then calculates the encrypted tag proof as

TP = e<ZTiP2,P>. (4)

iel - A8i

CS and BC return {DP ,TP} as proofs to Client,
respectively.

After receiving data proof DP and tag proof TP, Client
firstly computes R =), u;pk with the issued
Chall = {i,u;},; and public key pk and then verifies the
proofs by validating the following equation:

TP =DP -e(R,P). (5)
If equation (5) holds, the data file on CS is intact;

otherwise, it is corrupted. Figure 7 illustrates the process of
verification stage.
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k data tags and indexes

FiGure 4: Node structure of T-Merkle hash tree.

index range field of current block

Block Header
Previous Hash Timestamp 1,14
Previous I\llexlt(
Block Merkle root Nonce Bloc
Z

root
Block body

FIGUure 5: Example of T-Merkle hash tree.

Input: Qkey
Output: data tag Tag,
(1) for each block in BC
(2)  if Qkey in index range of block then
(3) Access T-Merkle hash tree root of current block, set p = root.
(4) if p[Min] < Qkey < p[Max] then
(5) get Tagqy, in node p by comparing index key.
(6) else if Qkey < p[Min] then
(7) set p = p[leftchild].
(8) else// Qkey > p[Max]
9) set p = p[rightchild].
(10)  else
@11) go through the previous block.
(12) end

ALGORITHM 1: Search algorithm of T-Merkle hash tree.
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1.Compute sk and pk

2.Slice data file
and compute data tags

3.Upload Tags to BC

4.Upload data blocks to CS

5.Construct blocks
through T-Merkle tree

6.Ensure the integrity of data will be stored

FIGURE 6: Process of initialization stage.

Blockchain Client -

1.Generate challenge Chall

2.Send Chall to BC

2.Send Chall to CS

3.Compute tag proof TP 3.Compute data proof DP

4.Send TP to Client 4.Send DP to Client

5.Compute R and
check the proofs by eq. (1)

FIGURE 7: Process of verification stage.

4.3. Support for Data Dynamic Operations. In this work, data
dynamic operations refer to block-level operations, in-
cluding data insertion, data deletion, and data modification.
The dynamic operations of data blocks will cause the
recalculation of data tags. However, in our design, data tags
are stored on blockchain. Because of the nontampering
property of blockchain, it seems impossible to update the
data tags. To solve this problem, we add the new update tags
in the latest block on the blockchain, whether inserting or
modifying data block. From this point of view, our data
block update can be achieved by data appending.

When preparing to insert a new block m; before m, the
index of block m; can be computed as ((j—1) + j)/2; for
instance, a new data block m; is going to be inserted between
m, and m,, and the index of new inserted data block m; is
i = (1+2)/2 = 3/2. Therefore, there is no need to change the
block index for subsequent blocks [34]. In addition, each
dynamic operation will cause the hash root of current block
to be recalculated.

We will start by showing how our solution handles
data tag updates. When data tag is updated, it is inserted
into the root node of a new block on blockchain. If the
inserted key is smaller than or equal to the minimum key
of root node, it will be inserted into the left subtree. If it is
greater than the maximum key of root node, it is inserted
into the right subtree. According to the update rules of
T-tree, there are several cases when T-Merkle hash tree is
updated.

(a) When root node is empty, a new node is created to
store the update data tag and index key. The root
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hash value is equal to the node hash value.
Figure 8(a) shows this case.

(b) When the update index key is between the minimum
and maximum index key of a node and the node is
not full, the update tag and index key are inserted
into this node in sequence. This is shown in
Figure 8(b).

(c) When the update index key is between the minimum
and maximum index key of a node and the node is
tull, it causes the node to split. The tag item with
maximum index key is then moved to the right child,
while the tag and index key are inserted into the
node. This case is shown in Figure 8(c).

(d) If the update index key is smaller than the minimum
value of a node, the tag will be stored on the left child.
Otherwise, it will be stored on the right child. The
result is shown in Figure 8(d).

For tag insertion or modification, it may cause the hash
value from the updated node to root node on the path to be
recalculated. Since the inserted or modified index keys are
unpredictable, it may also cause the nodes to be split. For
deletion, we delete the data blocks directly and the tag items
in blockchain have no effect. Dynamic updates may also
cause the tree to rotate to maintain balance, which is shown
in Figure 8(e).

Now, we construct the data dynamic operations in detail,
which includes three steps: UpdateRequest, UpdateCommit,
and UpdateVerify. Each update operation can be con-
structed as an update request to CS CSReq = {op,i,m}} and
an update request to BC BCReq = {op, i, tag’}, where OP is
dynamic update operation type, such as data block insertion
(I), deletion (D), and modification (M).

4.3.1. UpdateRequest Step. For data block modification,
suppose Client prepares to modify the ith block m; into m .
Client (1) computes the new tag as Tag] = 1/ (m]) + skP,
(2) uploads BCReq = {M, i, tag}} to BC, and (3) uploads the
request of modified block CSReq = {M,i,m}} to CS.

For data block insertion, suppose Client wants to insert
block m; before m 5o Client (1) calculates the new index as
i=(j—-1+j)/2, (2) calculates a new tag as
Tag! = 1/% (m}) + skP, (3) uploads BCReq = {I,i,tag;} to
BC, and (4) uploads the request of new inserted block
CSReq = {I,i,m}} to CS.

For data block deletion, it refers to deleting the specified
blocks logically, for which it is not necessary to move all the
subsequent blocks forward. Client only sends CloudReq =
{D,i} to CS.

4.3.2. UpdateCommit Step. After receiving the request
CSReq, CS commits the update operations according to the
type of data operation.

For data block modification, CS replaces the block m;
with m;

For data block insertion, CS stores the new block m} in
the ith position
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(a) (b)

(o)

(d)

i

i

(e)

FIGURE 8: An example of T-Merkle hash tree update stage. (a) Empty node insertion: insert a new tag with index 15. (b) Insertion in not a full
node: modify a tag with index 7. (c) Full node insertion: modify a tag with index 8. (d) Left and right insertion: modify tags with indexes 6
and 14. (e) Rotation for balance: insert new tags with indexes 16, 17, and 18.

For data block deletion, CS deletes the ith block directly

1. Compute a new tag
2. Generate BCReq
3. Generate CSReq

After receiving the request BCReq, BC commits the
request as follows:

(1) BC inserts the data tag Tag; into T-Merkle hash tree
whether the operation is insertion or modification. If
an inserted tag Tag; with index i is already in current
block, BC just replaces the old Tag; with the new
Tag’.

(2) BC recomputes the node hash values of T-Merkle
hash tree.

4 Send BCReq to BC 4. Send CSReq to CS

5. Insert data tag and

compute new hash value 5. Update data blocks

6. Send Chall to CS

7.Send DP to BC

8. Compute R and
check the proofs by Eq. (4)

4.3.3. UpdateVerify Step. Once the dynamic operations have FiGure 9: Process of data dynamic operations.

been executed, BC will issue a challenge to check whether CS

performs the dynamic operations correctly, which is the
same as described in verification stage. The process of data
dynamic operations is shown in Figure 9.

4.4. Support for Batch Verification. In practical applications,
there may be a large number of verification tasks that need to
be checked in a short time. If these massive tasks can be
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processed simultaneously (such as aggregate these tag proofs
and data proofs into one separately and verify them at once),
the efficiency will be improved and the communication cost
will be reduced. To achieve this goal, our key solution is that
when generating data proof, CS aggregates different proofs
into one instead of sending each proof directly to Client.
Thus, the size of proof is constant, regardless of the number
of verification tasks. The aggregation of tag proof is the same
as that of generating data proof. CS and BC aggregate
different proofs into one and can further reduce the veri-
fication computation cost of Client because they have more
computing power than Client.

Assume the number of verification tasks is L. The data
file and tags of each verification task can be expressed as
{F}},c; and {T}},;. The keys are {sk;, pk;},.;. Algorithm 2
shows the detailed workflow of batch verification.

According to Algorithm 2, it can be seen that verifying L
tasks in batch manner only needs 3 bilinear map pair op-
erations, while checking L tasks one by one requires 3L times
bilinear map pair operations. Similarly, the commutation
cost is 2| p|, while that of checking L tasks one by one is 2L|p|.
Therefore, batch verification can improve the efficiency in
terms of computation and communication cost.

4.5. Discussion on Design Considerations

4.5.1. Decentralized Verification. In the centralized verifi-
cation scheme, data corruption and tag corruption can lead
to verification failure. However, in our decentralized
scheme, data tags stored on BC will not be tampered with. If
verification fails, the cloud data must be corrupted. In
traditional schemes, data and tags are stored on cloud
servers. If the verification is performed by cloud servers, the
results cannot convince the users, so the third-party audit is
introduced. In this work, the data are stored on CS and the
tag is stored on BC; CS cannot forge the tag proof, so there is
no need of TPA. Although CS and BC encrypt the proofs by
using bilinear map, Client can still check the proofs without
decrypting them. Since data tags and public key are un-
known to CS, it also helps Client remain anonymous to CS.
Generally speaking, we take several measures to strengthen
the security of the proposed scheme.

4.5.2. T-Merkle Hash Tree. With Merkle hash tree in each
block, it can quickly verify whether a data tag exists in the
blockchain by using the hash values. However, when Client
wants to access a specific data tag, all the tags stored on
blockchain need to be traversed. With the growth of
blockchain, the efficiency of data tag query on the whole
blockchain will become lower and lower. In the structure of
T-Merkle hash tree, the index range field in block header
helps to quickly determine whether the query key is in block
without traversing the whole tree. Furthermore, the
T-Merkle hash tree supports binary search in block by

adding a minimum index and a maximum index in each
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node. The time complexity of this process is O (log, (n/k)).
When searching in a node, the time complexity is
O (log, (k)). Thus, the time complexity of Algorithm 1 is
O (log, (n/k)) + O(log, (k)).

4.5.3. Detection Probability. Assume that the number of data
blocks is n, the sample size of challenge is ¢, and the number
of corrupted blocks is d. X is the number of corrupted blocks
detected in the sampled data, and then the detection
probability Py can be expressed as

—d\°
PX:P{XZI}:I—P{X:O}:I—(n ) (6)
n
It is not difficult to find that when the corruption rate is
1% and sample size is 300 blocks, the detection probability
can reach 95%.

4.5.4. Data Dynamic Operations. Data dynamic operations
may cause replace attack, forge attack, and other security
problems. On the one hand, CS may fail to update Client’s
data correctly and cheat the Client by providing fake proof
of previously stored version. On the other hand, CS may
trick Client by forging the data tag because new versions of
the same data blocks reuse the same index and tag private
key. If the CS can forge tags, then it can use arbitrary data
and forged tags to pass the integrity verification. However,
in our design, data tags are stored on BC and CS thus can
only forge data proof. Since tags on BC cannot be modified,
we insert the new modified tag into BC. When updating a
tag in the current block, we only replace it with the new
one. When querying tags, we traverse the BC from the latest
block to the oldest one, so the first queried tag we find is the
latest version. In this way, our scheme can resist replay
attack without requiring version number and timestamp
information for updates in traditional solutions.

4.5.5. Blockchain Optimization. As we know, data dynamic
operations are realized in an append-only way. Once data
tags are updated, the old versions are still stored on
blockchain, although they will not be accessed again. Hence,
storing them on the chain will inescapably cause huge
storage overhead. To address this problem, we intend to
propose an optimization mechanism. We remove the old
block in which data tags are updated, or move the tags not
updated to the latest block, so as to guarantee that this block
will not be accessed forever, and then delete it. Here, we use
Figure 10 to illustrate the key ideal of optimization mech-
anism. Tag, and Tag, are updated and stored new ones in
Block 3, but Tag; is not. We move Tag; from Block 1 to
Block 3 and then delete Block 1.

4.5.6. Limitations. The proposed work uses blockchain to
store data tags and also proposes a new storage structure
and optimization method. However, it is still limited by the
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Input: challenge{Chall;},.,
Output: intact or not

BTP = BDP - ¢(BR, P)

(1) CS calculates the batch data proof as BDP = e (};c; Y ;c;uy (my;)P, P)

(2) BC calculates the batch tag proof as BTP = e (Y Y, u;/Tag; P2, P)
(3) CS and BC send aggregated proofs {BDP, BTP} to Client.
(4) After receiving the proofs, Client checks the correctness of the proofs by calculating BR = Y., >, ju;; pk; and checking

(5) If equation in Algorithm 2 (4) holds, it means all the L tasks are intact.

ALGORITHM 2: Batch verification.

Block 1 Block 2
U Tag, U Tagy
| Tag || Tag | | Tags || Tags |
(a)
Block 1 Block 2 Block 3
' Tag, L Tags | Tag, |
| Tag, | ;'_'_T'ag;'_': | Tag, | ;'_'_T'ag'(,_'_': ._'_’I:agil_._':
(b)
Block 2 Block 3
' Tags U Tag,
| Tag, | | Tag; | Tag, | | Tagy !
(c)

FiGgure 10: Example of blockchain optimization. (a) Initialization of blockchain. (b) Update Tag; and Tag,. (c) Move Tags to block 3 and

delete Block 1.

storage scalability of blockchain. At the same time, the
verification method is based on ZSS signature technology.
The calculation method makes it difficult to extend our
work to support the case of multiuser sharing or
deduplication.

5. Analysis

We analyze the correctness and security of our scheme based
on four aspects: correctness, forgery attack resistant, replace
attack resistant, and fraud attack resistant.

5.1. Correctness Analysis

Theorem 1. The proposed scheme is correct and feasible to
check the integrity of cloud data.

Proof. The correctness of equation (5) can be derived as

follows:
P’ P > )

TP = e(ZTui
= e<z u; (# (m;) +sk)P,P>,

icl +38i
iel (7)
=e Z w, I (m;)P,P |-e Z u;skP, P |,

iel i€l

=DP-e(R, P).

Similarly, the correctness of batch verification can be
calculated as follows:
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leL i€l agll

BTP—e<ZZ i p? P>

Z u; %(mll) + Skl)P p
leL i€l

leL i€l

< Z u; F (my;) P, P> <Z Z uisklP,P>,
leL i€l

= BDP. e<z D ulipkl,P>,
leL i€l

=DP-¢(BR,P).
(8)

From the above calculation process, if the data proof
provided by CS passes the verification, the data stored on
cloud are uncorrupted. Thus, the proposed scheme is
feasible. O

5.2. Security Analysis

5.2.1. Forgery Attack Resistant

Theorem 2. It is computationally infeasible for CS and BC to
falsify data proofs and tag proofs with our scheme.

Proof. Following the definition of adversary model and
security game in [12, 13], the unforgeability of our scheme
can be derived as follows.

Suppose the challenge is Chall = {i,u;},.;, the correct
proof should be DP and TP. We assume that CS and BC
forge incorrect proofs DP' and TP', and these incorrect
proofs passed the verification. Then, according to equation
(5), we have

TP' = DP' -e(R, P). (9)

Since DPand TP are correct proofs, we can get

TP = DP-e(R, P). (10)

By dividing equation (9) by equation (10), we can get
TP'.TP ' =DP'.DP . (11)

We firstly consider that there are some attackers or
malicious CS. The cloud data are tampered with. That is,

DP' #DP and TP’ = TP. With the properties of bilinear
maps, we have

e(Z uﬂ/’(mé)P,P) 'e< Z ui%(mi)P,P> =1

i€l iel
(12)
By setting Am = Y, ,u, 7 (m) — ¥;c;u; % (m;), we have
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e(AmP,P) = e(P,P)"" = 1. (13)

As Am #0, we have e(P, P) = 1. This conflicts with the
hypothesis that P is nondegenerate if e (P, P) # 1.

We then suppose that BC is under attack and generates a
fake tag proof, namely, TP'#TP. Similar to the above
analysis, without the private key sk, it is computationally
infeasible to generate a fake m; and make equation
1/% (m) + skP = 1/ (m,) + skP work.

From the above proof, we can know that our verification
scheme can correctly check the integrity of cloud data. 0 [

5.2.2. Replace Attack Resistant

Theorem 3. Based on the nonmodifiability of BC, the pro-
posed verification scheme can resist the replace attack from
Cs.

Proof. When the challenged data block m, is broken, CS
may try to deceive the verifier by using another data block
my, to replace it. Thus, the data proof DP* becomes

ieli#t

DP* = e( Z w, I (m;)P + ut%(mk)P,P) (14)

Then, the verification equation (5) can be represented as

TP =DP" -e(R,P) = DP -¢(R,P). (15)

Since the tag stored on BC is nonmodifiable and we
always query the newest version, the tag proof is still T'P.

Thus, we have # (m,) = Z (m,). However, # (m,,) can-
not be equal to # (m,) due to the anticollision property of hash
function. So, the verification equation does not hold and the
proof from CS cannot pass the verification. Therefore, the
proposed scheme can resist the replace attack.

5.2.3. Fraud Attack Resistant

Theorem 4. The proposed scheme prevents the mutual de-
ception between CS and Client.

Proof. As we know, the data tags stored on BC cannot be
tampered with under our scheme. When verification equation
(5) fails, it means the cloud data are corrupted. Thus, CS should
pay compensation for Client without denying. At the same
time, when a dishonest Client uploads incorrect data for the
sake of defrauding CS’s compensation, actually CS will perform
verification stage before storing Client’s data, so the dishonest
Client can be found out and CS does not need to pay com-
pensation. Thus, the proposed scheme prevents the mutual
deception between CS and Client.

6. Performance Evaluation

This section analyzes and compares our scheme with related
data integrity verification schemes cited in references in
terms of function similarity, storage overhead, and verifi-
cation efficiency.
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6.1. Performance Analysis. As can be seen from Table 2, we
compare our scheme with similar schemes in terms of
blockchain-based, decentralization, data tag storage place,
verification method, fast tag retrieval, data dynamics, and
batch verification. In detail, our scheme provides an effective
decentralized, dynamic, and batch verification scheme for
outsourced data, while ensuring the fast tag retrieval on BC.

Table 2 shows that Yue’s scheme [9] and Wang’s scheme
[27] are more close to our scheme in function. Thus, we
compare our scheme with these two schemes from the as-
pects of storage structure of blockchain and verification
efficiency in detail. Yue’s scheme [9] uses a multibranch
Merkle hash tree to store data blocks on BC, and the integrity
of data relies on the root of the hash tree. Wang’s scheme
[27] is more similar to our scheme, since the verification
method is also based on the ZSS short signature technique.

6.1.1. Computational Complexity of Algorithms. Our scheme
consists of five basic algorithms: KeyGen, TagGen, Chall-
Gen, ProofGen, and Verify. The KeyGen algorithm and
TagGen algorithm are run by Client during initialization
stage. The KeyGen algorithm generates the private and
public tag keys. The TagGen algorithm calculates a data tag
for each data block. The algorithms of ChallGen, ProofGen,
and Verify are executed during verification stage. The
ChallGen algorithm is run by Client (as verifier) to choose
sampling challenge. The ProofGen algorithm is run by CS
and BC to calculate the data proof and tag proof. The Verify
algorithm is run by Client (as verifier) to validate the proofs.
The computational complexity of algorithms is shown in
Table 3. From Table 3, it can be seen that the complexity of
both KeyGen and Verify algorithms is O (1), the complexity
of ChallGen and ProofGen algorithms is O(c), and the
complexity of TagGen algorithm is O (n). Based on the re-
sults shown, we can conclude that both algorithms used in
this work presented a linear growth rate. On the one hand,
the algorithms of KeyGen and TagGen only execute one time
during initialization stage. On the other hand, the verifi-
cation efficiency is related to the number of challenged
blocks, which is independent of total size of data file. So, we
only compare the verification efficiency in part of experi-
mental results.

6.1.2. Storage Structure of Blockchain. The storage structure
of blockchain is compared from three aspects: generation
complexity, storage space, and query efficiency. The storage
structures of these three schemes are multibranch Merkle
hash tree, Merkle hash tree, and T-Merkle hash tree, re-
spectively. Generation complexity is measured by the
number of hash operations during the construction of the
tree. In our scheme, the hash operations come from two
aspects: hash computation of each data block and hash
computation of each node. Similarly, the storage space is
determined by the number of nodes in the tree. The size of
each tag in our scheme and Wang and Zhang scheme [27]
are the same as the size of data block, which is |F|/n.
However, we store data block on each node rather than just
leaf nodes, so the number of nodes in the tree is fewer than
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the other two schemes. Since our scheme supports binary
search on BC, it needs lower query cost. The detailed
comparison among these three schemes is shown in Table 4.

6.1.3. Verification Efficiency. The verification efficiency is
estimated in terms of computation cost and communication
cost. The computation cost is decided by cryptographic
operations. Since the size of challenge request
Chall = {i,u;},, of these three schemes is the same, which is
2¢|pl|, the communication cost here refers to the size of data
proof and tag proof. From Table 5, it can be seen that the
proof size in our scheme is less than other two schemes and
the computation cost of both our scheme and Wang’s
scheme [27] is O(c), while that of Yue’s scheme [9] is
O(clogh). Furthermore, the computation cost of our scheme
on the verifier side is less than that of the other two schemes
because we transfer the computation load from the verifier
to CS and BC which are more powerful than the verifier.

6.2. Experimental Results. We validate the proposed scheme
on a 64-bit Ubuntu system (version 18.04) based PC (8-core
Intel i7 processor with 2.11 GHz and 16G of memory). The
blockchain platform we choose is Hyperledger Fabric 1.4.0.
Implementation of verification algorithms in this work is
based on the Pairing-Based Cryptography (PBC) library
(pbc-0.5.14) with a.param, in which the group order and the
base field order are 160 bits and 512 bits, respectively. The
three different types of trees are implemented by Go pro-
gramming language. We use the text file to do the experi-
ment, read the file in binary way, and then slice it into blocks.
The size of data blocks is constant, which is equal to 4 KB,
and thus the size of files is changed according to the number
of data blocks. All simulation results are the average of 50
tests.

6.2.1. Evaluation of Different Structures of Merkle Hash Tree.
First, we compare the efficiency of tree generation under
different numbers of data blocks. We assume the number of
tag in a node of our scheme to be k = 128, which achieves
better performance as shown in the next experiment. We
assume the number of branch in Yue’s scheme [9] to be
m = 8, as eight-branching tree in their scheme achieves the
best performance. We test the whole number of blocks from
2048 to 65536 (2048, 4096, 8192, 16384, 32768, and 65536).
Figure 11(a) reveals a proportional relationship between the
tree generation time and the number of blocks. Obviously,
our T-Merkle hash tree shows a better performance than the
other two trees because it reduces the number of nodes and
the depth of tree under the same condition.

Second, we measure the query efficiency of these three
different kinds of trees by setting the number of query blocks
from 128 to 2048 (128, 256, 512, 1024, and 2048). The test
size is reasonable because of the challenged number of blocks
during verification is very small. From Figure 11(b), we can
find that our scheme spends relatively low query time be-
cause our scheme supports binary search. When the number
of query blocks reaches 1024, our scheme takes 1.6 ms, while
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TaBLE 2: Comparison of function.

Blockchain o Tag storage Verification Fast tag Data Batch
Schemes Decentralization . . e
based place method retrieval dynamics verification
Scheme [4] N N CS BLS N Y Y
Scheme [9] Y Y Blockchain MHT N N N
?f(l)’]eme Y N Blockchain RSA N N N
Scheme
[27] Y Y CS AN N Y N
Scheme
(28] Y Y CS BLS N N Y
Scheme
[29] Y Y CS BLS N Y Y
Scheme
(30] Y Y CS BLS N N N
Our Y Y Blockchain AR Y Y Y
scheme
TaBLE 3: Computational complexity of algorithms.
Algorithms Computational cost Computational complexity
KeyGen M O(1)
TagGen I+ d+M) O(n)
ChallGen cd O(c)
ProofGen 2cd + 2 + 29 + 2P O(c)
Verify P O(1)

n is the total number of blocks in the data file; 7 is the branch number of tree; ¢ is the number of challenged blocks; &/ denotes one addition in G; .# denotes
one multiplication in G; & denotes one pairing operation; and 7 denotes one hashing operation.

TaBLE 4: Comparison of storage structure.

Scheme Generation complexity Storage space Query efficiency
Yue et al. scheme [9] sum (Y) (sum(Y) +n)|p| O(log))
Wang and Zhang scheme [27] sum (W) (sum (W) + n)|p| O (nlog})
Our scheme n+nlk (n+n/k)|pl + (n+ 3n/k)|id| O(logz”/k + loglz‘)

n is the total number of blocks in the data file; m is the branch number of tree; k is the number of tags in a T-Merkle hash tree node; [id| is the size of index; and
Ip| is group size. Let sum (Y) = m® + m' + .- + m%n and sum (W) = 20 + 2" + ... 4 2logs,

TaBLE 5: Comparison of verification efficiency.

Communication cost Computation cost
Scheme
CS BC CS BC Verifier
Yue et al. scheme [9] clpl c log,"|pl cH clog, " —
Wang and Zhang scheme [27] 3|pl clpl cA +cH (c+ 1) +2.U 39
Our scheme Ipl [pl cAd +cH + P cd +2M + P P

n is the total number of blocks in the data file; 7 is the branch number of tree; ¢ is the number of challenged blocks; &/ denotes one addition in G; .# denotes
one multiplication in G; & denotes one pairing operation; and 7 denotes one hashing operation.

Yue’s scheme [9] requires 15.1 ms and Wang and Zhang  Yue’s scheme II mean that the file size is 65536 and 131072,
scheme [27] requires 54.7 ms. respectively. Figure 12(a) shows that the computation time
increases as the challenged size increases. When the number
of challenged blocks is 500, no matter what the file size is, the
6.2.2. Evaluation of Verification Efficiency. First, we count  computation time of both our scheme and Wang’s scheme is
the total computation time in verification stage versus dif- around 940 ms, but that of Yue’s scheme depends on the
ferent number of challenged blocks. Yue’s scheme I and  total number of blocks.
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Figure 11: Comparison of different Merkle hash trees. (a) Tree generation time. (b) Query time.
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16

Cost Time (ms)

FIGURE 13: Comparison of dynamic update operation efficiency.
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FIGURe 14: Comparison of batch verification time under different
tasks.

Second, we further distinguish the computation time
between our scheme and Wang’s scheme from three sides,
which include CS, BC, and verifier. From Figures 12(b)-
12(d), it can be easily found that our scheme takes less
computation time on the verifier than Wang’s scheme, while
spending more time on the side of BC and CS. By moving
computation from verifier to BC and CS, the efficiency can
be improved when data integrity is checked by a verifier with
computation constrained device.

6.2.3. Evaluation of Data Dynamic Operations. In order to
demonstrate the dynamic operation efliciency of our
scheme, we compare our scheme under different numbers of
tags in a node and different numbers of update blocks. The
computation cost during data update comes from com-
puting new tags and updating blockchain. In addition, both
tag modification operation and tag insertion operation are
the same as tag appending operation in our scheme and the
deletion operation does not involve any computational
overhead on BC. As shown in Figure 13, the dynamic
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operations do not cause heavy cost, which is efficient as tree
generation compared with Figure 11(a). When the number
of tags in a node is k = 128, the dynamic update achieves a
better performance under the same number of update
blocks.

6.2.4. Evaluation of Batch Verification Efficiency. In the case
of ¢ =500, we compare our batch verification with individual
verification through different numbers of tasks in terms of
computation. Figure 14 shows that the average computation
time of each verification task in batch verification is less than
that of single verification since the number of pairing op-
erations in batch verification is 3, which is independent of
the number of tasks.

7. Conclusion

We proposed a verification scheme based on blockchain for
cloud storage, which aims to address the problem of
untrusted TPA. Our scheme realized efficient and light-
weight data integrity verification by transferring computa-
tion from verifier to CS and BC with the help of ZSS short
signature and the bilinear pairing. We further designed a
new storage structure called T-Merkle hash tree to achieve
binary search on blockchain. We also extended our scheme
to support block level based dynamic operation and pre-
sented a detailed tag update process on blockchain. Fur-
thermore, we proposed a batch verification scheme to check
massive verification tasks so as to save the computation and
communication costs. We conducted experiments by con-
structing a blockchain network on Hyperledger Fabric. The
security and efficiency of our scheme are proved by the
analysis and experimental results. In future, we will extend
our work to deal with blockchain-based integrity verification
of shared data or deduplicated data. To support the case of
multiusers, we need to improve the signature technology,
and it will be very interesting and challenging.
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